

DIFFERENTIAL EQUATIONS

We have looked at first-order differential equations from a geometric point of view (direction fields) and from a numerical point of view (Euler's method).

- What about the symbolic point of view?

DIFFERENTIAL EQUATIONS

It would be nice to have an explicit formula for a solution of a differential equation.

- Unfortunately, that is not always possible.

SEPARABLE EQUATION

A separable equation is a first-order differential equation in which the expression for $d y / d x$ can be factored as a function of x times a function of y.

- In other words, it can be written
in the form d

$$
\frac{d y}{d x}=g(x) f(y)
$$

DIFFERENTIAL EQUATIONS

10.3
 Separable Equations

In this section, we will learn about: Certain differential equations that can be solved explicitly.

SEPARABLE EQUATIONS

The name separable comes from the fact that the expression on the right side can be "separated" into a function of x and a function of y.

SEPARABLE EQUATIONS Equation 1

Equivalently, if $f(y) \neq 0$, we could write

$$
\frac{d y}{d x}=\frac{g(x)}{h(y)}
$$

where $h(y)=1 / f(y)$

SEPARABLE EQUATIONS

To solve this equation, we rewrite it in the differential form

$$
h(y) d y=g(x) d x
$$

so that:

- All y 's are on one side of the equation.
- All x 's are on the other side.

SEPARABLE EQUATIONS
 Equation 2

Then, we integrate both sides of the equation:

$$
\int h(y) d y=\int g(x) d x
$$

SEPARABLE EQUATIONS

Equation 2 defines y implicitly as
a function of x.

- In some cases, we may be able to solve for y in terms of x.

SEPARABLE EQUATIONS

We use the Chain Rule to justify this procedure.

- If h and g satisfy Equation 2, then

$$
\frac{d}{d x}\left(\int h(y) d y\right)=\frac{d}{d x}\left(\int g(x) d x\right)
$$

SEPARABLE EQUATIONS

- Thus,

$$
\frac{d}{d y}\left(\int h(y) d y\right) \frac{d y}{d x}=g(x)
$$

- This gives:

$$
h(y) \frac{d y}{d x}=g(x)
$$

- Thus, Equation 1 is satisfied.

SEPARABLE EQUATIONS

Example 1

a. Solve the differential equation

$$
\frac{d y}{d x}=\frac{x^{2}}{y^{2}}
$$

b. Find the solution of this equation that satisfies the initial condition $y(0)=2$.

SEPARABLE EQUATIONS
 Example 1 a

We write the equation in terms of differentials and integrate both sides:

$$
\begin{gathered}
y^{2} d y=x^{2} d x \\
\int y^{2} d y=\int x^{2} d x \\
1 / 3 y^{3}=1 / 3 x^{3}+C
\end{gathered}
$$

where C is an arbitrary constant.

SEPARABLE EQUATIONS

Solving for y, we get:

$$
y=\sqrt[3]{x^{3}+3 C}
$$

- We could leave the solution like this or we could write it in the form where $K=3 C$
- Since C is an arbitrary constant, so is K.

SEPARABLE EQUATIONS

The figure shows graphs of several members of the family of solutions of the differential equation in Example 1.

- The solution of the initial-value problem in (b) is shown in red.

SEPARABLE EQUATIONS

E. g. 2—Equation 3

Writing the equation in differential form and integrating both sides, we have:

$$
\begin{aligned}
(2 y+\cos y) d y & =6 x^{2} d x \\
\int(2 y+\cos y) d y & =\int 6 x^{2} d x \\
y^{2}+\sin y & =2 x^{3}+C
\end{aligned}
$$

where C is a constant.

SEPARABLE EQUATIONS
 Example 2

Equation 3 gives the general solution implicitly.

- In this case, it's impossible to solve the equation to express y explicitly as a function of x.

SEPARABLE EQUATIONS

The figure shows the graphs of several members of the family of solutions of the differential equation in Example 2.

- As we look at the curves from left to right, the values of C are:
$3,2,1,0,-1,-2,-3$

SEPARABLE EQUATIONS

Example 3
If $y \neq 0$, we can rewrite it in differential notation and integrate:

$$
\begin{aligned}
& \frac{d y}{y}=x^{2} d x \quad y \neq 0 \\
& \int \frac{d y}{y}=\int x^{2} d x \\
& \ln |y|=\frac{x^{3}}{3}+C
\end{aligned}
$$

SEPARABLE EQUATIONS

Example 3
The equation defines y implicitly as a function of x.
However, in this case, we can solve explicitly for y.

$$
|y|=e^{\ln |y|}=e^{\left(x^{3} / 3\right)+C}=e^{C} e^{x^{3} / 3}
$$

Hence, $\quad y= \pm e^{C} e^{x^{3} / 3}$

SEPARABLE EQUATIONS Example 3

We can easily verify that the function $y=0$ is also a solution of the given differential equation.

