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1 Introduction

We begin by recalling some relevant definitions and results from calculus and measure theory that
we will need throughout the course. We then give a brief explanation of the type of problems we
will encounter in this course, and the methods we need to develop in order to solve them. As a
concrete example, we conclude the introduction by discussing the minimal surface equation.

1.1 Definitions
• A domain Ω ⊆ Rn is an open, connected set. For a differentiable function u, we write Du

for the gradient of u, Du = (D1u, . . . ,Dnu) where Diu = ∂u
∂xi

.

• If Ω is a domain and O is an open set contained in Ω we write O ⊂⊂ Ω to indicate that
Ō ⊆ Ω and Ō is compact.

• For a multiindex α = (α1, . . . , αn),

D(α)u(x) =
∂|α|u(x)

∂xα1
1 . . . ∂xαnn

,

where |α| =
∑n
i=1 αi. We set α! := α1! . . . αn!.

• The Laplacian ∆u is by definition
∑n
i=1Diiu, and the divergence div(u) =

∑n
i=1Diu.

• BR(x) will denote the open ball of radius R about x and ωn denotes the volume of B1(0) ⊆
Rn, that is,

ωn =
∫
B1(0)

dx.

1
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• A domain Ω has C1 boundary ∂Ω if the following condition holds: for any ξ ∈ ∂Ω there
exists R > 0 and a C1 function f : Rn−1 → R such that after relabelling and reorientating
the coordinates if necessary,

Ω ∩BR(ξ) = {x ∈ BR(ξ) | xn > f(x1, . . . , xn)}

(and so ∂Ω ∩BR(ξ) = {x ∈ BR(ξ) | xn = f(x1, . . . , xn)}). Likewise ∂Ω is Ck if f is Ck.

• The outward pointing unit normal vector field ν is then defined along ∂Ω. Write
ν = (ν1, . . . , νn). The unit normal at any point x0 ∈ Ω is ν(x0). If u ∈ C1

(
Ω̄
)
then the

outward normal derivative of u is ∂u
∂ν , which is by definition ν ·Du. We write dS (x) for

the volume element of ∂Ω, although often we will omit the dependence on the variable x,
and just write dS.

1.2 Calculus results
• The Divergence Theorem states the following: let Ω be a domain with ∂Ω C1. Let
u ∈ C1

(
Ω̄
)
. Then for i = 1, . . . , n,∫

Ω

Diudx =
∫
∂Ω

uνidS(x).

Strictly the above formula is obtained from the Divergence Theorem by setting

u = (0, . . . , 0, u, 0, . . . , 0),

and then the Divergence Theorem states that∫
Ω

div(u)dx =
∫
∂Ω

u · νdS(x),

which immediately gives the stated result. We will mainly use the first formula, and refer to
this as the ‘Divergence Theorem’.

• From this we easily deduce integration by parts. Suppose u,w ∈ C1
(
Ω̄
)
. Then for

i = 1, . . . , n, ∫
Ω

Diuwdx = −
∫

Ω

uDiwdx+
∫
∂Ω

uwνidS(x).

≥
This follows immediately from (1) by applying it to uw, noting Di(uw) = uDiw + wDiu.

• We will also need Green’s forumlas. Suppose u,w ∈ C2(Ω). Then we have∫
Ω

∆udx =
∫
∂Ω

∂u

∂ν
dS(x), (1)∫

Ω

Du ·Dwdx = −
∫

Ω

u∆wdx+
∫
∂Ω

∂w

∂ν
udS(x), (2)∫

Ω

u∆w − w∆udx =
∫
∂Ω

u
∂w

∂ν
− w∂u

∂ν
dS(x). (3)

The first follows from (2), by setting ‘u′ = Diu and ‘w′ ≡ 1, and then summing over i. The
second follows from (2) by setting ‘w′ = Diw and summing over i. Finally, the third follows
by exchanging the roles of u and w in the second, and subtracting.

• The final result from calculus we need is the Coarea formula: if f : Rn → R is continuous
and

∫
Rn fdx <∞ then for any 0 < R ≤ ∞,∫

BR(x0)

fdx =
∫ R

0

(∫
∂Bρ(x0)

fdS(x)

)
dρ

and in particular
d

dR

(∫
BR(x0)

fdx

)
=
∫
∂BR(x0)

fdS(x). (4)



1 Introduction 3

1.3 Meausure theory and integration
During the course we will at various stages quote the following four results from measure theory.

