138 NNl CHAPTER 4 Numeration Systems

| I I I ll. 4.1 HISTORICAL NUMERATION SYSTEMS

Basics of Numeration ¢ Ancient Egyptian Numeration ¢ Ancient Roman
Numeration ¢ Classical Chinese Numeration

Basics of Numeration

The various ways of symbolizing and working with the counting numbers are called
numeration systems. The symbols representing the numbers are called numerals.

Numeration systems have developed over many millennia of human history.
Ancient documents provide insight into methods used by the early Sumerian peo-
ples, the Egyptians, the Babylonians, the Greeks, the Romans, the Chinese, the
Hindus, and the Mayan people, as well as others.

Keeping accounts by matching may have developed as humans established per-
manent settlements and began to grow crops and raise livestock. People might have
kept track of the number of sheep in a flock by matching pebbles with the sheep, for

Symbols designed to represent objects or

ideas are among the aldest inventions of
humans. These Indian symbols in Arizona example. The pebbles could then be kept as a record of the number of sheep.

are several hundred years old. A more cfficient method is to keep a tally stick. With a tally stick, one notch or

tally is made on a stick for each sheep. Tally marks provide a crude and inefficient
numeration system. For example. the numeral for the number thirteen might be

FHTTRUEF LT, <— 13 tally marks

which requires the recording of 13 symbols, and later interpretation requires careful
counting of symbols.

Even today, tally marks are used, especially when keeping track of things that
occur one or a few at a time, over space or time. To facilitate the counting of the
tally, we often use a sort of “grouping” technique as we go.

MHLTHL T <= Numeral (tally) for 13

A long evolution of numeration systems throughout recorded history would
take us from tally marks to our own modern system, the Hindu-Arabic system,
which utilizes the set of symbols

{1,2,3,4,5.6,7,8,9,0}.

That system is discussed in some detail in Sections 4.2-4.4.

Ancient Egyptian Numeration

An essential feature of all more advanced numeration systems is grouping, which

i allows for less repetition of symbols and makes numerals easier to interpret. Most
historical systems, including our own, have used groups of ten, indicating that peo-
ple commonly learn to count by using their fingers. The size of the groupings (again,
usually ten) is called the base of the number system.

The ancient Egyptian system is an example of a simple grouping system. It uti-
lized ten as its base, and its various symbols are shown in Table 1 on the next page.
The symbol for 1 (1) is repeated, in a tally scheme, for 2, 3, and so on up to 9. A new
symbol is introduced for 10 (M), and that symbol is repeated for 20, 30, and so on,
up to 90. This pattern enabled the Egyptians to express numbers up to 9,999,999
with just the seven symbols shown in the table.

The numbers denoted by the seven Egyptian symbols are all powers of the base ten.

100 =1, 101 =10, 102=100, 103 = 1000, 10* = 10,000,

Tally sticks like this one were used by 103 = 100,000, 10° = 1,000,000
the English in about 1400 A.D. to keep track
of financial transactions. Each notch
stands for one pound sterling.

These expressions, called exponential expressions, were first defined in Section 1.1. In
the expression 10, for example, 10 is the base and 4 is the exponent. Recall that the
exponent indicates the number of repeated factors of the base to be multiplied.

Printed by Nakia Rimmer (immer@math.upenn.edu) on 11/13/2012 from 128.91.40.48 authorized to use until 6/30/2018. Use beyond the authorized user or valid subscription date represents
a copyright violation.




4.1 Historical Numeration Systems BN 139

Early Egyptian Symbols

1 | Stroke
10 n Heel bone
100 9 Scroll
1000 f Lotus flower
10,000 ( Pointing finger
100,000 A Burbot fish
1,000,000 P Astonished person

HIGIOY DT RICN R R ER L A II DN JN-R W Interpreting an Egyptian Numeral

mathematics comes from the Rhind
papyrus, from about 3800 years ago. A
small portion of this papyrus, showing

methods for finding the area of a triangle, O Q_\jgggggcpo)g 9 Rﬂﬂgﬂlv I

is reproduced here.

Write the number below in Hindu-Arabic form.

SOLUTION

Refer to Table 1 for the values of the Egyptian symbols. Each &= represents
100,000. Therefore, two £ represent 2 - 100,000, or 200,000. Proceed as shown.

two o 2. 100,000 = 200,000

five £ 5+ 1000 = 5000
four 9 4 - 100 = 400
nine n 9-10 = 90
seven I 7-1= 7
205,497 < Answer (1]

II N\ | NP B Creating an Egyptian Numeral

Write 376,248 in Egyptian form.

SOLUTION
3 7 6, 2 4 8
Yoo v
OO gg{g@g” il Refer to Table 1 as needed.

R dvhaanll i

The position or order of the symbols makes no difference in a simple grouping
system. Each of the numerals 7?nnnlil, IINNNP7, and INN?? Nl would be interpreted
as 234. In Examples 1 and 2, like symbols are grouped together and groups of

An Egyptian tomb painting shows scribes greater-valued symbols are positioned to the left.

tallying the count of a grain harvest. A simple grouping system is well suited to addition and subtraction.

Egyptian mathematics was ariented

iz .practlcalwtv th.an was Greekof -gg 29 nnn i We use a + sign for convenience and draw a line under
Babylonian mathematics, although the

the numbers being added, although the Egyptians did not
Egyptians did have a formula for finding +£ 299 MY I do this.
the volume of a certain portion of a

ramid. 999 nn o
o Sum: ggg 99 AN Il Twols plus six|s is equal to eight s, and so on,
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140 EEN CHAPTER 4 Numeration Systems

Sometimes regrouping, or “carrying,” is needed.

< .0 "Crr
¢ L5539 ann' |

& 'l Iﬂlluln I
& s N

A= | Regrouped answer:
4Nt 15 Il L S ) |
gt e U ey |
Sum: 20 i |

Toeny ! A | &:'
Archaeological investigation has tten' " = one E, J

provided much of what we know about the
numeration systems af ancient peoples.

Subtraction is done in much the same way, as shown in the next example.

I I Subtracting Egyptian Numerals

Work each subtraction problem.

(@) 9299 nn i (b). 99nnnn 1l
99 NNl ~9 0N il
999 N |l
SOLUTION
(a)
299 nn 1l
99 NN 1l

As with additien, work from
995 || right to left and subtract.

Difference: 29 NN

(b) To subtract fourls from two s, “borrow” one heel bone, which is equivalent to ten|s.
Finish the problem after writing ten additional Is on the right.

