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DIFFERENTIAL EQUATIONS

We have looked at first-order differential 

equations from a geometric point of view 

(direction fields) and from a numerical point 

of view (Euler’s method).

� What about the symbolic point of view?

It would be nice to have an explicit 

formula for a solution of a differential 

equation.

� Unfortunately, that is not always possible.

DIFFERENTIAL EQUATIONS

10.3

Separable Equations

In this section, we will learn about:

Certain differential equations 

that can be solved explicitly.

DIFFERENTIAL EQUATIONS

A separable equation is a first-order 

differential equation in which the expression 

for dy/dx can be factored as a function of 

x times a function of y.

� In other words, it can be written 
in the form

( ) ( )
dy

g x f y
dx

=

SEPARABLE EQUATION

The name separable comes from 

the fact that the expression on the right side 

can be “separated” into a function of x

and a function of y.

SEPARABLE EQUATIONS
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Equivalently, if f(y) ≠ 0, we could write 

where

( )

( )

dy g x

dx h y
=

( ) 1/ ( )h y f y=

SEPARABLE EQUATIONS Equation 1

To solve this equation, we rewrite it in 

the differential form

h(y) dy = g(x) dx

so that:

� All y’s are on one side of the equation.

� All x’s are on the other side.

SEPARABLE EQUATIONS

Then, we integrate both sides 

of the equation:

( ) ( )h y dy g x dx=∫ ∫

SEPARABLE EQUATIONS Equation 2

Equation 2 defines y implicitly as 

a function of x.

� In some cases, we may be able to solve for y
in terms of x.

SEPARABLE EQUATIONS

We use the Chain Rule to justify this 

procedure.

� If h and g satisfy Equation 2, 
then

( ) ( )( ) ( )
d d

h y dy g x dx
dx dx

=∫ ∫

SEPARABLE EQUATIONS

� Thus,

� This gives:

� Thus, Equation 1 is satisfied.

( )( ) ( )
d dy

h y dy g x
dy dx

=∫

( ) ( )
dy

h y g x
dx

=

SEPARABLE EQUATIONS
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a.Solve the differential equation

b.Find the solution of this equation that 

satisfies the initial condition y(0) = 2.

2

2

dy x

dx y
=

SEPARABLE EQUATIONS Example 1

We write the equation in terms of differentials 

and integrate both sides:

y2 dy = x2 dx

∫ y2 dy = ∫ x2 dx

⅓y3 = ⅓x3 + C

where C is an arbitrary constant.

SEPARABLE EQUATIONS Example 1 a

We could have used a constant C1 on 

the left side and another constant C2 on 

the right side.

� However, then, we could combine 

these constants by writing C = C2 – C1.

SEPARABLE EQUATIONS Example 1 a

Solving for y, we get:

� We could leave the solution like this or we could 
write it in the form 

where K = 3C.

� Since C is an arbitrary constant, so is K.

3 3 3y x C= +

3 3
y x K= +

SEPARABLE EQUATIONS Example 1 a

If we put x = 0 in the general solution in (a), 

we get:

� To satisfy the initial condition y(0) = 2, 
we must have              , and so K = 8.

� So, the solution of the initial-value problem 
is:

3(0)y K=

3 2K =

SEPARABLE EQUATIONS Example 1 b

3 3 8y x= +

The figure shows graphs of several members

of the family of solutions of the differential

equation in Example 1.

� The solution of 
the initial-value problem 
in (b) is shown in red.

SEPARABLE EQUATIONS
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Solve the differential equation

26

2 cos

dy x

dx y y
=

+

SEPARABLE EQUATIONS Example 2

Writing the equation in differential form 

and integrating both sides, we have:

(2y + cos y) dy = 6x2 dx

∫ (2y + cos y) dy = ∫ 6x2 dx

y2 + sin y = 2x3 + C

where C is a constant.

SEPARABLE EQUATIONS E. g. 2—Equation 3

Equation 3 gives the general solution 

implicitly. 

� In this case, it’s impossible to solve the equation 
to express y explicitly as a function of x.

SEPARABLE EQUATIONS Example 2

The figure shows the graphs of several 

members of the family of solutions of 

the differential equation in Example 2.

� As we look at 
the curves from left 
to right, the values 
of C are:

3, 2, 1, 0, -1, -2, -3

SEPARABLE EQUATIONS

Solve the equation

y’ = x2y

� First, we rewrite the equation 
using Leibniz notation:

2dy
x y

dx
=

SEPARABLE EQUATIONS Example 3

If y ≠ 0, we can rewrite it in differential 

notation and integrate:

2

2

3

0

ln
3

dy
x dx y

y

dy
x dx

y

x
y C

= ≠

=

= +

∫ ∫

SEPARABLE EQUATIONS Example 3
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The equation defines y implicitly as a function 

of x.