• Egoroff’s theorem states that if Ω ⊆ Rn is a measurable set with |Ω| < ∞ and functions
{fk : Ω→ R} are measurable such that

fk → f a.e. on Ω,

for some measurable function f : Ω→ R then for any ε > 0 there exists a measurable subset
Eε ⊆ Ω such that |Ω\Eε| ≤ ε and such that fk → f uniformly on Eε.

• The monotone convergence theorem states that if functions {fk : Ω→ R} are integrable
with fk (x) ≤ fk+1 (x) for all k and all x ∈ Ω then∫

Ω

lim
k→∞

fk = lim
k→∞

∫
Ω

fk.

• Lebesgue’s dominated convergence theorem states that if functions {fk : Ω→ R} are
integrable and

fk → f a.e.,

and there exists a function g ∈ L1 (Ω) such that

|fk| ≤ g a.e.,

then ∫
Ω

lim
k→∞

fk = lim
k→∞

∫
Ω

fk.

• Lebesgue’s differentiation theorem states that if u : Ω → R is locally summable then
for a.e. x ∈ Ω we have

1
ωnRn

∫
BR(x)

u(y)→ u(x) as R ↓ 0.

In fact for a.e. x ∈ Ω we have

1
ωnRn

∫
BR(x)

|u(y)− u(x)|dy → 0.

Such a point x is called a Lebesgue point of u.

Finally, we make the following definition. Let Ω ⊆ Rn be an open domain. In addition to the
standard spaces Lp (Ω) we define the spaces Lploc (Ω) consisting of the functions that are locally
of class Lp; more precisely, u : Ω→ R is in Lploc (Ω) if for every O ⊂⊂ Ω we have u ∈ Lp (O).

1.4 Variational Problems
In this course we will look at certain variational problems. Here is the general idea.

Problem: Let F : Ω × R × Rn → R be smooth, where Ω ⊆ Rn is a domain with smooth
boundary,and consider the functional

F : C2 (Ω)→ R

defined by (♠)

F(u) :=
∫

Ω

F (x, u,Du)dx.

Suppose g ∈ C0 (∂Ω). Does there exist a minimizer u of F that satisfies the boundary condi-
tion u = g on ∂Ω?
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As we shall see, often minimizers do not exist in the function class we are considering, and we
are forced to relax the regularity requirements on the domain of F in order to get a minimizer.
Sometimes it will turn out however that although we could only prove existence of a minimizer in
a certain class of functions possessing little regularity, once we know the minimizer exists we can
then independently prove that the minimizer actually possesses rather more regularity.

Thus given a variational problem F , three natural problems are:

1. Existence of minimizers in suitable classes of functions (eg. Sobolev spaces).

2. Regularity of the minimizer (often smoothness).

3. Uniqueness of the minimizer.

For some variational problems, the proofs of the three problems above are entirely separate. Some-
times one is a consequence of another: towards the end of the course we shall see a suprising
example where to prove existence follows from existence, that is, we first prove that if a solution
exists it is unique, and then use this to deduce that a solution must exist !

1.5 Euler-Lagrange equations
Consider again Problem (♠) above. Assume we have a C2(Ω) minimizer u of F(·) subject to
u = g on ∂Ω. Let ϕ ∈ C1

c (Ω), that is, let ϕ be a continuously differentiable function with compact
support within Ω, and consider u+ sϕ for s ∈ (−ε, ε). These are variations of u. If

i(s) :=
∫

Ω

F (x, u+ sϕ,D(u+ sϕ))dx,

then by assumption i has a minimum at s = 0. This leads to the the Euler-Lagrange equations.

i′(0) = 0.

Explicitly,

0 =
d

ds

∣∣∣
s=0

∫
Ω

F (x, u+ sϕ,D(u+ sϕ))dx

=
∫

Ω

n∑
i=1

(
Fpi(x, u,Du)Diϕ+ Fz(x, u,Du)ϕ

)
dx,

where F = F (x, z, p). Since ϕ has compact support, we may integrate by parts to obtain (using
ϕ = 0 on ∂Ω)

0 =
∫

Ω

−
n∑
i=1

(Di(Fpi(x, u,Du)) + Fz(x, u,Du))ϕdx.

