

Let $f(x) = x^3 - x^2 - 6x + 2$. Verify that the function satisfies the three hypotheses of Rolle's Theorem on [0,3]. Then find all numbers c that satisfy the conclusion of Rolle's Theorem. 1) f is continuous on the closed interval [0,3] since polynomials are continuous for all values of x. 2) f is differentiable on the open interval (0,3) since polynomials are differentiable for all values of x. 3) f(0) = 2 and f(3) = 27 - 9 - 18 + 2 = 2So by Rolle's Theorem, there is a number c in (0,3) such that f'(c) = 0. $f'(x) = 3x^2 - 2x - 6$ $f'(c) = 3c^2 - 2c - 6 \stackrel{\text{set}}{=} 0$ $c = \frac{2 \pm \sqrt{4 - 4(3)(-6)}}{2(3)} = \frac{2 \pm \sqrt{76}}{6} = \frac{2 \pm \sqrt{4 \cdot 19}}{6} = \frac{2 \pm \sqrt{4} \cdot \sqrt{19}}{6}$ $= \frac{2 \pm 2\sqrt{19}}{6} = \frac{2}{6} \pm \frac{2\sqrt{19}}{6}$ $c = \frac{1}{3} - \frac{\sqrt{19}}{3} < 0 \Rightarrow \text{ not in } (0,3)$ $c = \frac{1}{3} + \frac{\sqrt{19}}{3} \approx 1.79$

The Mean Value Theorem	Math 103 – Rimmer
Proof:	
The slope of the secant line is $\frac{f(b)-f(a)}{b-a}$	
and a point on the line is $(a, f(a))$.	
The equation of the secant line is $y - f(a) = \frac{f(b) - f(a)}{b - a}(x - b)$	a).
Equivalently, $y = \frac{f(b) - f(a)}{b - a}(x - a) + f(a).$	$y \longrightarrow y = f(x)$
We call this function $g(x) = \frac{f(b) - f(a)}{b - a}(x - a) + f(a)$	$\begin{array}{c c} A \\ f(x) \\ f(x) \\ g(x) \\ \end{array}$
We create a new function $h(x) = f(x) - g(x)$.	В
$h(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right]$	$\begin{array}{c c} 0 \\ x \\ f(a) + \frac{f(b) - f(a)}{b - a} (x - a) \end{array}$
We now use Rolle's Theorem on $h(x)$.	
1) h is continuous on the closed interval $[a,b]$, its the difference of the differ	rence of continuous functions.
2) f is differentiable on the open interval (a,b) , its the diff	erence of differentiable functions.

2

$$h(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + f(a)\right]$$

$$h(a) = f(a) - \left[\frac{f(b) - f(a)}{b - a}(a - a) + f(a)\right] = 0$$

$$h(b) = f(b) - \left[\frac{f(b) - f(a)}{b - a}(b - a) + f(a)\right] = f(b) - \left[f(b) - f(a) + f(a)\right] = 0$$
3) $h(a) = h(b)$.
So by Rolle's Theorem, there is a number c in (a,b) such that $h'(c) = 0$.
$$h(x) = f(x) - \left[\frac{f(b) - f(a)}{b - a}(x - a) + \frac{f(a)}{constant}\right]$$

$$h'(x) = f'(x) - \frac{f(b) - f(a)}{b - a} = 0 \quad \Rightarrow f'(c) = \frac{f(b) - f(a)}{b - a} \text{ our desired result}$$

Eall 2008 Final Exam 3. Find the value of c (if any) that satisfies the conclusion of the Mean Value Theorem for the function $f(x) = \frac{1}{1+x}$ on the interval [0,1]. A) $\frac{1}{2}$ B) $\frac{1}{4}$ C) $\frac{\sqrt{2}}{2}$ D) $2-\sqrt{2}$ (E) $\sqrt{2}-1$ F) no values $f(x) = \frac{1}{1+x}$ f is continuous on [0,1]. $f(x) = (1+x)^{-1}$ $f'(x) = -1(1+x)^{-2}$ $f'(x) = \frac{-1}{(1+x)^2}$ f' is defined on (0,1), so f is differentiable on the open interval (0,1). So by the Mean Value Theorem, there is a number c in (0,1) such that $f'(c) = \frac{f(1) - f(0)}{1 - 0}$. $f(1) = \frac{1}{2}$ f(0) = 1 $\frac{f(1) - f(0)}{1 - 0} = \frac{\frac{1}{2} - 1}{1} = -\frac{1}{2}$ $f'(c) = \frac{-1}{(1+c)^2}$ So we set $f'(c) = \frac{-1}{2}$ and solve for c. $\frac{-1}{(1+c)^2} = \frac{-1}{2} \Rightarrow (1+c)^2 = 2$ $\Rightarrow 1+c = \pm\sqrt{2}$ $c = -1 \pm \sqrt{2}$ $c = -1 - \sqrt{2} < 0 \Rightarrow$ not in (0,1) $c = -1 + \sqrt{2}$