However, in this case, we can solve explicitly 

for y.

Hence,

( )3
3/3ln / 3x Cy C x

y e e e e
+

= = =

SEPARABLE EQUATIONS Example 3

3 / 3C x
y e e= ±

We can easily verify that the function y = 0 

is also a solution of the given differential 

equation. 

� So, we can write the general solution in the form 

where A is an arbitrary constant (A = eC, 
or A = –eC, or A = 0).

3 /3x
y Ae=

SEPARABLE EQUATIONS Example 3

The figure shows a direction field for 

the differential equation in Example 3.

� Compare it with the next 
figure, in which we use 
the equation 
to graph solutions for 
several values of A.

3 /3x
y Ae=

SEPARABLE EQUATIONS

If you use the direction field to sketch solution 

curves with y-intercepts 5, 2, 1, –1, and –2, 

they will resemble the curves in the figure.

SEPARABLE EQUATIONS

In Section 9.2, we modeled the current I(t) 

in this electric circuit by the differential 

equation

( )
dI

L RI E t
dt

+ =

Example 4SEPARABLE EQUATIONS

Find an expression for the current in a circuit 

where:

� The resistance is 12 Ω.

� The inductance is 4 H.

� A battery gives a constant voltage of 60 V.

� The switch is turned on when t = 0.

What is the limiting 

value of the current?

SEPARABLE EQUATIONS Example 4
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With L = 4, R = 12 and E(t) = 60,

� The equation becomes:

� The initial-value problem is: 

4 12 60 or 15 3
dI dI

I I
dt dt

+ = = −

SEPARABLE EQUATIONS Example 4

( )15 3        0 0
dI

I I
dt

= − =

We recognize this as being separable.

We solve it as follows:

( )

1
3

3

3 3 3

31
3

      (15 3 0)
15 3

ln 15 3

15 3

15 3

5

t C

C t t

t

dI
dt I

I

I t C

I e

I e e Ae

I Ae

− +

− − −

−

= − ≠
−

− − = +

− =

− = ± =

= −

∫ ∫

SEPARABLE EQUATIONS Example 4

Since I(0) = 0, we have: 

5 – ⅓A = 0

So, A = 15 and the solution is: 

I(t) = 5 – 5e-3t

SEPARABLE EQUATIONS Example 4

( )3

3

lim ( ) lim 5 5

           5 5lim

           5 0

5

t

t t

t

t

I t e

e

−

→∞ →∞

−

→∞

= −

= −

= −

=

SEPARABLE EQUATIONS Example 4

The limiting current, in amperes, is:

The figure shows how the solution 

in Example 4 (the current) approaches 

its limiting value.

SEPARABLE EQUATIONS

Comparison with the other figure (from 

Section 9.2) shows that we were able to 

draw a fairly accurate solution curve from 

the direction field.

SEPARABLE EQUATIONS
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An orthogonal trajectory of a family of curves 

is a curve that intersects each curve of the 

family orthogonally—that is, at right angles.

ORTHOGONAL TRAJECTORY

Each member of the family y = mx of straight 

lines through the origin is an orthogonal 

trajectory of the family x2 + y2 = r2 of 

concentric circles with

center the origin.

� We say that the two 
families are orthogonal 
trajectories of each other.

ORTHOGONAL TRAJECTORIES

Find the orthogonal trajectories of 

the family of curves x = ky2, where k 

is an arbitrary constant.

ORTHOGONAL TRAJECTORIES Example 5

The curves x = ky2 form a family 

of parabolas whose axis of symmetry 

is the x-axis.

� The first step is to find a single differential equation 
that is satisfied by all members of the family.

ORTHOGONAL TRAJECTORIES Example 5

If we differentiate x = ky2, we get: 

� This differential equation depends on k.

� However, we need an equation that is valid 
for all values of k simultaneously.

1
1 2     or   =  

2

dy dy
ky

dx dx ky
=

ORTHOGONAL TRAJECTORIES Example 5

To eliminate k, we note that:

� From the equation of the given 
general parabola x = ky2, we have k = x/y2.