Since this holds for all test functions ϕ, we conclude that u solves the nonlinear PDE in Ω,
n∑
i=1

Di(Fpi(x, u,Du)) = Fz(x, u,Du). (5)

We shall study the Euler-Lagrange equations in much greater depth in Chapter 9, after we have
developed considerable technical machinery. Then we will be able to at least partially answer the
three questions posed above. Let us however conclude this introductory example by looking at a
concrete example of a variational problem.

1.6 The minimal surface equation
Here we consider F (x, u,Du) =

√
1 + |Du|2. Then F(·) is the area functional; if u : Ω→ R and

Gu is its graph then the area of Gu is

A(u) =
∫

Ω

√
1 + |Du|2dx = F(u).
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The associated Euler-Lagrange equation, called the minimal surface equation is

Di

(
Diu√

1 + |Du|2

)
= 0,

or

div

(
Du√

1 + |Du|2

)
= 0.

As written, this is the divergence form of the minimal surface equation. One can show that

div
(

Du√
1+|Du|2

)
is n times the mean curvature of Gu; thus a minimal surface has zero mean

curvature. We can also require obviously require u = g on ∂Ω, say.
We can explicitly carry out the differentiation to obtain the non-divergence form:

1
1 + |Du|2

(√
1 + |Du|2Diiu−DiuDi(

√
1 + |Du|2)

)
,

which, using Di(
√

1 + |Du|2) = DjuDiju√
1+|Du|2

we obtain

Diiu−
DiuDjuDiju

1 + |Du|2
= 0,

or alternatively after summing

∆u− DiuDjuDiju

1 + |Du|2
= 0

or (
δij −

DiuDju

1 + |Du|2

)
Diju = 0.

Let us conclude this introduction by quoting the following result.

1.7 Theorem (Bernstein)
If u ∈ C2(Rn) is a solution to the minimal surface equation on all of Rn, for 1 ≤ n ≤ 7, then u is
affine, u if u(x) = ax+ b. This fails for n ≥ 8.

2 Harmonic functions

2.1 Laplace’s equation
As a second example we could take F (x, u,Du) := 1

2 |Du|
2, so F(·) is the Dirichlet Energy

functional,

E(u) :=
∫

Ω

1
2
|Du|2.

We could also require u = g on ∂Ω, say. The associated Euler-Lagrange equation is just
Laplace’s equation:

∆u = 0 on Ω, u = g on ∂Ω.

2.2 Definitions
Let Ω ⊆ Rn be a domain and u ∈ C2(Ω). We say that u is harmonic if ∆u = 0 on Ω. We say u
is subharmonic if ∆u ≥ 0 on Ω and we say that u is superharmonic if ∆u ≤ 0 on Ω.
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2.3 Theorem (Dirichlet’s principle for Poisson’s equation)
Suppose Ω ⊆ Rn is a domain and ∂Ω is C1. Let f ∈ C0(Ω). Let

F(w) :=
∫

Ω

1
2
|Dw|2 + wf

and let g ∈ C1(∂Ω). Set

Cg := {w ∈ C2(Ω) ∩ C1(Ω̄) | w = g on ∂Ω}.

Then u ∈ Cg minimizes F(·) if and only if ∆u = f on Ω, that is, u solves Poisson’s equation.

J If u minimizes F(·) then the calculation in Section 1.5 yields ∆u = f on Ω. Explicitly, if

i(s) :=
∫

Ω

1
2
|D(u+ sϕ)|2 + (u+ sϕ)f

for some ϕ ∈ C1
c (Ω), and s ∈ (−ε, ε), then we have

i′(0) = 0.

