If A is a non defective operator so it has a complete set of eigenvectors $\overrightarrow{Av_i} = \lambda_i \overrightarrow{v_i}$. A has eigenvalues $\{\lambda_1, \lambda_2, \cdots, \lambda_m\}$ and for each eigenvalue λ_i there are p_i linearly independent eigenvectors. $\overrightarrow{v_{ij}}$ for $j=1,\cdots,p_i$. Since the eigenvectors span \mathbb{R}^n we have $p_1+p_2+\cdots+p_m=n$.

There are spectral projections E_i so that $E_i^2 = E_i$ and $E_i E_j = \delta_{ij} E_i$ (δ_{ij} is the Kronecker delta so $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$). We have

If $AA^T=A^TA$ then A in said to be normal. Such A are non defective. Note if A is symmetric $a_{ij}=a_{ji}$ the A is normal and if A is real then A has real spectrum. If A is antisymmetric so $a_{ij}=-a_{ji}$ and A is real then A has pure imaginary spectrum. Every real matrix can be written as the sum A=B+C where B is symmetric and C is antisymmetric. The matrix A is normal if and only if B and C commute.

If A is an $(n \times n)$ -matrix then A satisfies its characteristic equation.

$$p(\lambda) = \det(A - \lambda I) \qquad \text{then } p(A) = 0$$
 i.e.
$$(-A)^n + \operatorname{tr}(A)(-A)^{n-1} + c_2(-A)^{n-2} + \cdots + c_{n-1}(-A) + \det(A)I = 0$$

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)^{p_1} (\lambda - \lambda_2)^{p_2} \cdots (\lambda - \lambda_m)^{p_m}$$

$$\text{note } p_1 + p_2 + \cdots + p_m = n \ (A \text{ is an } (n \times n) - \text{matrix})$$
 So
$$(A - \lambda_1 I)^{p_1} (A - \lambda_2 I)^{p_2} \cdots (A - \lambda_m I)^{p_m} = 0$$

An matrix A is non defective if and only if

$$(A-\lambda_1 I)(A-\lambda_2 I)\cdots (A-\lambda_m I) = 0.$$
 so the minimal polynomial $p_m(\lambda) = (\lambda-\lambda_1)(\lambda-\lambda_2)\cdots (\lambda-\lambda_m)$

Notice if A is non defective and has two eigenvalues \textbf{h}_1 and \textbf{h}_2 then

$$e^{tA} = (\lambda_2 - \lambda_1)^{-1} (e^{\lambda_1 t} (A - \lambda_2 t) - e^{\lambda_2 t} (A - \lambda_1 I))$$

The minimal polynomial is the polynomial of lowest degree so that $p_{m}(\mathbf{A}) \, = \, 0 \, . \label{eq:polynomial}$

Defective matrix.

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

characteristic polynomial

$$p(\lambda) = det(A - \lambda I) = \lambda^2 - tr(A)\lambda + det(A) = \lambda^2$$

 $\lambda = 0$ eigenvalue.

$$A - 0 I = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$A\overrightarrow{v} = 0$$
 $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} X \\ y \end{bmatrix} = 0$ $y = 0$

The space of eigenvectors for λ = 0 is one dimensional

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Note ${\bf A}^2={\bf 0}.$ A matrix N so that ${\bf N}^p={\bf 0}$ is called nilpotent. The order p is the first power so that ${\bf N}^p={\bf 0}$ so ${\bf N}^k\neq {\bf 0}$ for k< p.

What are the nilpotent (2×2) -matrices. $N^2 = 0$ A (2×2) matrix can not be nilpotent or order 3.