- So, we can write the general solution in the form

$$
y=A e^{x^{3} / 3}
$$

where A is an arbitrary constant $\left(A=e^{C}\right.$, or $A=-e^{C}$, or $A=0$).

SEPARABLE EQUATIONS

The figure shows a direction field for the differential equation in Example 3.

- Compare it with the next figure, in which we use the equation $y=A e^{x^{3}}$ to graph solutions for several values of A.

SEPARABLE EQUATIONS
Example 4
In Section 9.2, we modeled the current $I(t)$ in this electric circuit by the differential equation
$L \frac{d I}{d t}+R I=E(t)$

SEPARABLE EQUATIONS

If you use the direction field to sketch solution curves with y-intercepts $5,2,1,-1$, and -2 , they will resemble the curves in the figure.

SEPARABLE EQUATIONS

Example 4

Find an expression for the current in a circuit where:

- The resistance is 12Ω.
- The inductance is 4 H .
- A battery gives a constant voltage of 60 V .
- The switch is turned on when $t=0$.

What is the limiting value of the current?

SEPARABLE EQUATIONS Example 4

With $L=4, R=12$ and $E(t)=60$,

- The equation becomes:

$$
4 \frac{d I}{d t}+12 I=60 \quad \text { or } \quad \frac{d I}{d t}=15-3 I
$$

- The initial-value problem is:

$$
\frac{d I}{d t}=15-3 I \quad I(0)=0
$$

SEPARABLE EQUATIONS

Example 4

Since $I(0)=0$, we have:

$$
5-1 / 3 A=0
$$

So, $A=15$ and the solution is:

$$
I(t)=5-5 e^{-3 t}
$$

SEPARABLE EQUATIONS Example 4

We recognize this as being separable.
We solve it as follows:

$$
\begin{aligned}
\int \frac{d I}{15-3 I} & =\int d t \quad(15-3 I \neq 0) \\
-\frac{1}{3} \ln |15-3 I| & =t+C \\
|15-3 I| & =e^{-3(t+C)} \\
15-3 I & = \pm e^{-3 C} e^{-3 t}=A e^{-3 t} \\
I & =5-\frac{1}{3} A e^{-3 t}
\end{aligned}
$$

SEPARABLE EQUATIONS

Example 4

The limiting current, in amperes, is:

$$
\begin{aligned}
\lim _{t \rightarrow \infty} I(t) & =\lim _{t \rightarrow \infty}\left(5-5 e^{-3 t}\right) \\
& =5-5 \lim _{t \rightarrow \infty} e^{-3 t} \\
& =5-0 \\
& =5
\end{aligned}
$$

SEPARABLE EQUATIONS

Comparison with the other figure (from Section 9.2) shows that we were able to draw a fairly accurate solution curve from the direction field.

ORTHOGONAL TRAJECTORY

An orthogonal trajectory of a family of curves is a curve that intersects each curve of the family orthogonally-that is, at right angles.

ORTHOGONAL TRAJECTORIES
 Example 5

Find the orthogonal trajectories of the family of curves $x=k y^{2}$, where k is an arbitrary constant.

ORTHOGONAL TRAJECTORIES

Each member of the family $y=m x$ of straight lines through the origin is an orthogonal trajectory of the family $x^{2}+y^{2}=r^{2}$ of concentric circles with center the origin.

- We say that the two families are orthogonal trajectories of each other

ORTHOGONAL TRAJECTORIES Example 5

The curves $x=k y^{2}$ form a family of parabolas whose axis of symmetry is the x-axis.

- The first step is to find a single differential equation that is satisfied by all members of the family.

ORTHOGONAL TRAJECTORIES
 Example 5

If we differentiate $x=k y^{2}$, we get:

$$
1=2 k y \frac{d y}{d x} \quad \text { or } \quad \frac{d y}{d x}=\frac{1}{2 k y}
$$

- This differential equation depends on k.
- However, we need an equation that is valid for all values of k simultaneously.

ORTHOGONAL TRAJECTORIES

To eliminate k, we note that:

- From the equation of the given general parabola $x=k y^{2}$, we have $k=x / y^{2}$.

ORTHOGONAL TRAJECTORIES Example 5

Hence, the differential equation can be written as:

$$
\frac{d y}{d x}=\frac{1}{2 k y}=\frac{1}{2 \frac{x}{y^{2}} y}
$$

or $\quad \frac{d y}{d x}=\frac{y}{2 x}$

- This means that the slope of the tangent line at any point (x, y) on one of the parabolas is: $y^{\prime}=y /(2 x)$

ORTHOGONAL TRAJECTORIES

On an orthogonal trajectory, the slope of the tangent line must be the negative reciprocal of this slope.