Now

i(s) =
∫

Ω

1
2
|Du|2 + sDu ·Dϕ+

s2

2
|Dϕ|2 + (u+ sϕ)fdx,

and hence
0 = i′(0) =

∫
Ω

Du ·Dϕ+ ϕfdx =
∫

Ω

(−∆u+ f)ϕdx,

the latter equality using integration by parts, and the fact that ϕ = 0 on ∂Ω. Since this holds for
all ϕ ∈ C1

c (Ω), we conclude ∆u = f on Ω.
For the converse, suppose w ∈ Cg. Then

0 =
∫

Ω

(−∆u+ f)(u− w),

and integrating by parts gives

0 =
∫

Ω

Du ·D(u− w) + f(u− w),

as there is no boundary term as u− w = g − g = 0 on ∂Ω. Hence∫
Ω

|Du|2 + uf =
∫

Ω

Du ·Dw + wf,

and using |Du ·Dw| ≤ |Du||Dw| ≤ 1
2 |Du|

2 + 1
2 |Dw|

2 we obtain∫
Ω

Du ·Dw + wf ≤
∫

Ω

1
2
|Du|2 +

∫
Ω

1
2
|Dw|2 + wf

and hence by rearranging F(u) ≤ F(w). I

2.4 Theorem (Mean-value properties)

Let Ω ⊆ Rn be open, and BR(x) ⊆ Ω. Suppose u ∈ C2(Ω) is subharmonic in Ω. Then

1. u(x) ≤ 1
nωnRn−1

∫
∂BR(x)

u.

2. u(x) ≤ 1
ωnRn

∫
BR(x)

u.
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If u is superharmonic then the inequalities are reversed, and if u is harmonic then we have equality.
In the future we shall state results only for subharmonic functions; as always to obtain the corre-
sponding result for superharmonic functions reverse the inequalities, and for harmonic functions
we then have equality.

J We note that 1 holds in the limit as R → 0 with equality, so we need only show that the
right hand side is monotone increasing as R decreases.

Now if
φ(R) =

1
nωnRn−1

∫
∂BR(y)

u(x)dS(x) =
1
nωn

∫
Sn−1

u(y +Rz)dS(z),

then
φ′(R) =

1
nωn

∫
Sn−1

Du(y +Rz) · zdS(z) =
1

nωnRn−1

∫
∂BR(y)

Du · x− y
R

dS(x)

=
1

nωnRn−1

∫
∂BR(y)

∂u

∂ν
(x)dS(x) =

1
nωnRn−1

∫
BR(y)

∆u(x)dx ≥ 0.

the last equality coming from (1), the first of Greens’ inequalities.
This proves 1 and then 2 follows by integrating over the ball of radius R using the coarea

formula (4):∫
BR(x)

u =
∫ R

0

(∫
∂Bt(x)

udS

)
dt = u(x)

∫ R

0

nωnt
n−1dt = ωnR

nu(x). I

In fact, the mean value properties characterise harmonic functions. See Proposition 2.15 below.

2.5 Proposition
Let Ω ⊆ Rn be a domain with a C1 boundary. Suppose u ∈ C2(Ω) ∩ C1

(
Ω̄
)
satisfies ∆u = f on

Ω and u = g on ∂Ω, where f ∈ C0(Ω) and g ∈ C1(∂Ω). Then u is unique.

J Suppose u1, u2 are two solutions. Then if v = u1 − u2, then ∆v = 0 on Ω and v = 0 on ∂Ω.
But then

0 = −
∫

Ω

v∆v =
∫

Ω

|Dv|2,

and hence Dv ≡ 0. Since v = 0 on ∂Ω, we conclude v = 0 on all of Ω. I

2.6 Corollary (Strong maximum principle for harmonic functions)
Let Ω ⊆ Rn be a domain, u ∈ C2(Ω) subharmonic. Then u does not attain a maximum in Ω unless
u is constant.

J Suppose u attains a maximum M at y ∈ Ω. Let Σ := {x ∈ Ω | u(x) = M}. Then Σ
is non-empty and closed (since u is continuous). Consider v := M − u. Then v ≥ 0 and v is
superharmonic. If x ∈ Σ, then for suitably small R > 0, by (2.3.2) we have BR(x) ⊆ Ω and

v(x) ≥ 1
ωnRn

∫
BR(x)

v.