Regrouped: I oneNn=tenls
29 ﬂﬂﬂ”””
-9 NN 1
Difference: 9 0 (1]

A procedure such as those described above is called an algorithm: a rule or
method for working a problem. The Egyptians used an interesting algorithm for
multiplication that requires only an ability to add and to double numbers, as shown
in Example 4. For convenience, this example uses our symbols rather than theirs.

" Using the Egyptian Multiplication Algorithm

A rectangular room in an archaeological excavation measures 19 cubits by 70 cubits.
(A cubit, based on the length of the forearm, from the elbow to the tip of the mid-
dle finger, was approximately 18 inches.) Find the areca of the room.

SOLUTION

Multiply the width and length to find the area of a rectangle. Build two columns of
numbers as shown at the top of the next page. Start the first column with 1, the sec-
ond with 70. Each column is built downward by doubling the number above. Keep
going until the first column contains numbers that can be added to equal 19. Then
add the corresponding numbers from the second column.
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70 <

140 <

280 70 + 140 + 1120 = 1330
560

- 16 1120 <

—
—

1+2+16=19

=" O R

Thus 19 - 70 = 1330, and the area of the given room is 1330 square cubits. (1]

Ancient Roman Numeration

Roman numerals are still used today, mainly for decorative purposes, on clock
faces, for heading numbers in outlines, chapter numbers in books, copyright dates
of movies, and so on. The base is again 10, with distinct symbols for 1, 10, 100, and
1000. The Romans, however, deviated from pure simple grouping in several ways.
For the symbols and some examples, see Tables 2 and 3, respectively.

Table 2 Roman Symbols

Number Symbol
1 I
9 A\
10 X
50 L
100 @
500 D
1000 M
Table 3 Selected Roman Special Features of the Roman System
Numerals 1. In addition to symbols for 1, 10, 100, and 1000, “extra” symbols denote 5, 50,
Number Numeral and 500. This allows less symbol repetition within a numeral. It is like a sec-
ondary base 5 grouping functioning within the base 10 simple grouping.
6 VI . :
2. A subtractive feature was introduced, whereby a smaller-valued symbol,
12 XII placed immediately to the left of one of larger value, meant to subtract. Thus
19 XIX IV =4, while VI = 6. Only certain combinations were used in this way:
(a) I preceded only V or X.
il e (b) X preceded only L or C.
49 XLIX (c) C preceded only D or M.
35 LXXXV 3. A multiplicative feature, rather than more symbols, allowed for larger
numbers:
25,040 XXVXL (a) A bar over a numeral meant to multiply by 1000.
35,000 XXXV (b) A double bar meant to multiply by 10002, that is, by 1,000,000.
5,105,004 VCVIV
7,000,000 VI Adding and subtracting with Roman numerals is very similar to the Egyptian

method, except that the subtractive feature of the Roman system sometimes makes
the processes more involved. With Roman numerals we cannot add IV and VII to
get the sum VVIII by simply combining like symbols. (Even XIII would be incorrect.)
The safest method is to rewrite I'V as I111, then add ITII and VII, getting VIIIIIL. We
convert this to VVI, and then to XI by regrouping. Subtraction, which is similar, is
shown in the following example.
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142 NIl CHAPTER 4 Numeration Systems

" D A JEN Subtracting Roman Numerals

Thomas DiGiano, a Roman official, has 26 servants. If, on a given Saturday, he has
excused 14 of them to attend a Lucky Lyres concert at the Forum, how many are
still at home to serve the banquet?

SOLUTION

To find the answer, we subtract XIV from XXVI. Set up the problem in terms of
simple grouping numerals (that is, XIV is rewritten as XIIII):

Problem: XXV Problem restated without XXVI
— XIV subtractive notation: — XTITI

Regrouped: X XIIIIII
— XIIII
XIT < Answer

Since four Is cannot be subtracted from one I, we have “borrowed” in the top
numeral, writting XX VI as XXIIIIIL The subtraction can then be carried out. Thomas
has 12 servants home for the banquet. (] ]

Computation, in early forms, was often aided by mechanical devices just as it is
today. The Roman merchants, in particular, did their figuring on a counting board, or
counter, on which lines or grooves represented 1s, 10s, 100s, etc., and on which the
spaces between the lines represented 35s, 50s, 500s, and so on. Discs or beads (called
calculi, the word for “pebbles™) were positioned on the board to denote numbers,
and calculations were carried out by moving the discs around and simplifying.

II Adding on 2 Roman Counting Board

A Roman merchant wants to calculate the sum 934 + 286. Use counting boards to
carry out the following steps.

(a) Represent the first number, 934.
934
(b) Represent the second number, 286, beside the first.

(¢) Represent the sum, in simplified form.

SOLUTION
(a) See Figure 1. (b) See Figure 2.

(¢) See Figure 3. The simplified answer is MCCXX, or 1220. In the process of sim-
plification, five discs on the bottom line were replaced by a single disc in the V
space. This made two Vs that were replaced by an additional disc on the X line.

934 + 286 Five of those on the X line were then replaced by one in the L space, and this

process continued until the disc on the M line finally appeared. (] 1

Figure 2

Classical Chinese Numeration

The preceding examples show that simple grouping, although an improvement over

tallying, still requires considerable repetition of symbols. To denote 90, for example,

the ancient Egyptian system must utilize nine Ms: %%Q%ﬂ .If an additional symbol

(a “multiplier”) was introduced to represent nine, say “9,” then 90 could be denoted
1220 9 N. All possible numbers of repetitions of powers of the base could be handled by
Figure 3 introducing a separate multiplier symbol for each counting number less than the base.
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. Just such a system was developed many years ago in = 2
fabled’ Chinese China. We shogv the predomingnt Chi]i]e};e Veriion, F 1000
Symbols which used the symbols shown in Table 4. We call this £ +
Number Symbol type of system a multiplicative grouping system. In gen- + 0
1 _ eral, a numeral in such a system would contain pairs of ] 120
symbols, each pair containing a multiplier (with some — 1
2 = counting number value less than the base) and then a + 10
3 %= power of the base. The Chinese numerals are read from +
top to bottom rather than from left to right. 8 4
4 = If the Chinese system were pure multiplicative grouping, - 1
5 h the number 2014 would be denoted as shown in Figure 4. 2014 in pure multiplicative
6 * But three special features of the system show that they had grouping
started to move beyond multiplicative grouping toward Figure 4
7 * something more efficient.
8 A
9 f Special Features of the Chinese System
10 - 1. A single symbol, rather than a pair, denotes the number of 1s. The multiplier
100 B (1,2,3,4, . .,0r9) is written, but the power of the base (10%) is omitted. See
1000 T Figure 5 (and'also Examples 7(a), (b), and (c)).
2. In the 10s pair, if-the multiplier is 1 it is omitted. See Figure 6 (and
0 * Example 8(a)).
3. When a particular power of the base is totally missing, the omission is
denoted with the zero symbol. See Figure 7 (and Examples 7(b) and
8(b)). If two or more consecutive powers are missing, just one zero sym-
= 2 bol denotes the total omission. (See Example7(c).) The omission of 1s and
+ 1000 = 2 10s and any other powers occurring at the extreme bottom of a numeral
S ?)' I 1000 need not be denoted at all. (See Example 7(d).)
. +
& 100 T o
- T & 100 Note that, for clarification in the following examples, we have emphasized the
+ 10 + ﬁ) grouping into pairs by spacing and by colored braces. These features were not part
+ + of the actual numerals in practice.
& 4 a 4
2014 with 2014 with

feature 1 features 1 and 2 " 3 1IN A Interpreting Chinese Numerals
Figure 5 Figure 6

Interpret each Chinese numeral.

