4.2 The Mean Value Theorem

Preliminary Result:

Rolle's Theorem

Let $f(x)$ be a function that satisfies the following three hypotheses:

1) f is continuous on the closed interval $[a, b]$.
2) f is differentiable on the open interval (a, b).
3) $f(a)=f(b)$.

Then there is a number c in (a, b) such that $f^{\prime}(c)=0$.

(a)

(b)

(c)

(d)

Problem :
it doesn't tell us how to find the value of c

Let $f(x)=x^{3}-x^{2}-6 x+2$. Verify that the function satisfies the three

Math 103 - Rimmer 4.2 The Mean Value Theorem hypotheses of Rolle's Theorem on $[0,3]$. Then find all numbers c that satisfy the conclusion of Rolle's Theorem.

1) f is continuous on the closed interval $[0,3]$ since polynomials are continuous for all values of x.
2) f is differentiable on the open interval $(0,3)$ since polynomials are differentiable for all values of x.

3) $f(0)=2$ and $f(3)=27-9-18+2=2$

So by Rolle's Theorem, there is a number c in $(0,3)$ such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-2 x-6 \text { Solve for } c . \\
& f^{\prime}(c)=3 c^{2}-2 c-6 \stackrel{\text { set }}{=} 0
\end{aligned} \quad \begin{aligned}
c & =\frac{2 \pm \sqrt{4-4(3)(-6)}}{2(3)}=\frac{2 \pm \sqrt{76}}{6}=\frac{2 \pm \sqrt{4 \cdot 19}}{6}=\frac{2 \pm \sqrt{4} \cdot \sqrt{19}}{6} \\
& =\frac{2 \pm 2 \sqrt{19}}{6}=\frac{2}{6} \pm \frac{2 \sqrt{19}}{6} \quad c=\frac{1}{3} \pm \frac{\sqrt{19}}{3} \\
c & =\frac{1}{3}-\frac{\sqrt{19}}{3}<0 \Rightarrow \operatorname{not} \text { in }(0,3) \quad c=\frac{1}{3}+\frac{\sqrt{19}}{3} \approx 1.79
\end{aligned}
$$

The Mean Value Theorem

Math 103 - Rimmer
4.2 The Mean Value Theorem
Let $f(x)$ be a function that satisfies the following hypotheses:

1) f is continuous on the closed interval $[a, b]$.
2) f is differentiable on the open interval (a, b).

Then there is a number c in (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ or, equivalently, $f^{\prime}(c)(b-a)=f(b)-f(a)$.

The Mean Value Theorem is a generalization of Rolle's Theorem.

It has the extra condition $f(a)=f(b)$ and looking at the formula above this would make $f^{\prime}(c)=0$.

The Mean Value Theorem basically says that there will be at least one place c in (a, b) where the slope of the secant line connecting the endpoints $(a, f(a))$ and $(b, f(b))$ is the same as the slope of the tangent line.
or said another way, there will be a place where the instantaneous rate of change is equal to the average rate of change over an interval

The Mean Value Theorem

Math 103 - Rimmer 4.2 The Mean Value Theorem

Proof:

The slope of the secant line is $\frac{f(b)-f(a)}{b-a}$
and a point on the line is $(a, f(a))$.
The equation of the secant line is $y-f(a)=\frac{f(b)-f(a)}{b-a}(x-a)$.
Equivalently, $y=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$.
We call this function $g(x)=\frac{f(b)-f(a)}{b-a}(x-a)+f(a)$
We create a new function $h(x)=f(x)-g(x)$.
$h(x)=f(x)-\left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right]$

We now use Rolle's Theorem on $h(x)$.

1) h is continuous on the closed interval $[a, b]$, its the difference of continuous functions.
2) f is differentiable on the open interval (a, b), its the difference of differentiable functions.

$$
\begin{aligned}
& h(x)=f(x)-\left[\frac{f(b)-f(a)}{b-a}(x-a)+f(a)\right] \\
& h(a)=f(a)-\left[\frac{f(b)-f(a)}{b-a}(a-a)+f(a)\right]=0 \\
& h(b)=f(b)-\left[\frac{f(b)-f(a)}{b-a}(b-a)+f(a)\right]=f(b)-[f(b)-f(a)+f(a)]=0
\end{aligned}
$$

3) $h(a)=h(b)$.