But by assumption x ∈ Σ implies the left hand side is zero, and the right hand side is non-negative
as v is non-negative. Thus v ≡ 0 in BR(x) and thus Σ is open. Since Ω is connected, Σ = Ω as
was required. I
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2.7 Corollary (Weak maximum principle for harmonic functions)
Let Ω ⊆ Rn be a bounded domain and u ∈ C2(Ω) ∩ C0

(
Ω̄
)
subharmonic. Then

max
Ω̄

u = max
∂Ω

u.

J Note that the maximum is certainly attained somewhere, as Ω̄ is compact and u is contin-
uous. By the strong maximum principle this maximum is attained on ∂Ω. I

Both the strong and weak maximum prinicples hold for a much wider class of functions than
harmonic functions. In general, one proves the weak maximum principle (the global result) first,
and then the strong maximum prinicple (the local result). For harmonic functions though, Theo-
rem 2.4 makes it is possible to go the other way round for a quick, simple proof.

2.8 Corollary
Let Ω ⊆ Rn be a domain with a C1 boundary. Suppose u ∈ C2(Ω) ∩ C0

(
Ω̄
)
satisfies ∆u = f on

Ω and u = g on ∂Ω, where f ∈ C0(Ω) and g ∈ C0(∂Ω). Then u is unique.

Note that this is an improvement over Proposition 2.5, as we now only need u and g to be
continuous at the boundary, not differentiable.

J The proof is immediate; using the notation of Proposition 2.5, we have ∆v = 0 and v = 0
on ∂Ω, whence by the weak maximum priniple:

max
Ω̄

w = max
∂Ω

w = 0 = min
∂Ω

w = min
Ω̄
w. I

2.9 Theorem (Harnak inequalities)
Let Ω ⊆ Rn be a domain, and O ⊂⊂ Ω a subdomain. Then there exists a constant C =
C(n,Ω,O) > 0 such that if u ∈ C2(Ω) is a non-negative harmonic function then

sup
O
u ≤ C inf

O
u.

Equivalently, given any x1, x2 ∈ O we have

1
C
u(x2) ≤ u(x1) ≤ Cu(x2).

J Suppose B4R(y) ⊆ Ω, and let x1, x2 ∈ BR(y). Then by Theorem 2.4.2,

u(x1) =
1

ωnRn

∫
BR(x1)

u ≤ 1
ωnRn

∫
B2R(y)

u,

as u is non-negative and BR(x1) ⊆ B2R(y). Similarly,

u(x2) =
1

ωn(3R)n

∫
B3R(x2)

u ≥ 1
ωn(3R)n

∫
B2R(y)

u,

and hence u(x1) ≤ 3nu(x2).
Now let x1 and x2 be the points in Ō be points where u attains its maximum and minimum

respectively. Choose a path Γ from x1 to x2 contained in O. Now choose R > 0 such that
4R < dist(Γ, ∂Ω). By compactness, we can cover Γ by N = N(Ω,O) <∞ balls of radius 4R, and
then by the above we obtain u(x1) ≤ 3nNu(x2). Thus we may take C = C(n,Ω,O) = 3nN(Ω,Ω0). I
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2.10 Definition
Let Ω ⊆ Rn be a domain. A function u ∈ L1(Ω) is weakly harmonic in Ω if∫

Ω

u∆ϕ = 0

for all ϕ ∈ C2
c (Ω). Note that if u ∈ C2(Ω) is (classically) harmonic then u is weakly harmonic: by

Greens’ Theorem (2) applied twice we obtain (since the boundary terms vanish as ϕ is compactly
supported)

0 =
∫

Ω

u∆ϕ = −
∫

Ω

Du ·Dϕ =
∫

Ω

∆uϕ,

and since this holds for all ϕ ∈ C2
c (Ω), we conclude u is harmonic in Ω.

We can also define weakly subharmonic and weakly superharmonic in the same way.

2.11 Definition
Define η ∈ C∞(Rn) by

η(x) =

{
C exp

(
1

|x2|−1

)
|x| < 1

0 |x| ≥ 1,

where C is selected such that
∫

Rn η = 1. We call η the standard mollifier. Given σ > 0, define
ησ by ησ(x) := σ−nη(x/σ). Then the functions ησ are smooth,

∫
Rn ησ = 1 and ησ is supported in

the ball Bσ(0). Note also that ησ is a radial function.

