Last test. Median was 73. Roughly a B.

Suppose A is real (n x n)-matrix and \Re is an m-dimensional subspace of \mathbb{R}^n . Then there are m linearly independent vectors $\{\overrightarrow{v_1}, \dots, \overrightarrow{v_m}\}$ so that every vector $\overrightarrow{w} \in \Re$ is a linear combination of the \overrightarrow{v} 's so

$$\overrightarrow{w}$$
 = $s_1 \overrightarrow{v_1}$ + $s_2 \overrightarrow{v_2}$ + \cdots + $s_m \overrightarrow{v_m}$.

We say \Re is an invariant subspace for A if A maps \Re into itself so if $\overline{\mathbb{W}} \in \Re$ then $A\overline{\mathbb{W}} \in \Re$. We can denote this another way by writing $A\Re \subset \Re$. Now if \Re is an invariant subspace for A then we can consider the restriction of A to \Re which we denote by A| \Re . Now the restriction of A to \Re or A| \Re can be represented by an $(\mathbb{M} \times \mathbb{M})$ -matrix so

$$A\overrightarrow{v_j} = a_{1j}\overrightarrow{v_1} + a_{2j}\overrightarrow{v_2} + \cdots + a_{mj}\overrightarrow{v_m}$$

Now if we want to compute

$$e^{tA} = I + tA + \frac{t^2}{2!} A^2 + \frac{t^3}{3!} A^3 + \cdots$$

we see that since each term maps $\mathfrak N$ into itself so e^{tA} maps $\mathfrak N$ into itself. Now the restriction of e^{tA} to $\mathfrak N$ can be computed from the matrix A $|\mathfrak N$. So if we want to solve the problem

$$\frac{d\overrightarrow{x}}{dt}(t) = A\overrightarrow{x}(t)$$
 and $\overrightarrow{x}(0) \in \Re$

then we only have to compute the exponential of $A \mid \mathfrak{N}$ which is often much easier than computing the exponential of A on the whole space.

Let \overline{x} (t) be a 4-vector function satisfying $\frac{d\overline{x}}{dt}$ (t) = $\begin{bmatrix} 0 & 2 & 1 & 0 \\ -2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{bmatrix}$ \overline{x} (t)

$$\overrightarrow{X}(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 Find $\overrightarrow{X}(\pi/8)$

Compute
$$A \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -2 \\ 0 \\ 0 \end{bmatrix} A \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
 So in $\Re = \begin{bmatrix} a \\ b \\ 0 \\ 0 \end{bmatrix}$

An \subset n and A|n is given by the (2 x 2)-matrix

$$\begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$$

$$e^{t}\begin{bmatrix} a & b \\ -b & a \end{bmatrix} = e^{at}\begin{bmatrix} \cos(bt) & \sin(bt) \\ -\sin(bt) & \cos(bt) \end{bmatrix}$$

So we only need to consider the easier problem

$$e^{tA}$$
 with $A = \begin{bmatrix} 0 & 2 \\ -2 & 0 \end{bmatrix}$

so
$$e^{tA} = \begin{bmatrix} \cos(2t) & \sin(2t) \\ -\sin(2t) & \cos(2t) \end{bmatrix}$$

$$\begin{bmatrix} \cos(2t) & \sin(2t) \\ -\sin(2t) & \cos(2t) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos(2t) \\ -\sin(2t) \end{bmatrix}$$

$$\overrightarrow{x}(t) = \begin{bmatrix} \cos(2t) \\ -\sin(2t) \\ 0 \\ 0 \end{bmatrix} \qquad \overrightarrow{x}(\pi/8) = \begin{bmatrix} \sqrt{2} \\ -\sqrt{2} \\ 0 \\ 0 \end{bmatrix}$$

Now suppose $\mathfrak{N}_1,\mathfrak{N}_2$ are subspaces of \mathbb{R}^n which span \mathbb{R}^n and the intersection of \mathfrak{N}_1 with \mathfrak{N}_2 contains only the vector $\overline{\mathfrak{o}}$. Then we say \mathbb{R}^n is the direct sum of \mathfrak{N}_1 and \mathfrak{N}_2 . Now suppose A maps \mathfrak{N}_1 into itself and A maps \mathfrak{N}_2 into itself so

$$\mathsf{A}\mathfrak{N}_1 \subset \mathfrak{N}_1 \qquad \text{ and } \qquad \mathsf{A}\mathfrak{N}_2 \subset \mathfrak{N}_2$$