@@% mv @k @
Z 2 f 5 + f
+ 1000 — ES £ =
* =
f 0 B = f B
+ ®
+ 10 .
& 4 &
2014 with features 1, 2, and 3
) SOLUTION
Figure 7
= X
@ 7 }3 - 1000 = 3000 b) = }7 . 100 = 700
g}l- 100 = 100 F0(-10)= 00
®
+}6- 10=60 Z 3(-1)=_3
o 4-1)- 4 Total: 703
Total: 3164
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)
(c) f’-) } 5 - 1000 = 5000 (d) 3 }4 + 1000 = 4000
0( - 100) = 000 =
%}( ) ;}2-100—200
0( - 10) = 00 Total: 4200
f 9(-1)= 9
Total: 5009 (] 1]
HIEZZIEE] Creating Chinese Numerals
Write a Chinese numeral for each number.
This illustration is of a quipu. In (a) 614 (b) 5090
Ethnomathematics: A Multicultural View of
Mathematical Ideas, Marcia Ascher writes: SOLUTION 6 - 100: { PR
A quipu is an assemblage of colored (a) The number 614 is made up of six 100s, one 10, B
knotted cotton cords. Cotton cordage and and four 1s, as depicted at the right. (1-)Ho: +
cloth were of unparalleled importance in 4( . 1).
Inca culture. The colors of the cords, the '
way the cords are connected, the relative 7 ¢ E
placsmeat of the cords, Hespacss (b) The number SQ9O consists of five 1000s, 5+ 1000: { T
between the cords, the types of knots on no 100s, and nine 10s (no 1s).
the individual cords, and the relative 0( ) 100): %
placement of the knots are all part of the h
logical-numerical recording. 9 - 10: { #
(1]

“rvexeciss | | | BB W

Convert each Egyptian numeral to Hindu-Arabic form.

1. ZEEEnnnitin

2. ££9999ni1

3. KK oo om0 L L I
R eoeoes (7095990

a. X LEL L9 900N

Convert each Hindu-Arabic numeral to Egyptian form.

5. 23,145 6. 427

7. 8.657.000 8. 306,090

Chapter 1 of the book of Numbers in the Bible describes a
census of the draft-eligible men of Israel after Moses led
them out of Egypt into the Desert of Sinai, about 1450 B.C.

Write an Egyptian numeral for the number of available men
from each tribe listed.

9. 59,300 from the tribe of Simeon
10. 46,500 from the tribe of Reuben

11. 74,600 from the tribe of Judah

13. 62,700 from the tribe of Dan

14. 54,400 from the tribe of Issachar

Convert each Roman numeral to Hindu-Arabic form.

15. CLXXXII 16. MDXCVII

17. X1V 18. VCXXID

Convert each Hindu-Arabic numeral to Roman form.

19. 2861 20. 749

21. 25,619 22. 6,402,524

Convert each Chinese numeral to Hindu-Arabic form.

23. 4 4. ~ 25. = 26. @
o L] + F
= e 3 f
b . ‘ :

N ﬁ
.

Convert each Hindu-Arabic numeral to Chinese form.

. 4 from T f 5 B :
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Though Chinese art forms began before written history, their
highest development was achieved during four particular
dynasties. Write traditional Chinese numerals for the begin-
ning and ending dates of each dynasty listed.

31. Ming (1368 to 1644)
32. Sung (960 to 1279)
33. T’ang (618 to 907)

34. Han (202 B.C. to A.D. 220)

Work each addition or subtraction problem, using regroup-
ing as necessary. Convert each-answer to Hindu-Arabic form.

35. 9 RH 0 36. ‘3“)nﬂnw|l
nNNN alaiall
Y han 7 an
S eee KX Ao
99 NNNNIIII
t 7 fop@@nmmm
29 NN,
ﬂvf%em
299 I
TEE 99900y
39.  99nnniil 490.  nnn
9 nn | AN Il
E— - NNl
a2 7 99y go)o)o)nnn H:
299 1l
- gggo)gmn - ")‘annnnnnl\l

Use the Egyptian algorithm to find each product.
43, 32 - 47 4. 29 - 75

45. 64 - 127 46. 52 - 131

In Exercises 47 and 48, convert all numbers to Egyptian
numerals. Multiply using the Egyptian algorithm, and add
using the Egyptian symbols. Give the final answer using a
Hindu-Arabic numeral.

47. Value of a Biblical Treasure  The book of Ezra in the
Bible describes the return of the exiles to Jerusalem.
When they rebuilt the temple, the King of Persia gave
them the following items: thirty golden basins, a thou-
sand silver basins, four hundred ten silver bowls, and
thirty golden bowls. Find the total value of this treasure,
if each gold basin is worth 3000 shekels, each silver basin
is worth 500 shekels. each silver bowl is worth 50

4.1 Historical Numeration Systems BN 145

48. Total Bill for King Selomon King Solomon told the King of
Tyre (now Lebanon) that Solomon needed the best cedar
for his temple, and that he would “pay you for your men
whatever sum you fix.” Find the total bill to Solomon if
the King of Tyre used the following numbers of men:
5500 tree cutters at two shekels per week each, for a total
of seven weeks; 4600 sawers of wood at three shekels per
week each, for a total of 32 weeks; and 900 sailors at one
shekel per week each, for a total of 16 weeks.

\4 Explain why each step would be an improvement in the

development of numeration systems.

49. progressing from carrying groups of pebbles to making
tally marks on a stick

50. progressing from tallying to simple grouping

51. utilizing a subtractive technique within simple group-
ing, as the Romans did

52. progressing from simple grouping to multiplicative
grouping

Recall that the ancient Egyptian system described in this sec-
tion was simple grouping, used a base of ten, and contained
seven distinct symbols. The largest number expressible in
that system is 9,999,999. Identify the largest number express-
ible in each of the following simple grouping systems. (In
Exercises 57—-60, d can be any counting number.)