2.12 Theorem (Weyl’s Lemma)
Let Ω ⊆ Rn be a domain. If u ∈ L1(Ω) is weakly harmonic in Ω, then there exists a ū ∈ C∞(Ω)
such that ū is classically harmonic and u = ū for a.e. x ∈ Ω.

It will take some time to prove this theorem. The same result is not true for weakly subhar-
monic or weakly superharmonic functions.

J We proceed in several stages.

Step 1: The first step is to mollify u. Given σ > 0, define Ωσ := {x ∈ Ω | d(x, ∂Ω) > σ}.
Now define uσ : Ωσ → R by

uσ(x) = (ησ ∗ u)(x) =
∫

Rn
ησ(x− y)u(y)dy =

∫
Bσ(x)

ησ(x− y)u(y)dy.

We call uσ the σth mollification of u. We claim that uσ ∈ C∞ (Ωσ).
Fix x ∈ Ωσ, and 1 ≤ i ≤ n. Then if h is chosen small enough such that x+ hei ∈ Ωσ, we have

uσ(x+ hei)− uσ(x)
h

=
1
σn

∫
Bσ(x)

1
h

(
η

(
x+ hei − y

σ

)
− η

(
x− y
σ

))
u(y)dy.

Since
Diησ(x) = σ−n+1Diη

(x
σ

)
,

we have
1
h

(
η

(
x+ hei − y

σ

)
− η

(
x− y
σ

))
→ 1

σ
Diη

(
x− y
σ

)
uniformly on Bσ(x), and hence Diuσ(x) exists and for x ∈ Ωσ,

Diuσ(x) =
∫
Bσ(x)

Diησ(x− y)u(y)dy.
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A similar argument shows that D(α)uσ(x) exists and for x ∈ Ωσ,

D(α)uσ(x) =
∫
Bσ(x)

D(α)ησ(x− y)u(y)dy

for any multiindex α. Thus uσ ∈ C∞(Ωσ).

Step 2: We now claim that uσ → u for a.e. x ∈ Ωσ. Fix such a point x ∈ Ωσ. Then using
the fact that ησ has unit intgeral,

|uσ(x)− u(x)| =

∣∣∣∣∣
∫
Bσ(x)

ησ(x− y)(u(y)− u(x))dy

∣∣∣∣∣
≤ 1

σn

∫
Bσ(x)

η

(
x− y
σ

)
|u(y)− u(x)|dy

≤ C

σn

∫
Bσ(x)

|u(y)− u(x)| → 0,

by Lebesgue’s Differentiation Theorem.

Step 3: Next, we claim that uσ is classically harmonic in Ωσ. Write ∆x to indicate that the
differentiation is with respect to x in the Laplacian. Then

∆xuσ(x) = ∆x

(∫
Bσ(x)

ησ(x− y)u(y)dy

)

=
∫
Bσ(x)

∆x (ησ(x− y))u(y)dy,

as ησ is smooth. But by the chain rule,

∆x (ησ(x− y)) = ∆y (ησ(x− y)) ,

as the (−1)’s cancel. But then ∫
Bσ(x)

∆y (ησ(x− y))u(y)dy = 0

since u is weakly harmonic and f(y) := ησ(x− y) ∈ C2
c (Ω).

Step 4: The next thing to prove are the following two statements about mollification. Let
σ, τ > 0. Define (uσ)τ (x) = ητ ∗ uσ for τ > 0, so (uσ)τ is defined in Ωσ+τ . Similarly we define
(uτ )σ. We claim for all x ∈ Ωσ+τ :

1. (uσ)τ (x) = uσ(x),

2. (uσ)τ (x) = (uτ )σ (x).

Observe for any x ∈ Ωσ+τ ,

(uσ)τ (x) =
∫
Bτ (x)

ητ (x− y)uσ(y)dy =
1
τn

∫
Bτ (x)

η

(
x− y
τ

)
uσ(y)dy,

and by the coarea formula (4) we have

(uσ)τ (x) =
1

τn−1

∫ 1

0

∫
∂Bτρ(x)

η

(
x− y
τ

)
uσ(y)dydρ.