ORTHOGONAL TRAJECTORIES Example 5
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Hence, the differential equation can be 

written as: 

or

� This means that the slope of the tangent line at 
any point (x, y) on one of the parabolas is: y’ = y/(2x)

2

1 1

2
2

dy

xdx ky
y

y

= =

ORTHOGONAL TRAJECTORIES Example 5

2

dy y

dx x
=

On an orthogonal trajectory, the slope 

of the tangent line must be the negative 

reciprocal of this slope. 

� So, the orthogonal trajectories must satisfy 
the differential equation

2dy x

dx y
= −

ORTHOGONAL TRAJECTORIES

The differential equation is separable.

We solve it as follows:

where C is an arbitrary positive constant.

2
2

2
2

2

2

2

y dy x dx

y
x C

y
x C

= −

= − +

+ =

∫ ∫

ORTHOGONAL TRAJECTORIES E. g. 5—Equation 4  

Thus, the orthogonal trajectories are 

the family of ellipses given by Equation 4 

and sketched here.

ORTHOGONAL TRAJECTORIES Example 5

Orthogonal trajectories occur in various 

branches of physics.

� In an electrostatic field, the lines of force are 
orthogonal to the lines of constant potential.

� The streamlines in aerodynamics are orthogonal 
trajectories of the velocity-equipotential curves.

ORTHOGONAL TRAJECTORIES IN PHYSICS MIXING PROBLEMS

A typical mixing problem involves a tank 

of fixed capacity filled with a thoroughly mixed 

solution of some substance, such as salt.

� A solution of a given concentration enters the tank 
at a fixed rate.

� The mixture, thoroughly stirred, leaves at a fixed rate, 
which may differ from the entering rate.
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If y(t) denotes the amount of substance in 

the tank at time t, then y’(t) is the rate at which 

the substance is being added minus the rate 

at which it is being removed.

� The mathematical description of this situation often 
leads to a first-order separable differential equation.

MIXING PROBLEMS

We can use the same type of reasoning 

to model a variety of phenomena:

� Chemical reactions

� Discharge of pollutants into a lake

� Injection of a drug into the bloodstream

MIXING PROBLEMS

A tank contains 20 kg of salt dissolved 

in 5000 L of water.

� Brine that contains 0.03 kg of salt per liter of water 
enters the tank at a rate of 25 L/min.

� The solution is kept thoroughly mixed and drains 
from the tank at the same rate.

� How much salt remains in the tank after half an hour?

MIXING PROBLEMS Example 6

Let y(t) be the amount of salt (in kilograms) 

after t minutes. 

We are given that y(0) = 20 and we want to 

find y(30).

� We do this by finding a differential equation 
satisfied by y(t).

MIXING PROBLEMS Example 6

Note that dy/dt  is the rate of change of 

the amount of salt.

Thus, 

where:

� ‘Rate in’ is the rate at which salt enters the tank.

� ‘Rate out’ is the rate at which it leaves the tank.

( ) ( )rate in rate out
dy

dt
= −

MIXING PROBLEMS Equation 5

We have:

kg L
rate in 0.03 25

L min

kg
0.75

min

  
=   
  

=

RATE IN Example 6
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The tank always contains 5000 L 

of liquid.

� So, the concentration at time t is y(t)/5000 
(measured in kg/L).

MIXING PROBLEMS Example 6

As the brine flows out at a rate of 25 L/min, 

we have:

( ) kg L
rate out 25

5000 L min

( ) kg

200 min

y t

y t

  
=   
  

=

RATE OUT Example 6

Thus, from Equation 5, we get:

� Solving this separable differential equation, 
we obtain:

( ) 150 ( )
0.75

200 200

dy y t y t

dt

−
= − =

   
150 200

ln 150
200

dy dt

y

t
y C

=
−

− − = +

∫ ∫

MIXING PROBLEMS Example 6

Since y(0) = 20, we have: 

–ln 130 = C

So,

ln 150 ln130
200

t
y− − = −

MIXING PROBLEMS

Therefore,

� y(t) is continuous and y(0) = 20, and the right side 
is never 0.

� We deduce that 150 – y(t) is always positive.

/ 200150 130 t
y e

−
− =

MIXING PROBLEMS Example 6

Thus, |150 – y| = 150 – y.

So, 

� The amount of salt after 30 min is:

30 200(30) 150 130 38.1 kgy e
−

= − ≈

MIXING PROBLEMS Example 6

/ 200( ) 150 130 ty t e−
= −
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Here’s the graph of the function y(t) 

of Example 6.

� Notice that, as time 
goes by, the amount 
of salt approaches 
150 kg.

MIXING PROBLEMS Example 6