53. base ten, five distinct symbols
54. base ten, ten distinct symbols
55. base five, five distinct symbols
56. base five, ten distinct symbols
57. base ten, d distinct symbols
58. base five, d distinct symbols
59. base seven, d distinct symbols

60. base b, d distinct symbols (where b is any counting
number 2 or greater)

61. The Chinese system presented in the text has symbols
for 1 through 9, and also for 10, 100, and 1000. What is
the greatest number expressible in that system?

62. The Chinese system did eventually adopt two addi-
tional symbols, for 10,000 and 100,000. What greatest
number could then be expressed?

63. If the first (least-valued) six symbols of the Roman sys-
tem are arranged from greatest value to least, left to
right, what famous number is denoted?

64. The number in Exercise 63 is denoted with six symbols as
a Roman numeral. How many symbols would it require as
(a) a Chinese numeral?
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| I I I I l. 4.2 MORE HISTORICAL NUMERATION SYSTEMS

Basics of Positional Numeration ¢ Hindu-Arabic Numeration * Babylonian
Numeration + Mayan Numeration ¢ Greek Numeration

Basics of Positional Numeration

A simple grouping system relies on repetition of symbols to denote the number of
each power of the base. A multiplicative grouping system uses multipliers in place
of repetition, which is more efficient. The ultimate in efficiency is attained with a
positional system in which only multipliers are used. The various powers of the base
require no separate symbols, because the power associated with each multiplier can
be understood by the position that the multiplier occupies in the numeral.

If the Chinese system had evolved into a positional system, then the numeral
for 7482 could be written

rather than

N
NS> (o

In the positional version on the left, the lowest symbol is understood to represent
two 1s (10"), the next one up denotes eight 10s (10"),.then four 100s (10?), and finally
seven 1000s (107%). Each symbol in a numeral now has both a face value, associated
with that particular symbol (the multiplier value), and a place value (a power of the
base), associated with the place, or position, occupied by the symbol.

Positional Numeration v/)
In a positional numeral, each symbol (called a digit) conveys two things:

1. face value—the inherent value of the symbol

2. place value—the power of the base that is associated with the position
that the digit occupies in the numeral.

Hindu-Arabic Numeration

The place values in a Hindu-Arabic numeral, from right to left, are 1, 10, 100, 1000,
and so on. The three 4s in the number 46.424 all have the same face value but dif-
ferent place values. The first 4, on the left, denotes four 10,000s, the next one
denotes four 100s, and the one on the right denotes four 1s. Place values (in base
ten) are named as shown here.

I
(< L
& &
e &
§ o (90 Qg) &
I S §
o g F & & o & & >
& s; & 8 & & S ) o &3
F F & & §F & & 5 & F F
& L <2 <~ T <Z N PN &
8, 3 2 1, 4 5 6, 7 9 5

This numeral is read as eight billion, three hundred twenty-one million, four hun-
dred fifty-six thousand, seven hundred ninety-five.
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4.2 More Historical Numeration Systems BN 147

To work successfully, a positional system must have a symbol for zero to serve
as a placeholder in case one or more powers of the base are not needed. Because of
this requirement, some early numeration systems took a long time to evolve to a
positional form, or never did. Although the traditional Chinese system does utilize
a zero symbol, it never did incorporate all the features of a positional system, but
remained essentially a multiplicative grouping system.

The one numeration system that did achieve the maximum efficiency of posi-
tional form is our own system, the Hindu-Arabic system. Its symbols have been
traced to the Hindus of 200 B.c. They were picked up by the Arabs and eventually
transmitted to Spain, where a late tenth-century version appeared like this:

IRAVe QuitY R )

The earliest stages of the system evolved under the influence of navigational, trade,
engineering, and military requirements. And in early modern times, the advance of
astronomy and other sciences led to a structure well suited to fast and accurate com-
putation.

The purely positional form that the system finally assumed was introduced to
the West by Leonardo Fibonacci of Pisa (1170-1250) early in the thirteenth century,
but widespread acceptance of standardized symbols and form was not achieved
until the invention of printing during the fifteenth century. Since that time, no
better system of numeration has been devised, and the positional base ten
Hindu-Arabic system is commonly used around the world today.

The Hindu-Arabic system and notation will be investigated further in Sec-
tions 4.3 and 4.4. The systems we consider next, the Babylonian and the Mayan,
achieved the main ideas of positional numeration without fully developing those

ideas.
Table 5 Babylonian BabYIOHIan Numeration
Symbols The Babylonians used a base of 60 in their system. Because of this, in theory they
o Symbol would then need distinct symbols for numbers from 1 through 59 (just as we have
symbols for 1 through 9). However, the Babylonian method of writing on clay with
1 ' wedge-shaped sticks gave rise to only rwo symbols, as shown in Table 5. The num-

ber 47 would be written
10 <

CLLCTTITTYYY or EE“V . The number 47

Since the Babylonian system had base 60, the “digit” on the right in a multi-digit
number represented the number of 1s, with the second “digit” from the right giving
the number of 60s. The third digit would give the number of 3600s (60 - 60 = 3600),
and so on.

Special Features of the Babylonian System

1. Rather than using distinct symbols for each number less than the base
(60), the Babylonians expressed face values in base 10 simple grouping,
using only the two symbols

<for10 and Y forl.
The system is, therefore, base 10 simple grouping within base 60 positional.

2. The earliest Babylonian system lacked a place holder symbol (zero), so
missing powers of the base were difficult to express. Blank spaces within
a numeral would be open to misinterpretation.
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" U IJN RN Converting Babylonian Numerals to Hindu-Arabic

Convert each Babylonian numeral to Hindu-Arabic form.

@ <« () e © «mmmaecmmm

SOLUTION

(a) Here we have five 10s and three 1s. (b) This “two-digit” Babylonian num-
ber represents twenty-two 1s and
510 =50 fifty-eight 60s.
3-1=3

5 <— Answer

22 1= 22
58 - 60 = 3480
3502 < Answer

(¢) Here we have a three-digit number.

36 - 1= 36
11- 60 = 660
25+3600 = 90,000
00,696 <— Answer e

II Converting Hindu-Arabic Numerals to Babylonian

Convert each Hindu-Arabic numeral to Babylonian form.
(a) 733 (b) 75,904 (c) 43,233

SOLUTION
(a) To write 733 in Babylonian, we will need some 60s and some 1s. Divide 60 into 733.
The quotient is 12, with a remainder of 13.Thus we need twelve 60s.and thirteen 1s.

