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14.2 – Multivariable Limits

14.2

Limits and Continuity

In this section, we will learn about:

Limits and continuity of 

various types of functions.
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LIMITS AND CONTINUITY
• Let’s compare the behavior of the functions 

as x and y both approach 0 

(and thus the point (x, y) approaches 

the origin).
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LIMITS AND CONTINUITY
• The following tables show values of f(x, y) 

and g(x, y), correct to three decimal places, 

for points (x, y) near the origin.
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LIMITS AND CONTINUITY
•This table shows values of f(x, y).

Table 1
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LIMITS AND CONTINUITY
•This table shows values of g(x, y).

Table 2
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LIMITS AND CONTINUITY
• Notice that neither function is defined 

at the origin.

– It appears that, as (x, y) approaches (0, 0), 

the values of f(x, y) are approaching 1, whereas 

the values of g(x, y) aren’t approaching any number.
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LIMITS AND CONTINUITY
• It turns out that these guesses based on 

numerical evidence are correct.

• Thus, we write:

–

– does not exist.
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LIMITS AND CONTINUITY
• In general, we use the notation

to indicate that:

– The values of f(x, y) approach the number L 

as the point (x, y) approaches the point (a, b) 

along any path that stays within the domain of f.
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LIMITS AND CONTINUITY
• In other words, we can make the values 

of f(x, y) as close to L as we like by taking 

the point (x, y) sufficiently close to the point 

(a, b), but not equal to (a, b). 
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LIMIT OF A FUNCTION

• Let f be a function of two variables 

whose domain D includes points arbitrarily close 

to (a, b).

• Then, we say that the limit of f(x, y) 

as (x, y) approaches (a, b) is L.

Definition 1
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SINGLE VARIABLE FUNCTIONS
• For functions of a single variable, when we 

let x approach a, there are only two possible 

directions of approach, from the left or from the 

right.

– We recall from Chapter 2 that, if 

then                     does not exist. lim ( ) lim ( ),
x a x a

f x f x
− +

→ →
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DOUBLE VARIABLE FUNCTIONS
• For functions of two 

variables, the situation 

is not as simple. 
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DOUBLE VARIABLE FUNCTIONS
• This is because we can let (x, y) approach 

(a, b) from an infinite number of directions 

in any manner whatsoever as long as (x, y) stays 

within the domain of f.
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LIMIT OF A FUNCTION
• Definition 1 refers only to the distance

between (x, y) and (a, b). 

– It does not refer to the direction of approach.
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LIMIT OF A FUNCTION

• Therefore, if the limit exists, then f(x, y) must 

approach the same limit no matter how (x, y) 

approaches (a, b).
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LIMIT OF A FUNCTION

• Thus, if we can find two different paths of 

approach along which the function f(x, y) 

has different limits, then it follows that 

does not exist.
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LIMIT OF A FUNCTION
• If 

f(x, y) → L1 as (x, y) → (a, b) along a path C1 and 

f(x, y) → L2 as (x, y) → (a, b) along a path C2, 

where L1 ≠ L2, 

then 

does not exist.
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LIMIT OF A FUNCTION

• Show that                          

does not exist.

– Let f(x, y) = (x2 – y2)/(x2 + y2).

Example 1
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LIMIT OF A FUNCTION

• First, let’s approach (0, 0) along 

the x-axis.

– Then, y = 0 gives f(x, 0) = x2/x2 = 1 for all x ≠ 0.

– So, f(x, y) → 1 as (x, y) → (0, 0) along the x-axis.

Example 1
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LIMIT OF A FUNCTION

• We now approach along the y-axis by 

putting x = 0.

– Then, f(0, y) = –y2/y2 = –1 for all y ≠ 0.

– So, f(x, y) → –1 as (x, y) → (0, 0) along the y-axis.

Example 1
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LIMIT OF A FUNCTION
• Since f has two different limits along 

two different lines, the given limit does 

not exist. 

– This confirms 

the conjecture we 

made on the basis 

of numerical evidence 

at the beginning 

of the section.

Example 1
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LIMIT OF A FUNCTION

• If                        

does                      

exist?

Example 2
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LIMIT OF A FUNCTION

• If y = 0, then f(x, 0) = 0/x2 = 0.

– Therefore,

f(x, y) → 0 as (x, y) → (0, 0) along the x-axis.

Example 2
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LIMIT OF A FUNCTION

• If x = 0, then f(0, y) = 0/y2 = 0.

– So, 

f(x, y) → 0 as (x, y) → (0, 0) along the y-axis.

Example 2
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LIMIT OF A FUNCTION

• Although we have obtained identical limits 

along the axes, that does not show that 

the given limit is 0. 

Example 2
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LIMIT OF A FUNCTION

• Let’s now approach (0, 0) along another 

line, say y = x. 

– For all x ≠ 0,

– Therefore,

Example 2
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LIMIT OF A FUNCTION

• Since we have obtained different limits 

along different paths, the given limit does 

not exist.

Example 2
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LIMIT OF A FUNCTION
•This figure sheds some 

light on 

Example 2.

– The ridge that occurs 

above the line y = x

corresponds to the fact 

that f(x, y) = ½ for all 

points (x, y) on that line 

except the origin.

Math 114 – Rimmer

14.2 – Multivariable Limits

LIMIT OF A FUNCTION

• If                          

does                        

exist?

Example 3
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LIMIT OF A FUNCTION

• With the solution of Example 2 in mind, 

let’s try to save time by letting (x, y) → (0, 0) 

along any nonvertical line through the origin.

