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DIFFERENTIAL EQUATIONS
We have looked at first-order differential
equations from a geometric point of view
(direction fields) and from a numerical point

= What about the symbolic point of view?

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS

It would be nice to have an explicit
formula for a solution of a differential
10.3

equation.
Separable Equations

= Unfortunately, that is not always possible.
In this section, we will learn about:
Certain differential equations

that can be solved explicitly.

SEPARABLE EQUATION SEPARABLE EQUATIONS

A separable equation is a first-order The name separable comes from

differential equation in which the expression the fact that the expression on the right side
for dy/dx can be factored as a function of can be “separated” into a function of x

x times a function of y. and a function of y.

= |n other words, it can be written

in the form y

$=g(X)f(y)
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SEPARABLE EQUATIONS Equation 1
Equivalently, if f(y) # 0, we could write

dy_g(x)
dx  h(y)

where a(y) =1/ f(y)

SEPARABLE EQUATIONS
To solve this equation, we rewrite it in
the differential form
h(y) dy = g(x) dx
so that:

= All y's are on one side of the equation.
= All X's are on the other side.

SEPARABLE EQUATIONS Equation 2
Then, we integrate both sides

of the equation:

[r(yydy = [ g(x)dx

SEPARABLE EQUATIONS
Equation 2 defines y implicitly as
a function of x.

= In some cases, we may be able to solve for y
in terms of x.

SEPARABLE EQUATIONS
We use the Chain Rule to justify this

procedure.

= |f hand g satisfy Equation 2,
then

([ dy) ==([ g

SEPARABLE EQUATIONS

= Thus, d
dfy(fh(y)dy)d%= 8(x)

= This gives: J
h(y) == g(x)
dx

= Thus, Equation 1 is satisfied.
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SEPARABLE EQUATIONS Example 1
a. Solve the differential equation

dy_<

dx y’

b.Find the solution of this equation that
satisfies the initial condition y(0) = 2.

SEPARABLE EQUATIONS Example 1 a
We write the equation in terms of differentials
and integrate both sides:

y2 dy = X2 dx
[y2dy=]x2dx
a8 = Yax® + C

where Cis an arbitrary constant.

SEPARABLE EQUATIONS Example 1 a
We could have used a constant C, on
the left side and another constant C, on
the right side.

= However, then, we could combine
these constants by writing C= C,— C;.

SEPARABLE EQUATIONS Example 1 a
Solving for y, we get:

y=3x>+3C

= We could leave the solution like this or we could
write it in the form
y=3x’+K
where K= 3C.

= Since Cis an arbitrary constant, so is K.

SEPARABLE EQUATIONS Example 1 b
If we put x = 0 in the general solution in (a),

y(0) =K

we get:

= To satisfy the initial condition y(0) = 2,
we must have /K =2, and so K = 8.
= So, the solution of the initial-value problem

is: y:3'—x3+8

SEPARABLE EQUATIONS
The figure shows graphs of several members

of the family of solutions of the differential

equation in Example 1.

= The solution of —/

the initial-value problem
in (b) is shown in red.
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SEPARABLE EQUATIONS Example 2 SEPARABLE EQUATIONS E. g. 2—Equation 3
Solve the differential equation Writing the equation in differential form
and integrating both sides, we have:
dy 6x>
T N 2y + cos y) dy = 6x2 dx
dx 2y+cosy il
[ (2y + cos y) dy =] 6x2 dx
Y2 +siny=2x3+C
where Cis a constant.
SEPARABLE EQUATIONS Example 2 SEPARABLE EQUATIONS
Equation 3 gives the general solution The figure shows the graphs of several
implicitly. members of the family of solutions of
the differential equation in Example 2.
= |n this case, it's impossible to solve the equation S e el & 7
to express y explicitly as a function of x. the clirvesiiromilent
to right, the values
of C are:
—2 2
CY 03, (), =i, 2, <& ﬁ\
i -4
SEPARABLE EQUATIONS Example 3 SEPARABLE EQUATIONS Example 3
Solve the equation If y # 0, we can rewrite it in differential
N notation and integrate:
y=xy
d
2 = Xdx y#0
y
= First, we rewrite the equation d
using Leibniz notation: j—y = szdx
dy y
=iy
dx ”
ln|y| = ? +C
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SEPARABLE EQUATIONS Example 3
The equation defines y implicitly as a function
of x.