CTVCYIT < 733

(b) For 75,904, we need some 3600s, as well as some 60s and some 1s. Divide 75,904
by 3600. The answer is 21, with a remainder of 304. Divide 304 by 60. The quo-
tient is 5, with a remainder of 4.

<Y YIPYY YYYY < 75004

(¢) Divide 43,233 by 3600. The answer is 12, with a remainder of 33. We need no 60s
here. In a system such as ours we would use a 0 to show that no 60s are needed.
Since the early Babylonians had no such symbol, they merely left a space.

VY (TIY < 43233 (] ]

Example 2(c) illustrates the problem presented by the lack of a symbol for zero.
In our system we know that 202 is not the same as 2002 or 20,002. The lack of a zero
symbol was a major difficulty with the very early Babylonian system. A symbol for
zero was introduced about 300 B.C.

Mayan Numeration

Table 6 Mayan Symbols Ty Mayan Indians of Central America and Mexico also used what is basically a posi-

Number Symbol tional system. Like the Babylonians, the Mayans did not use base 10—they used base
20, with a twist. In a true base 20 system, the digits would represent 1s, 20s, 20 - 20 =

0 = 400s, 20 - 400 = 8000s, and so on. The Mayans used 1s, 20s, 18 - 20 = 360s,

1 . 20 - 360 = 7200s, and so on. It is possible that they multiplied 20 by 18 (instead of 20)

_ since 18 - 20 is close to the number of days in a year, convenient for astronomy. The
3 :
symbols of the Mayan system are shown in Table 6.
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4.2 More Historical Numeration Systems BN 149

The Mayans were one of the first civilizations to invent a placeholder. They had a
zero symbol many hundreds of years before it reached western Europe. Mayan numer-
als are written from top to bottom, just as in the classical Chinese system.

Special Features of the Mayan System

1. Rather than using distinct symbols for each number less than the base
(20), the Mayans expressed face values in base 5 simple grouping, using
only the two symbols — for 5 and - for 1. The system is, therefore, base
5 simple grouping within base 20 positional.

2. Place values in base 20 would normally be

1, 20, 20%=400, 20°= 8000,
204 = 160,000, and so on.

However, the Mayans multiplied by 18 rather than 20 in just one case, so
the place values are

1, 20, 20-18 =360, 360 - 20 = 7200,
7200 - 20 = 144,000, and so on.

" D O\ N JEW Converting-Mayan Numerals to Hindu-Arabic

Convert each Mayan numeral to Hindu-Arabic form.

@ = ®

Ik

SOLUTION

(a) The top group of symbols represents twelve 20s, while the bottom group repre-
sents nine 1s.

12 - 20 = 240
9- 1= 9
%«:—Answer
(b) 8 - 360 = 2880
0- 20= 0
15- 1= 15
ﬁel\nswer (11

" D I JFW Converting Hindu-Arabic Numerals to Mayan

Convert each Hindu-Arabic numeral to Mayan form.
(a) 277 (b) 1238

SOLUTION
(a) The number 277 requires thirteen 20s (divide 277 by 20) and seventeen 1s.

e <277

(b) Divide 1238 by 360.The quotient is 3, with remainder 158. Divide 158 by 20.The quo-
tient is 7, with remainder 18. Thus we need three 360s, seven 20s, and eighteen 1s.

= <1238
= [ 1]
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Greek Numeration

The classical Greeks of Ionia assigned values to the 24 letters of their ordinary
alphabet, together with three obsolete Phoenician letters (the digamma s for 6, the
koppa ? for 90, and the sampi A for 900). See Table 7. This scheme, usually called

1 & a ciphered system, makes all counting numbers less than 1000 easily represented. It
2 B avoids repetitions of symbols but requires vast multiplication tables for 27 distinct
3 v symbols. Computation would be very burdensome. The base is 10, but the system is
4 5 quite different than simple grouping, multiplicative grouping, or positional.
5 €
6 < "m Converting Greek Numerals to Hindu-Arabic
7 4 Convert each Greek numeral to Hindu-Arabic form.
: n (@ Aol () tEe (o) AT (@) X6
9 (7
10 . SOLUTION
20 « (a) 31 (b) 365 (c) 999 (d) 604 (] ]]
30 A
40 i For numbers larger than 999, the Greeks introduced two additional techniques.
50 v —
60 & Special Features of the Greek%’n .
70 o 1. Multiples of 1000 (up to 9000) are indicated with a small stroke next to a
{0 - units symbol. For example, 9000 would be denoted 6.
90 ? 2. Multlples of 10,000 are indicated by the lettérM{fmm the word myriad,
100 meaning ten thousand) with the multiple (a umtslsjymlaol) shown above
2 the M. The number 50,000 would be denoted M.
200 (g o
300 r
gl v II -\ | N HW Converting Hindu-Arabic Numerals to Greek
500 ¢
600 X Convert each Hindu-Arabic numeral to Greek form.
700 W (a) 3000 (b) 40,000 (c) 7694 (d) 88,888
800 © SOLUTION
900 A 5 ¢
@ ¥ (b) M (©) {x?s  (d) Mmomy (1]

Identify each numeral in Exercises [-20 as Babylonian, Mayan, 13.

L=

or Greek. Give the equivalent in the Hindu-Arabic system. o
1. = 2. «W o
15, == 16, ==
3, 1Y 4, == . .
5. oAd 6. wof e =
7 8 17. <CCmeCT<Tm 18. <<, 4Ky pren <<
— ' : <" < "Y"<<"|'
9, «T¢(M 10, <YITILY
o Y

11. 12. vy 19. Meput 20. Mwn

e M ar
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Write each number as a Babylonian numeral. 34. 208 35. 4694 36. 4328

21. 21 22, 32 23, 293 37. 64,712 38. 61,598

24. 412 25. 1514 26. 3280 Write each number as a Greek numeral.

27..5190 28. 7842 29. 43,205 39. 39 40. 51 41. 92

30. Ay 42. 106 43. 412 44. 381
45. 2769 46. 9814 47. 54,726

Write each number as a Mayan numeral.

31. 12 32. 32 33. 151 48. 80,102

| I I I Il. 4.3 ARITHMETIC IN THE HINDU-ARABIC SYSTEM

Expanded Form < Historical Calculation Devices

Expanded Form

The historical development of numeration culminated in positional systems. The
most successful of these is the Hindu-Arabic system, which has base ten and, there-
fore, has place values that are powers of 10.

We now review exponential expressions, or powers (defined in Section 1.1),
because they are the basis of expanded form'in a positional system.