Another example $N^2 = 0$

If
$$N^2 = 0$$

$$tr(N) = 0$$
 $det(N) = 0$

$$N = \begin{bmatrix} a & b \\ c & -a \end{bmatrix} \qquad \det(N) = -a^2 - bc$$

$$bc = -a^2$$

$$\mathbf{N} = \left[\begin{array}{cc} 0 & \mathbf{1} \\ 0 & 0 \end{array} \right] \qquad \qquad \mathbf{N} = \left[\begin{array}{cc} 0 & 0 \\ \mathbf{1} & 0 \end{array} \right]$$

$$\mathbf{N} = \begin{bmatrix} 1 & -\mathbf{a} \\ 1/\mathbf{a} & -1 \end{bmatrix} \quad \begin{bmatrix} 1 & -\mathbf{a} \\ 1/\mathbf{a} & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Every (2 x 2)-matrix N so that $N \neq 0$ and $N^2 = 0$

is of the form
$$S\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}S^{-1}$$

$$\overrightarrow{v_1} = N\overrightarrow{v_2}$$
 with $\overrightarrow{v_2}$ choosen so that $\overrightarrow{v_1} \neq 0$

then
$$N\overline{v_1} = 0$$

So in terms of $\overline{v_1}$ and $\overline{v_2}$ we have

$$\mathbf{N} = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

$$N = S \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} S^{-1} \qquad S = \begin{bmatrix} (\overrightarrow{v_1})_1 & (\overrightarrow{v_2})_1 \\ (\overrightarrow{v_1})_2 & (\overrightarrow{v_2})_2 \end{bmatrix}$$

$$e^{tN} = I + tN$$

$$(I+tN)(I+sN) = (I+(t+s)N)$$

If A is a (2 x 2)-matrix with a repeated eigenvalue λ A = λ I + N Note $e^{t(A+B)} = e^{tA}e^{tB}$ if A and B commute meaning AB = BA. Since IA = AI we have

$$e^{tA} = e^{t(\lambda I + N)} = e^{t\lambda I}e^{tN} = e^{\lambda t}(I + tN + \frac{t^2}{2!}N^2 + \cdots) = e^{\lambda t}(I + tN)$$

Formula for e^{tA} where A is a (2 x 2)-matrix with repeated eigenvalue λ . Note $(A-\lambda I)^2=0$

$$e^{tA} = e^{\lambda t}(I + t(A-\lambda I))$$
 Note $e^{tA} = e^{t\lambda}e^{t(A-\lambda I)}$

What about (3×3) -matrices. With three repeated zero eigenvalues.

$$det(A-\lambda I) = -\lambda^{3} + tr(A)\lambda^{2} - c\lambda + det(A) = 0$$
$$tr(A) = 0 \quad det(A) = 0 \text{ and } c = 0$$

$$\begin{bmatrix} a_{11}^{-\lambda} & a_{12} & a_{13} \\ a_{21} & a_{22}^{-\lambda} & a_{23} \\ a_{31} & a_{32} & a_{33}^{-\lambda} \end{bmatrix}$$

$$c = a_{11}a_{22} + a_{11}a_{33} + a_{22}a_{33} - a_{12}a_{21} - a_{13}a_{31} - a_{23}a_{32}$$

example

$$\mathbf{N} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad \qquad \mathbf{N}^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Example of a matrix that is nilpotent of order 4

Every nilpotent matrix is of the form $N = SJS^{-1}$

J is a direct sum of N_i above

e.g
$$J = \begin{bmatrix} N_1 & 0 & 0 & 0 & 0 \\ 0 & N_2 & 0 & 0 & 0 \\ 0 & 0 & N_3 & 0 & 0 \\ 0 & 0 & 0 & N_4 & 0 \\ 0 & 0 & 0 & 0 & N_5 \end{bmatrix}$$

 N_i is of the form given below

$$\mathbf{N_{\hat{1}}} = [0] \quad \left[\begin{array}{ccc} 0 & 1 \\ 0 & 0 \end{array} \right] \quad \left[\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array} \right] \quad \left[\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right] \quad \text{etc.}$$

Note if N is nilpotent of order p then

$$e^{tN} = I + tN + \frac{t^2}{2!}N^2 + \cdots + \frac{t^{p-1}}{(p-1)!}N^{p-1}$$

Notice $e^{t(\lambda I+N)} = e^{t\lambda}e^{tN}$

e.g. if
$$N = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$e^{t(\lambda I + N)} = e^{t} \begin{bmatrix} 1 & t & t^{2}/2! & t^{3}/3! \\ 0 & 1 & t & t^{2}/2! \\ 0 & 0 & 1 & t \\ 0 & 0 & 0 & 1 \end{bmatrix}$$