So by Rolle's Theorem, there is a number c in (a, b) such that $h^{\prime}(c)=0$.

$$
\begin{aligned}
h(x) & =f(x)-[\underbrace{\frac{f(b)-f(a)}{b-a}}_{\text {constant }}(x-a)+\underbrace{f(a)}_{\text {constant }}] \\
h^{\prime}(x) & =f^{\prime}(x)-\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

so, $h^{\prime}(c)=f^{\prime}(c)-\frac{f(b)-f(a)}{b-a}=0 \quad \Rightarrow f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$ our desired result

Fall 2008 Final Exam

3. Find the value of c (if any) that satisfies the conclusion of the Mean Value Theorem for the
function $f(x)=\frac{1}{1+x}$ on the interval $[0,1]$.
A) $\frac{1}{2}$
B) $\frac{1}{4}$
C) $\frac{\sqrt{2}}{2}$
D) $2-\sqrt{2}$

F) no values
$f(x)=\frac{1}{1+x} \quad f$ is continuous on $[0,1]$.
$f(x)=(1+x)^{-1} \quad f^{\prime}(x)=-1(1+x)^{-2} \quad f^{\prime}(x)=\frac{-1}{(1+x)^{2}}$
f^{\prime} is defined on $(0,1)$, so f is differentiable on the open interval $(0,1)$.
So by the Mean Value Theorem, there is a number c in $(0,1)$ such that $f^{\prime}(c)=\frac{f(1)-f(0)}{1-0}$.

$$
\begin{aligned}
& f(1)=\frac{1}{2} \quad f(0)=1 \quad \frac{f(1)-f(0)}{1-0}=\frac{\frac{1}{2}-1}{1}=-\frac{1}{2} \\
& f^{\prime}(c)=\frac{-1}{(1+c)^{2}} \quad \text { So we set } f^{\prime}(c)=\frac{-1}{2} \text { and solve for } c . \\
& \begin{aligned}
& \frac{-1}{(1+c)^{2}}=\frac{-1}{2} \Rightarrow(1+c)^{2}=2 \\
& \Rightarrow 1+c= \pm \sqrt{2} \\
& c=-1 \pm \sqrt{2} \quad c=-1-\sqrt{2}<0 \Rightarrow \operatorname{not} \text { in }(0,1) \quad c=-1+\sqrt{2}
\end{aligned}
\end{aligned}
$$

The Mean Value Theorem enables us to obtain information about
 a function from information about its derivative.

4.2 exercise \#23

If $f(1)=10$ and $f^{\prime}(x) \geq 2$ for $1 \leq x \leq 4$, how small can $f(4)$ possibly be?

1) f is continuous on the closed interval $[1,4]$.
2) f is differentiable on the open interval $(1,4)$.

So by the Mean Value Theorem, there is a number c in $(1,4)$ such that $f^{\prime}(c)=\frac{f(4)-f(1)}{4-1}$. or, equivalently, $f^{\prime}(c)(4-1)=f(4)-f(1)$.

$$
\begin{aligned}
& f(4)=f^{\prime}(c)(4-1)+f(1) \\
& f(4)=3 f^{\prime}(c)+10 \\
& \text { But } f^{\prime}(c) \geq 2 \text { for every } c \text { in }(1,4) \\
& f(4) \geq 3(2)+10 \\
& f(4) \geq 16 \\
& \Rightarrow \text { The smallest value for } f(4)=16
\end{aligned}
$$

The Mean Value Theorem is used to prove some
basic facts in differential calculus. Here are two such facts:

If $f^{\prime}(x)=0$ for all x in an interval (a, b), then f is constant on (a, b).

If $f^{\prime}(x)=g^{\prime}(x)$ for all x in an interval (a, b), then $f-g$ is constant on (a, b), that is $f(x)=g(x)+c$ where c is a constant.