However, in this case, we can solve explicitly
for y.

3
1 x/3]+C 3
|y|=€n‘y‘=€( ) _eCex/3

3
Hence, y=A8 e

SEPARABLE EQUATIONS Example 3

We can easily verify that the function y =0
is also a solution of the given differential
equation.

= So, we can write the general solution in the form

13

y=Ae

where A is an arbitrary constant (A = eC,
or A=—€C or A=0).

SEPARABLE EQUATIONS
The figure shows a direction field for
the differential equation in Example 3.

= Compare it with the next
figure, in which we use
the equation y = Ae* "
to graph solutions for
several values of A.

I N

SEPARABLE EQUATIONS
If you use the direction field to sketch solution
curves with y-intercepts 5, 2, 1, —1, and -2,
they will resemble the curves in the figure.

SEPARABLE EQUATIONS Example 4

In Section 9.2, we modeled the current (1)
in this electric circuit by the differential
equation

LY Ri=E()

dt R

O
switch

SEPARABLE EQUATIONS Example 4
Find an expression for the current in a circuit

where:

= The resistance is 12 Q.

= The inductance is 4 H.

= A battery gives a constant voltage of 60 V.
= The switch is turned on when ¢ = 0.

What is the limiting
value of the current?

R

O
switch
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SEPARABLE EQUATIONS Example 4
With L =4, R=12 and E({) = 60,

= The equation becomes:

4£+121:60 or ﬂ:15—31
dt dt

= The initial-value problem is:

SEPARABLE EQUATIONS Example 4
We recognize this as being separable.

We solve it as follows:

j dl =jdt (15-31#0)

415 3 1(0)=0

dt
SEPARABLE EQUATIONS Example 4
Since 1(0) = 0, we have:

5-%A=0

So, A = 15 and the solution is:
I(t) =5 —5¢e%

15-31
—in|15-31|=t+C
15-31| =)
1531 =465 0% = Ae
[=5-1Ae™
SEPARABLE EQUATIONS Example 4

The limiting current, in amperes, is:

lim(7) =lim (5-5¢™" )

[—>o0 [—0

=5-5lime™

=5-0
=5

SEPARABLE EQUATIONS
The figure shows how the solution

in Example 4 (the current) approaches
its limiting value.

SEPARABLE EQUATIONS
Comparison with the other figure (from
Section 9.2) shows that we were able to
draw a fairly accurate solution curve from
the direction field.
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ORTHOGONAL TRAJECTORY
An orthogonal trajectory of a family of curves
is a curve that intersects each curve of the
family orthogonally—that is, at right angles.

orthogonal
trajectory

ORTHOGONAL TRAJECTORIES
Each member of the family y = mx of straight
lines through the origin is an orthogonal
trajectory of the family X2 + y? = r® of
concentric circles with )
center the origin.

= We say that the two

families are orthogonal
trajectories of each other.

ORTHOGONAL TRAJECTORIES Example 5
Find the orthogonal trajectories of

the family of curves x = ky?, where k
is an arbitrary constant.

ORTHOGONAL TRAJECTORIES Example 5
The curves x = ky? form a family

of parabolas whose axis of symmetry
is the x-axis.

= The first step is to find a single differential equation
that is satisfied by all members of the family.

ORTHOGONAL TRAJECTORIES ~ Example 5
If we differentiate x = ky?, we get:

1=2kyﬂ or ﬂ:L
dx dx 2ky

= This differential equation depends on k.

= However, we need an equation that is valid
for all values of k simultaneously.

ORTHOGONAL TRAJECTORIES Example 5
To eliminate k, we note that:

= From the equation of the given
general parabola x = ky?, we have k = x/y?.
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ORTHOGONAL TRAJECTORIES  Example 5
Hence, the differential equation can be
writtenas: gy 1 1
dx  2ky 5 iz 5
y
or H_y
dx 2x

= This means that the slope of the tangent line at
any point (x, y) on one of the parabolas is: y’'= y/(2x)

ORTHOGONAL TRAJECTORIES

On an orthogonal trajectory, the slope
of the tangent line must be the negative
reciprocal of this slope.