II D G\ ISR Evaluating Powers

Find cach power.

(a) 10° (b) 7° (c) 5*

SOLUTION
(a) 103 =10+ 10 - 10 = 1000
(103 is read “10 cubed,” or “10 to the third power.”)

(b) ?=7-7=49
(7% is read “7 squared,” or “7 to the second power.”)
() *=5-5-5-5=625
(5%is read “5 to the fourth power.”) [T

To simplify work with exponents, it is agreed that

s s eeasssseassas

; 0 _
This Iranian stamp should remind us that a 1, forany nonzero number a.

counting on fingers (and toes) is an age-old Thus, 70 = 1, 520 = 1, and so on. At the same time,
practice. In fact, our word digit, referring

to the numerals 0-9, comes from a Latin a' = a, for any number a.
word for “finger” (or “toe”). Aristatle
first noted the relationships between
fingers and base ten in Greek numeration.
Anthrapalogists go along with the notion.

For example, 8' = 8, and 25' = 25. The exponent 1 is usually omitted.
By using exponents, numbers can be written in expanded form in which the
value of the digit in each position is made clear. For example,

Some cultures, however, have used twa, 924 = 900 + 20 + 4
three, or four as number bases, for
example, counting on the joints of the = (9 S100) + (2-10) + (4 - 1)

fingers or the spaces between them.

=(9-10%) + (210" + (4 - 10"). 100 =10210=10",and 1 = 10°
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e ey “ DO NJN PR VWriting Numbers in Expanded Form

odufis. ceC € ¥ @ Ba

Write each number in expanded form.

(a) 1906 (b) 46,424

SOLUTION

(a) 1906 = (1 -10%) + (9 - 10%) + (0 - 10") + (6 - 10Y)

Because 0 - 10" = 0, this term could be omitted, but the form is clearer with it
included.

(b) 46,424 = (4 - 10%) + (6 - 10%) + (4 - 10%) + (2 - 10") + (4 - 10%) 1]

There is mucﬁ evidence that early II EXAMPLE 3 Simpiifying Expanded Numbers

humans (in various cultures) used their

fingers to represent numbers. As Simplify each expansion.

calculations became more complicated, . 5 . 4 . 3 . 2 . 1 . 100

finger reckoning, as illustrated above, (a) (3 10 ) T (2 10 ) * (6 10 ) + (8 10 ) * (7 10 ) & (9 10 )

hecame popular. The Romans became (b) (2-10") + (8 - 10%)

adept at this sort of calculating, carrying

it to 10,000 or perhaps higher. SOLUTION
(@) (3+10% + (2-10%) + (6 10%) + (8 - 102) + (7 - 101) + (9 - 10%) = 326,879
(b) (210" + (8 - 10%) = 28 11

Expanded notation can be used to see why standard algorithms for addition and
subtraction really work. The key idea behind these algorithms is based on the
distributive property.

Distributive Property 4 OI\

For all real numbers a, b, and ¢,

(b-a)+ (¢c-a)=(b+e¢c)-a.

For example, (3-10) + (2:-109 = (3 +2) - 10*

5104

Use expanded notation to add 23 and 64.

SOLUTION
23 = (2 - 10") + (3 - 109)
+ 64 = (6101 + (4 -10°)

@E\ \m\ ﬂ (8 -10') + (7 - 10°) = 87 sum (11
j “\‘

—~ Ay

Finger Gounting Thedirst digfismany " D €.\ | N 3W Subtracting Expanded Forms

people used for counting were their fingers.
In Africa the Zulu used the method shown
here to count to ten. They started on the

@3 H:% I I Adding Expanded Forms
&

Use expanded notation to subtract 254 from 695.

. § SOLUTION
left hand with palm up and fist closed. The
Zulu finger positions for 1-5 are shawn 695 = (6 - 102) + (9 - 101) + (5 - 109)
above on the left. The Zulu finger positions —254 = (2-10%) + (5-10") + (4 - 10Y)

for 6-10 h he right.
i el (4 - 102) + (4 - 10') + (1 - 10%) = 441 Difference 1T
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Ilm Carrying in Expanded Form

Use expanded notation to add 75 and 48.

SOLUTION
75 = (7- 10') + (5 - 10°)
+48 = (4 - 10") + (8 - 10")
(11 - 10') + (13 - 10°)

The units position (10?) has room for only one digit, so we modify 13 - 10°.

13 - 10° = (10 - 100) H4{3 = 10”) Distributive property
=(1-10Y) +(3-10% 10-10°=1-10

The 1 from 13 moved to the left (carried) from the units position to the tens position.

13 - 10°
(11 - 10") + (1 - 10") + (3 - 10)

The Carmen de Algorismo (opening

verses shown here) by Alexander de Villa = (]zﬁ.ﬁ]ﬂl) + (3 . 10()) Distributive property
Dei, thirteenth century, popularized the 1 . 0 )
T e = (10101 + (2 - 101) + (3 - 10Y) Moadify 12 - 10"
= . 2 . 10! 3 0 : =
... from these twice five figures 098 7 =(1-105)AL2 - Q) + (3 -10° 10-10'=1-102
654321 of the Indians we benefit . . . =123 Sum T1

The Carmen related that Algor, an Indian
king, invented the art. But actually,

“algorism” for “algorithm”) comes II (N 1INl Borrowing in Expanded Form

in a roundabout way from the name

Muhammad ibn Musa al-Khorarizmi, an Use expanded notation to subtract 186 from 364.

Arabian mathematician of the ninth

century, whose arithmetic book was SOLUTION

translated into Latin. Furthermore, this 364 = (3 : 102) ach (6 y 101) i (4 . 100)

Muhammad's book on equations, Hisab
al-jabr w’'almugabalah, yielded the term
“algebra” in a similar way.

—186 = (1+102) + (8 - 10') + (6 - 10Y)

We cannot subtract 6 from 4. The units position borrows from the tens position.

(3-102) + (6 - 101) + (4 - 109)

=(3-10%) + (5-10') + (1 -10') + (4 - 10°)  Distributive property
=(3-10%) + (5-10!) + (10 - 10°) + (4 - 10°) 1-10"=10-10°

IR

=(3- 102) + (5% 101) + (14 - 100) Distributive property
We cannot take 8 from 5 in the tens position, so we borrow from the hundreds.