Now recall that η is radial, and thus η(z) = η(|z|), and since on ∂Bτρ(x), we have∣∣∣∣x− yτ
∣∣∣∣ = ρ,
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we can write

(uσ)τ (x) =
∫ 1

0

nωnρ
n−1η(ρ)

(
1

nωn(τρ)n−1

∫
∂Bτρ(x)

uσ(y)dy

)
dρ,

and then applying Theorem (2.4).(1) to the harmonic function uσ we obtain

(uσ)τ (x) = uσ(x)
∫ 1

0

nωnρ
n−1η(ρ)dρ.

Finally, ∫ 1

0

nωnρ
n−1η(ρ)dρ =

∫ 1

0

η(ρ)

(∫
∂Bρ(0)

dS

)
dρ =

∫
B1(0)

η(|y|)dy = 1,

and thus we conclude (uσ)τ (x) = uσ(x).
To prove the second statement, let x ∈ Ωσ+τ and observe we may take all our integrals to be

over Ωσ+τ . We have

(uσ)τ (x) = (ητ ∗ uσ)(x)

=
∫

Ωσ+τ

ητ (x− y)uσ(y)dy

=
∫

Ωσ+τ

ητ (x− y)
∫

Ωσ+τ

ησ(y − z)u(z)dzdy.

Now set w = x− y + z. Then

(uσ)τ (x) =
∫

Ωσ+τ

ητ (w − z)
∫

Ωσ+τ

ησ(x− w)u(z)dwdz,

which upon exchanging the order of integration (which is valid, as ησ and ητ are smooth and u
integrable) is equal to (uτ )σ(x).

Step 5: We can now complete the proof. Fix some τ > 0. We have shown that for a.e.
x ∈ Ωσ+τ we have (uτ )σ(x) = (uσ)τ (x) = uσ(x). Now let σ → 0. Thus for a.e. x ∈ Ωτ , we have
uτ (x) = u(x), with uτ smooth and classically harmonic. But τ was arbitrary; it follows there exists
a smooth harmonic function ū defined on all of Ω such that for a.e. x ∈ Ω, u(x) = ū(x). This
completes the proof. I

From now on, when we talk about harmonic functions we may automatically assume that they
are smooth.

2.13 Proposition (gradient estimates for harmonic functions)
Let Ω ⊆ Rn be open and bounded, u ∈ C∞(Ω) be harmonic in Ω. Then:

1. For any x ∈ Ω and any ρ > 0 such that Bρ(x) ⊆ Ω, we have

|Du(x)| ≤ n

ρ
sup
Bρ(x)

|u|.

2. For any x ∈ Ω and any R > 0 such that B2R(x) ⊆ Ω, we have

sup
BR(x)

|Du| ≤ n

R
sup

B2R(x)

|u|.

3. For any x ∈ Ω it holds that

|Du (x)| ≤ n

dist (x, ∂Ω)
sup

Ω
|u| .
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J By differentiating Laplace’s equation, we see that Diu is harmonic in Ω. If x ∈ Ω and ρ > 0 is
such that Bρ(x) ⊆ Ω then Theorem 2.4.1 gives

Diu(x) =
1

ωnρn

∫
Bρ(x)

Diu,

and then the Divergence Theorem gives

Diu(x) =
1

ωnρn

∫
∂Bρ(x)

uνidS ≤
nωn
ωnρn

ρn−1 sup
∂Bρ(0)

|u|.

Then Corollary 2.7) then completes the proof of 1.
To prove 2, we note that the supremum of the continuous function |Du (·)| attains its maximum

on the compact set BR (x), and hence

sup
BR(x)

|Du| = |Du (x0)|

for some x0 ∈ BR (x). Hence

sup
BR(x)

|Du| = |Du (x0)|

≤ n

R
sup

BR(x0)

|u|

≤ n

R
sup

B2R(x)

|u| .

Finally, 3 is an easy consequence of 2. I

2.14 Corollary (Liouville’s Theorem)
If u : Rn → R is harmonic on all of Rn and bounded then u is constant.

J For any x ∈ Rn and 1 ≤ i ≤ n, letting ρ→∞ in Proposition 2.13.1 shows Du(x) = 0. We
conclude Du ≡ 0 and thus u is constant. I

2.15 Proposition
1. If u ∈ C2(Ω) satisfies the mean value property in Ω, that is u(x) = (ωnRn)−1

∫
BR(x)

u

whenever BR(x) ⊆ Ω then u is harmonic in Ω.