Example 3
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LIMIT OF A FUNCTION

• Then, y = mx, where m is the slope, 

and

Example 3
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LIMIT OF A FUNCTION

• Therefore, 

f(x, y) → 0 as (x, y) → (0, 0) along y = mx

– Thus, f has the same limiting value along 

every nonvertical line through the origin.

Example 3
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LIMIT OF A FUNCTION

• However, that does not show that 
the given limit is 0.

– This is because, if we now let 
(x, y) → (0, 0) along the parabola x = y2 

we have:

– So,
f(x, y) → ½ as (x, y) → (0, 0) along x = y2

Example 3

2 2 4
2

2 2 4 4

1
( , ) ( , )

( ) 2 2

y y y
f x y f y y

y y y

⋅
= = = =

+

Math 114 – Rimmer

14.2 – Multivariable Limits

LIMIT OF A FUNCTION

• Since different paths lead to different 

limiting values, the given limit does not 

exist.

Example 3
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LIMIT OF A FUNCTION

• Now, let’s look at limits 

that do exist.
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LIMIT OF A FUNCTION

• Just as for functions of one variable, 

the calculation of limits for functions of 

two variables can be greatly simplified 

by the use of properties of limits.
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LIMIT OF A FUNCTION

• The Limit Laws listed in Section 2.3 can be 

extended to functions of two variables.

• For instance,

– The limit of a sum is the sum of the limits.

– The limit of a product is the product of the limits.
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LIMIT OF A FUNCTION

• In particular, the following equations 

are true.

Equations 2
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LIMIT OF A FUNCTION

• The Squeeze Theorem 

also holds.

Equations 2
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CONTINUITY OF SINGLE VARIABLE 

FUNCTIONS

• Recall that evaluating limits of continuous
functions of a single variable is easy. 

– It can be accomplished by direct substitution.

– This is because the defining property of 
a continuous function is

lim ( ) ( )
x a

f x f a
→

=
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Math 114 – Rimmer

14.2 – Multivariable Limits

• Continuous functions of two variables 

are also defined by the direct substitution 

property.

CONTINUITY OF DOUBLE VARIABLE 

FUNCTIONS
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CONTINUITY

• A function f of two variables is called continuous 

at (a, b) if

• We say f is continuous on D if f is 

continuous at every point (a, b) in D.

Definition 4
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CONTINUITY

• The intuitive meaning of continuity is that, 

if the point (x, y) changes by a small amount, 

then the value of f(x, y) changes by a small 

amount. 

– This means that a surface that is the graph of 

a continuous function has no hole or break.
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CONTINUITY

• Using the properties of limits, you can see 

that sums, differences, products, quotients 

of continuous functions are continuous on their 

domains.

– Let’s use this fact to give examples 

of continuous functions. 
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• A polynomial function of two variables

(polynomial, for short) is a sum of terms 

of the form cxmyn, 

where:

– c is a constant.

– m and n are nonnegative integers.

POLYNOMIAL
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RATIONAL FUNCTION

• A rational function is 

a ratio of polynomials.
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RATIONAL FUNCTION VS. POLYNOMIAL

• is a polynomial.

• is a rational function.
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CONTINUITY
• The limits in Equations 2 show that 

the functions 

f(x, y) = x, g(x, y) = y, h(x, y) = c

are continuous.
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CONTINUOUS POLYNOMIALS

• Any polynomial can be built up out 

of the simple functions f, g, and h

by multiplication and addition.

– It follows that all polynomials are continuous 
on R2. 
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CONTINUOUS RATIONAL 

FUNCTIONS

• Likewise, any rational function is continuous 

on its domain because it is 

a quotient of continuous functions.
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CONTINUITY

• Evaluate

– is a polynomial.

– Thus, it is continuous everywhere.

2 3 3 2

( , ) (1,2)
lim ( 3 2 )

x y
x y x y x y

→

− + +

Example 5

2 3 3 2
( , ) 3 2f x y x y x y x y= − + +
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CONTINUITY

– Hence, we can find the limit by direct 

substitution:

2 3 3 2

( , ) (1,2)

2 3 3 2

lim ( 3 2 )
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=

Example 5
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CONTINUITY

• Where is the function 

continuous?

Example 6
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CONTINUITY

• The function f is discontinuous at (0, 0) 

because it is not defined there.

• Since f is a rational function, it is continuous on 

its domain, which is the set

D = {(x, y) | (x, y) ≠ (0, 0)}

Example 6
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CONTINUITY

• Let

– Here, g is defined at (0, 0).

– However, it is still discontinuous there because 

does not exist (see Example 1).

Example 7
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CONTINUITY
•This figure shows the 

graph of 

the continuous function 

in Example 8.
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COMPOSITE FUNCTIONS
• Just as for functions of one variable, 

composition is another way of combining 

two continuous functions to get a third.
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COMPOSITE FUNCTIONS

• In fact, it can be shown that, if f is 

a continuous function of two variables and 

g is a continuous function of a single variable 

defined on the range of f, then

– The composite function h = g ◦ f defined by 

h(x, y) = g(f(x, y)) is also a continuous function.
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COMPOSITE FUNCTIONS

• Where is the function h(x, y) = 

arctan(y/x) 

continuous?

– The function f(x, y) = y/x is a rational function 

and therefore continuous except on the line x = 0.

– The function g(t) = arctan t is continuous everywhere.

Example 9
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COMPOSITE FUNCTIONS

–So, the composite function 

g(f(x, y)) = arctan(y/ x) = h(x, y)

is continuous except where x = 0.

Example 9
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COMPOSITE FUNCTIONS
•The figure shows the 

break in the graph 

of h above the y-axis.

Example 9