(3-10%) + (5 - 10") + (14 - 10%)

(2- 102) + (1- 102) & (5 i 10]) + (14 - 100) Distributive property
=(2-10) 4+ (10-10") + (5-10") + (14 - 10Y) 1-102 =10+ 10

= (2 -10%) + (15 - 10') + (14 - 109 Distributive property
Now we can complete the subtraction.
(2 - 102) + (15 - 101) + (14 - 109)
—(1-10%) + (8-10) + (6109
(1-10%)+ (7-10Y) + (8- 10% = 178 Difference (1]
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154 BNl CHAPTER 4 Numeration Systems

Examples 4-7 used expanded notation and the distributive property to clarify
our usual addition and subtraction methods. In practice, our actual work for these
four problems would appear as follows.

1 2,15
23 695 75 264
+64 —254 +48 —186
87 41 123 178

The procedures seen in this section also work for positional systems with bases
other than ten.

| Historical Calculation Devices
Smart phones perform mathematical

calculations and many other functions as Because our numeration system is based on powers of ten, it is often called the
well. decimal system, from the Latin word decem, meaning ten.* Over the years, many
methods have been devised for speeding calculations in the decimal system.

One of the oldest calculation methods is the abacus, a device made with a
series of rods with sliding beads and a dividing bar. Reading from right to left, the
rods have values of 1, 10, 100, 1000, and so on. The bead above the bar has five
times the value of those below. Beads moved foward the bar are in the “active”
position, and those toward the frame are ignored. In our illustrations of abaci (plu-
ral form of abacus), such as in Figure 8, the activated beads are shown in black.

10* 10% 10% 10" 10”

Figure 8

" Reading an Abacus

What number is shown on the abacus in Figure 8?

SOLUTION

Find the number as follows. T,

five times the value.

(3 - 10,000) + (1 - 1000) + [(1 - 500) + (2 - 100)] + 0+ 10 + [(1 - 5) + (1 - 1)]

The speed and accuracy of the = 30,000 + 1000 + 500 + 200 + 0 + 5 + 1
abacus are well known, according to = 31,706

www.ucmasusa.com. In a contest held
between a Japanese soraban (the
Japanese version of the abacus) expert
and a highly skilled desk-calculator
operator, the abacus won an addition,
subtraction, division, and combinations of
these operations. The electronic calculator
wan only on multiplication.

As paper became more readily available, people gradually switched from devices
like the abacus (though these still are commonly used in some areas) to paper-and-
pencil methods of calculation. One early scheme, used in India and Persia, was the
lattice method, which arranged products of single digits into a diagonalized lattice.

*December was the tenth month in an old form of the calendar. It is interesting to note that decem
became dix in the French language; a ten-dollar bill, called a “dixie,” was in use in New Orleans before
the Civil War. “Dixic Land” was a nickname for that city before Dixie came to refer to all the Southern

states, as in Dani ett’s song, written in 1859,
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4.3  Arithmetic in the Hindu-Arabic System HBHEN 155

" Using the Lattice Method for Products

Find the product 38 - 794 by the lattice method.

SOLUTION
Step 1  Write the problem, with one number at the side and one across the top.
7 9 4
3
8

Step 2 Within the lattice, write the products of all pairs of digits from the top and side.

7 9 4
2 2 1 3
1 i 2
John Napier’s most significant 5 7 3 8
mathematical contribution, developed over 6 2 2
a period of at least 20 years, was the sandgcome — 1 A 3and2comefrom
concept of logarithms, which, among ather from 7...8 =56, 4-8 =32

things, allow multiplication and division to
be accomplished with addition and

subtraction. It was a great computational 7 9 4
advantage given the state of mathematics D "] 1 3

Step 3 Starting at the right of the lattice add diagonally, carrying as necessary.

at the time (1614). l+2=3 —> 3 N Y )
Napier, a supporter of John Knox and 5 I,

James |, published a widely read anti- 0 6 2 Fr 8

Catholic work that analyzed the Biblical 1 7 )

book of Revelation. He concluded that the A

Pope was the Antichrist and that the 2+2+1+5=10 | T 2+3+264 |

Creator would end the world between
1688 and 1700. Napier was one of many
who, over the years, have miscalculated
the end of the world.

Write 0, carry 1. 1+7+7+6=21 Write 1,carry2.‘

Step 4 Read the answer around the left side and bottom: 38 - 794 = 30,172. nun

The Scottish mathematician John Napier (1550-1617) introduced a significant cal-
culating tool called Napier’s rods, or Napier’s bones. Napier’s invention, based on the
lattice method of multiplication, is widely acknowledged as a very early forerunner of
modern computers. It consisted of a set of strips, several for each digit 0 through 9, on
which multiples of each digit appeared in a sort of lattice column. See Figure 9.

An additional strip, called the index, could be laid beside any of the others to
indicate the multiplier at each level. Figure 10 shows how to multiply 2806 by 7.
Select the rods for 2, 8, 0, and 6, placing them side by side. Then using the index,
locate the level for a multiplier of 7. The resulting lattice gives the product, 19,642.

Tndex™) (2 (8 (0) (6)

i & .-7.. i 2
11l i mlzlzlzlz
TEEE 3 (Index) (D) (1) (2) (3 (&) (3)) (&) (T (8) (9) 2 o in 0|1,
FLLLEEE |0 94559 9454 o 07 9 o4 el el U B
3 g NE R g 3 el 4] 0l 114
o o o it 2 |[8] 9] 4] 0 (] [V [%5 ) %] g odl 52l ol o
I T fe—=A1 2 K 2y 4 sl 22l Dol |7
s |[06| 24 0] 0] ][] 1] (4] ] o5 s |l B 6
« |94 041041 [0 74 [2¢] 2] 126 [34] 3¢ 00 L0 0
L 5 2 6 ./ Vi “al [
; 7 2
6 |\%]| %/ 12| 8] 24 20| 6] 22 [H5] D4 ]4 '?76 0%" 7]
| K Ko 8 AEGIG
|l 0411 A B ) ]3] el [ Rz
Napiers rod iy step toward 8| Do| %] [ [7a] 22| (o ] ] (9] 72 VAngV&VA

aplers rods were an early step towar

: Fp 9 |0 ? l/?@’-?i'??/ ? AAAA
modern computers. O] L9 L8] L7 276l 7S] 74 L3 L2 L 9 6 4 2
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II Multiplying with Napier’s Rods