- So, the orthogonal trajectories must satisfy the differential equation

$$
\frac{d y}{d x}=-\frac{2 x}{y}
$$

ORTHOGONAL TRAJECTORIES E.g.5-Equation 4
The differential equation is separable.
We solve it as follows:

$$
\begin{aligned}
& \int y d y=-\int 2 x d x \\
& \frac{y^{2}}{2}=-x^{2}+C \\
& x^{2}+\frac{y^{2}}{2}=C
\end{aligned}
$$

where C is an arbitrary positive constant.

ORTHOGONAL TRAJECTORIES IN PHYSICS

Orthogonal trajectories occur in various branches of physics.

- In an electrostatic field, the lines of force are orthogonal to the lines of constant potential.
- The streamlines in aerodynamics are orthogonal trajectories of the velocity-equipotential curves.

MIXING PROBLEMS

A typical mixing problem involves a tank of fixed capacity filled with a thoroughly mixed solution of some substance, such as salt.

- A solution of a given concentration enters the tank at a fixed rate.
- The mixture, thoroughly stirred, leaves at a fixed rate, which may differ from the entering rate.

MIXING PROBLEMS

If $y(t)$ denotes the amount of substance in the tank at time t, then $y^{\prime}(t)$ is the rate at which the substance is being added minus the rate at which it is being removed.

- The mathematical description of this situation often leads to a first-order separable differential equation.

MIXING PROBLEMS

We can use the same type of reasoning to model a variety of phenomena:

- Chemical reactions
- Discharge of pollutants into a lake
- Injection of a drug into the bloodstream

MIXING PROBLEMS

Example 6
Let $y(t)$ be the amount of salt (in kilograms) after t minutes.

We are given that $y(0)=20$ and we want to find y (30).

- We do this by finding a differential equation satisfied by $y(t)$.

MIXING PROBLEMS

Equation 5

Note that $d y / d t$ is the rate of change of the amount of salt.

Thus,

$$
\frac{d y}{d t}=(\text { rate in })-(\text { rate out })
$$

where:

- 'Rate in' is the rate at which salt enters the tank.
- 'Rate out' is the rate at which it leaves the tank.

RATE IN

Example 6
We have:

$$
\begin{aligned}
\text { rate in } & =\left(0.03 \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(25 \frac{\mathrm{~L}}{\min }\right) \\
& =0.75 \frac{\mathrm{~kg}}{\min }
\end{aligned}
$$

MIXING PROBLEMS

Example 6

The tank always contains 5000 L of liquid.

- So, the concentration at time t is $y(t) / 5000$ (measured in kg/L).

MIXING PROBLEMS

Example 6

Thus, from Equation 5, we get:

$$
\frac{d y}{d t}=0.75-\frac{y(t)}{200}=\frac{150-y(t)}{200}
$$

- Solving this separable differential equation, we obtain:

$$
\begin{gathered}
\int \frac{d y}{150-y}=\int \frac{d t}{200} \\
-\ln |150-y|=\frac{t}{200}+C
\end{gathered}
$$

Example 6

Therefore,

$$
|150-y|=130 e^{-t / 200}
$$

- $y(t)$ is continuous and $y(0)=20$, and the right side is never 0 .
- We deduce that $150-y(t)$ is always positive.

RATE OUT

Example 6

As the brine flows out at a rate of $25 \mathrm{~L} / \mathrm{min}$, we have:

$$
\begin{aligned}
\text { rate out } & =\left(\frac{y(t)}{5000} \frac{\mathrm{~kg}}{\mathrm{~L}}\right)\left(25 \frac{\mathrm{~L}}{\min }\right) \\
& =\frac{y(t)}{200} \frac{\mathrm{~kg}}{\min }
\end{aligned}
$$

MIXING PROBLEMS

Since $y(0)=20$, we have:

$$
-\ln 130=C
$$

So,

$$
-\ln |150-y|=\frac{t}{200}-\ln 130
$$

MIXING PROBLEMS

Example 6
Thus, $|150-y|=150-y$.
So,

$$
y(t)=150-130 e^{-t / 200}
$$

- The amount of salt after 30 min is:

$$
y(30)=150-130 e^{-30 / 200} \approx 38.1 \mathrm{~kg}
$$

MIXING PROBLEMS	
Here's the graph of the function $y(t)$	
of Example 6.	
- Notice that, as time goes by, the amount of salt approaches 150 kg.	150