Then we can form a basis $\overrightarrow{v_1}, \overrightarrow{v_2}, \cdots, \overrightarrow{v_r}$ for \mathfrak{N}_1 and $\overrightarrow{v_{r+1}}, \cdots, \overrightarrow{v_n}$ for \mathfrak{N}_2 and the basis $\overrightarrow{v_1}, \cdots, \overrightarrow{v_n}$ is a basis for \mathbb{R}^n . When we express A as a (n x n)-matrix we see A is of the form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1r} & 0 & 0 & & 0 \\ a_{21} & a_{22} & \cdots & a_{2r} & 0 & 0 & & 0 \\ & & & & & & & & & \\ a_{r1} & a_{r2} & \cdots & a_{rr} & 0 & 0 & & 0 \\ & 0 & 0 & & 0 & & b_{11} & b_{12} & \cdots & b_{1p} \\ & 0 & 0 & & 0 & & b_{11} & b_{12} & \cdots & b_{1p} \\ & 0 & 0 & & 0 & & b_{11} & b_{12} & \cdots & b_{1p} \\ \end{bmatrix}$$

technically $b_{ij} = a_{(r+i)(r+j)}$

We call this the direct sum of A and B \quad A \oplus B

Note

$$\begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} \begin{bmatrix} C & 0 \\ 0 & D \end{bmatrix} = \begin{bmatrix} AC & 0 \\ 0 & BD \end{bmatrix}$$

$$e^{t} \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix} = \begin{bmatrix} e^{tA} & 0 \\ 0 & e^{tB} \end{bmatrix}$$

А Ф В Ф С

$$e^{t(A \oplus B \oplus C)} = e^{tA} \oplus e^{tB} \oplus e^{tC}$$

So for example

$$A = \begin{bmatrix} 1 & -2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad e^{tA} = \begin{bmatrix} e^{t}\cos(2t) & -e^{t}\sin(2t) & 0 \\ e^{t}\sin(2t) & e^{t}\cos(2t) & 0 \\ 0 & 0 & e^{-t} \end{bmatrix}$$

$$A = \begin{bmatrix} X & 0 & 0 \\ 0 & X & X \\ 0 & X & X \end{bmatrix} \quad e^{tA} = \begin{bmatrix} e^{\lambda t} & 0 & 0 \\ 0 & e^{tB} \end{bmatrix} \quad e^{tB} = 2 \times 2 \text{ matrix}$$

Also

$$A = \begin{bmatrix} X & 0 & X \\ 0 & Y & 0 \\ X & 0 & X \end{bmatrix} \qquad e^{\dagger A} = \begin{bmatrix} Y & 0 & Y \\ 0 & e^{\lambda \dagger} & 0 \\ Y & 0 & Y \end{bmatrix}$$

$$\begin{bmatrix} y_{11} & y_{13} \\ y_{31} & y_{33} \end{bmatrix} = \exp\left(t \begin{bmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{bmatrix}$$

So if
$$A = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 2 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
 $e^{tA} = \begin{bmatrix} e^t \cos(2t) & 0 & -e^t \sin(2t) \\ 0 & e^{2t} & 0 \\ e^t \sin(2t) & 0 & e^t \cos(2t) \end{bmatrix}$

The (4×4) case

$$A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{bmatrix} \qquad e^{tA} = \begin{bmatrix} e^{tB} & 0 & 0 \\ & 0 & 0 \\ 0 & 0 & e^{tC} \\ 0 & 0 \end{bmatrix}$$

$$\exp(t \begin{bmatrix} A & 0 & 0 & 0 \\ 0 & B & 0 & 0 \\ 0 & 0 & C & 0 \\ 0 & 0 & 0 & D \end{bmatrix}) = \begin{bmatrix} e^{tA} & 0 & 0 & 0 \\ 0 & e^{tB} & 0 & 0 \\ 0 & 0 & e^{tC} & 0 \\ 0 & 0 & 0 & e^{tD} \end{bmatrix}$$

If A is a non defective operator so it has a complete set of eigenvectors $\overrightarrow{Av_i} = \lambda_i \overrightarrow{v_i}$. A has eigenvalues $\{\lambda_1, \lambda_2, \cdots, \lambda_m\}$ and for each eigenvalue λ_i there are p_i linearly independent eigenvectors. $\overrightarrow{v_{ij}}$ for $j=1,\cdots,p_i$. Since the eigenvectors span \mathbb{R}^n we have $p_1+p_2+\cdots+p_m=n$.

There are spectral projections E_i so that $E_i^2=E_i$ and $E_iE_j=\delta_{ij}E_i$ (δ_{ij} is the Kronecker delta so $\delta_{ij}=0$ if $i\neq j$ and $\delta_{ij}=1$). We have