= So, the orthogonal trajectories must satisfy

the diff tial equation
e differential eq i 2%

dx y

ORTHOGONAL TRAJECTORIES E. g. 5—Equation 4
The differential equation is separable.

We solve it as follows:

Iydyz—ijdx
2

Y =—¥+cC

2

x2+y_2:

where Cis an arbitrary positive constant.

ORTHOGONAL TRAJECTORIES  Example 5
Thus, the orthogonal trajectories are

the family of ellipses given by Equation 4
and sketched here.

y

ORTHOGONAL TRAJECTORIES IN PHYSICS
Orthogonal trajectories occur in various
branches of physics.

= |n an electrostatic field, the lines of force are
orthogonal to the lines of constant potential.

= The streamlines in aerodynamics are orthogonal
trajectories of the velocity-equipotential curves.

MIXING PROBLEMS
A typical mixing problem involves a tank

of fixed capacity filled with a thoroughly mixed
solution of some substance, such as salt.

= A solution of a given concentration enters the tank
at a fixed rate.

= The mixture, thoroughly stirred, leaves at a fixed rate,
which may differ from the entering rate.




11/30/2009

MIXING PROBLEMS
If y(f) denotes the amount of substance in

the tank at time t, then y{1) is the rate at which

the substance is being added minus the rate
at which it is being removed.

= The mathematical description of this situation often
leads to a first-order separable differential equation.

MIXING PROBLEMS
We can use the same type of reasoning
to model a variety of phenomena:

= Chemical reactions
= Discharge of pollutants into a lake

= Injection of a drug into the bloodstream

MIXING PROBLEMS Example 6
A tank contains 20 kg of salt dissolved

in 5000 L of water.

= Brine that contains 0.03 kg of salt per liter of water
enters the tank at a rate of 25 L/min.

= The solution is kept thoroughly mixed and drains
from the tank at the same rate.

= How much salt remains in the tank after half an hour?

MIXING PROBLEMS Example 6
Let y(f) be the amount of salt (in kilograms)
after t minutes.

We are given that y(0) = 20 and we want to
find y(30).

= We do this by finding a differential equation
satisfied by y({).

MIXING PROBLEMS Equation 5
Note that dy/dt is the rate of change of
the amount of salt.

Thus,
i (rate in) —(rate out)

where:

= ‘Rate in’ is the rate at which salt enters the tank.
= ‘Rate out’ is the rate at which it leaves the tank.

RATE IN Example 6
We have:
rate in = (0.03 k_g) (25 Lj
L min
= 0758
min




MIXING PROBLEMS Example 6
The tank always contains 5000 L

of liquid.

= So, the concentration at time tis y(#)/5000
(measured in kg/L).
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RATE OUT Example 6

As the brine flows out at a rate of 25 L/min,

we have:
rate out = [&EJ(% L)
5000 L min
= >0 ey
200 min

MIXING PROBLEMS Example 6
Thus, from Equation 5, we get:

ﬂ_075_&:—150_)’(0

dr 200 200

= Solving this separable differential equation,
we obtain:

150—y 200

j- dy dr

—ln‘lSO—y‘=ﬁ+C

MIXING PROBLEMS
Since ¥(0) = 20, we have:

MIXING PROBLEMS Example 6
Therefore,

150 y|=130e™""**

= y(1) is continuous and ¥(0) = 20, and the right side
is never 0.

= We deduce that 150 — y(t) is always positive.

-In130=C
So, )
~In[150- y|=——-1n130
200
MIXING PROBLEMS Example 6
Thus, [150 — y| =150 — .
So,

y(t) =150—130e />

= The amount of salt after 30 min is:

y(30) =150-130e 7> ~38.1 kg

10
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MIXING PROBLEMS Example 6
Here’s the graph of the function (i)
of Example 6.

= Notice that, as time
goes by, the amount y
of salt approaches
150 kg.

150

100 T

501
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