Tndex @ (1) @ (8 Use Napier’s rods to find the product of 723 and 4198.
1 U// W 0// W
04 0;1/ l;‘i zl_fj SOLUTION
? L?j LZ/ L’i L‘j We line up the rods for 4, 1, 9, and 8 next to the index, as in Figure 11. The product
— | B 412 “ﬁ i-,- 244 3 - 4198 is found as described in Example 9 and written at the bottom of the figure.
4 I,g 0/; S,g 3,2’ Then 2 - 4198 is found similarly and written below, shifted one place to the left.
: ? %/7 j/'/‘ ﬁ/_/ (Why?) Finally, the product 7 - 4198 is written shifted two places to the left.
AU RG] ] gady) The final answer is found by addition.
6 271020157 &4
A e LS 723 - 4198 = 3,035,154 1T
e 7 “g| |77 '/; 6
8 /_2/ L?E /_2/ L‘i Another paper-and-pencil method of multiplication is the Russian peasant
9 3/;6 0/;9 8/;1 ;"2 method, which is similar to the Egyptian method of doubling explained in Section 4.1.
41038 To multiply 37 and 42 by the Russian peasant method, make two columns headed by
1259413 37 and 42. Form the first column by dividing 37 by 2 again and again, ignoring any
8396 |2 remainders. Stop when 1 is obtained. Form the second column by doubling each num-
29386 7 ber down the column.
3035154
Figure 11 Divide by 2, 37 42 Double each number.
ignoring remainders. 18 84
9 168
4 336
2 672
1 1344
Now add up only the second column numbers that correspond to odd numbers
in the first column. Omit those corresponding to even numbers in the first column.
— 37 42 <
18 84
Add
Identifyodd —> 9 168 <« these
bers.
numbers. 4 336 numbers,
2 672
- 1 1344
37 - 42 = 42 + 168 + 1344 = 1554 < Answer
Most people use standard algorithms for adding and subtracting, carrying or
borrowing when appropriate, as illustrated following Example 7. An interesting
alternative is the nines complement method for subtracting. To use this method, we
first agree that the nines complement of a digit n is 9 — n. For example, the nines
complement of 0 is 9, of 1 is 8, of 2 is 7, and so on, up to the nines complement of 9,
which is 0.
To carry out the nines complement method, complete the following steps:
Step I  Align the digits as in the standard subtraction algorithm.
Step 2 Add leading zeros, if necessary, in the subtrahend so that both numbers
have the same number of digits.
For a way to include a little magic Step 3 Replace each digit in the subtrahend with its nines complement, and then add.
ith lculations, check . . .. ..
mtp:x:;g;:ﬁs;;?;i check out Step 4 Finally, delete the leading digit (1), and add 1 to the remaining part of the

sum.
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II Using the Nines Complement Method

Use the nines complement method to subtract 2803 — 647.

SOLUTION Step 1 Step 2 Step 3 Step 4
2803 2803 2803 2155

—647 —0647 +9352 +1
12,155 2156 Difference [ 1] ]

P For FurtherThought ||| B | B BN

Calculating on the Abacus Finally, activate an additional 3 on the

100s rod.
The abacus has been (and still is) used-to perform rapid > 1o

calculations. Add 526 and 362 as shown.

Start with 526 on the abacus. The sum, read from the abacus, is 888.
For problems where carrying or borrowing is
required, it takes a little more thought and skill.

To add 362, start by “activating” an For'Group or Individual Investigation
additional 2 on the 1s rod.

1. Use an‘abacus to.add: 13,728 + 61,455. Explain
each step of your procedure.

Next, activate an additional 6 on the 2. Use an abacus to-subtract: 6512 — 4816. Explain
10s rod. each step of your procedure.

Write each number in expanded form. (7 - 107) + (4 - 10%) + (1 - 10%) + (9 - 10%)
1. 84 2. 352 3. 9446 4. ]2,398 14_ (3 . 108) + (8 . 106) + (2 . 104) + (3 N 100)

5. four thousand, nine hundred twenty-four
In each of the following, add in expanded notation.

6. fifty-two thousand, one hundred eighteen 15. 37 + 42 16. 582 + 613

7. fourteen million, two hundred six thousand, forty ) . .
In each of the following, subtract in expanded notation.

8. two hqndred twelve million, eleven thousand, nine hun- 17. 85 — 32 18. 724 — 423
dred sixteen

Perform each addition using expanded notation.
Simplify each expansion.

9. (7-10") + (5 - 10)

19. 75 + 34 20. 557 + 378

21. 434 + 299 22. 6755 + 4827
10. (8 - 10%) + (2 - 10') + (0 - 10)

Perform each subtraction using expanded notation.

23. 54 —48 24. 364 —59

11. (4 - 10%) + (3 - 102) + (8 - 10') + (0 - 109)
12. (5 - 105) + (0 - 10%) + (3 - 103) + (5 - 102) +
(610" + (8 - 109) 25. 645 — 439 26. 816 — 335
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Identify the number represented on each abacus. \ 40. Explain how Napier’s rods could have been used in
2 28 Example 10 to set up one complete lattice product rather
' ’ than adding three individual (shifted) lattice products.
Tllustrate with a sketch.

Use Napier's rods (Figure 9) (o find each product.
41. 8 - 62 42. 32 -73

29. 30.

43. 26 - 8354 44. 526 - 4863

Sketch an abacus to show eabh nilmber. Perform each subtraction using the nines complement method.

31. 38 32. 183 33,2547 34. 70,163 45.283 — 41 46. 536 — 425
Use the lattice method to find each product. 47. 50,000 — 199 48. 40,002 — 4846
35.65-29 36. 32 - 741 Use the Russian peasant method to find each product.
37.525 - 73 38. 912 - 483 49.5-92 50. 41 - 53

51. 62 - 529 52. 145 - 63

Refer to Example 10 where Napier’s rods were used. Then

complete Exercises 39 and 40. \ i i ) .
. The Hindu-Arabic system is positional and uses ten as the

39. Find the product of 723 and 4198 by completing the lat- base. Describe any advantages or disadvantages that may

tice process shown here. have resulted in'each case.
4198 53. Suppose the base had been larger, say twelve or twenty.
7
2 54. Suppose the base had been smaller, maybe eight or five.

| I I I I l. 4.4 CONVERSION BETWEEN NUMBER BASES
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General Base Conversions

In this section we consider bases other than ten, but we use the familiar Hindu-
Arabic symbols. We indicate bases other than ten with a spelled-out subscript, as in
the numeral 43, . Whenever a number appears without a subscript, it is assumed
that the intended base is ten. Be careful how you read (or verbalize) numerals here.
The numeral 43, is read “four three base five.” (Do not read it as “forty-three,” as
that terminology implies base ten and names a totally different number.)

Table 8 gives powers of some numbers used as alternative bases.

Table 8 Selected Powers of Some Alternative Number Bases

Fourth Third Second First Zero

Power Power Power Power Power
Base two 16 8 4 2 1
Base five 625 125 25 5 1
Base seven 2401 343 49 7 1
Base eight 4096 512 64 8 1
Base sixteen 65,536 4096 256 16 1
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