2. If u ∈ L1(Ω) and for a.e. x ∈ Ω and a.e. R ∈ (0, dist(x, ∂Ω)) we have u(x) = (ωnRn)−1
∫
BR(x)

u

whenever BR(x) ⊆ Ω then u is harmonic in Ω.

J The case u ∈ C2(Ω) is easy; if ∆u(x) 6= 0 for some x ∈ Ω, then there exists R > 0 such that
∆u 6= 0 in BR(x), with BR(x) ⊆ Ω. This violates the mean value property. If now u is only in
L1(Ω), then we observe that if

uR(x) = (ηR ∗ u)(x) =
∫

Rn
ηR(x− y)u(y)dy =

∫
BR(x)

ηR(x− y)u(y)dy,
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then uR is smooth (see Step 1 in the proof of Theorem 2.12) and if BR(x) ⊆ Ω then

uR(x) =
1
Rn

∫ R

0

∫
∂Bρ(x)

η
( ρ
R

)
u(y)dS(y)dρ

=
1
Rd

∫ R

0

η
( ρ
R

)
nωnρ

n−1

(
1

nωnρn−1

∫
Bρ(x)

u(y)dS(y)

)
dρ

= u(x)
∫ 1

0

η(z)nωnzn−1dz

= u(x)
∫
∂B1(0)

η(|y|)dy

= u(x).

Hence u is infinitely differentiable a.e.. Moreover since a.e. for Bρ(x) ⊆ Ω we then have∫
Bρ(x)

∆u(y)dy = nωnρ
n−1 ∂

∂ρ

(
1

nωnρn−1

∫
∂Bρ(x)

u(y)dy

)

= nωnρ
n−1 ∂

∂ρ
(u(x))

= 0,

by the mean value property, it follows u is a.e. harmonic, too. I

2.16 Corollary
The limit of a uniformly convergent sequence of harmonic functions is harmonic.

J One simply notes that the uniform limit of functions satisfying the mean value property also
satisfies the mean value property (the integral commutes with the limit) and applies the previous
Proposition. I

2.17 Fundamental solutions
Laplace’s equation is rotation invariant and thus it is desirable to look for radial solutions to
Laplace’s equation, that is, we seek harmonic functions u : Rn → R such that u(x) = Γ(r) for some
function Γ, where r = |x|. Now

∂r

∂xi
=

1
2

(x2
1 + · · ·+ x2

n)−
1
2 · 2xi =

xi
r

and thus Diu = Γ′(r)xir , and

Diiu =
∂

∂xi

(
Γ′(r)

xi
r

)
=

xi
r

∂

∂xi
(Γ′(r)) +

1
r

Γ′(r)

=
xi
r

d

dr

(
∂r

∂xi
· Γ′(r)

)
+

1
r

Γ′(r)

=
xi
r

(
d

dr

(xi
r

)
Γ′(r) +

xi
r

Γ′′(r)
)

=
x2
i

r2
Γ′′(r) +

(
1
r
− x2

i

r3

)
Γ′(t).

Summing over i gives the ODE

Γ′′ +
n− 1
r

Γ′ = 0.
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If Γ′ 6= 0 we observe

log(Γ′)′ =
Γ′′

Γ′
=

1− n
r

,

and hence Γ′(r) = Cr1−n for some constant C. Consequently for r > 0 we have

Γ(r) =

{
C1 log r + C2 n = 2
C1r

2−n + C2 n ≥ 3.

We thus define the fundamental solution to Laplace’s equation to be (for x 6= 0)

Γ(x) =

{
1

2π log |x| n = 2
1

n(n−2)ωn
|x|2−n n ≥ 3.

We often abuse notation and write Γ(|x|). Then for x 6= y, define Γ(x, y) = Γ(x−y). The choice of
constants will become clear soon. Γ(x, y) is harmonic when x 6= y; it has a singularity at x = y.
Observe that although Γ(x, y)→ −∞ as x→ y, Γ remains of class L1, that is∫

BR(y)

|Γ(x, y)|dx <∞ for all R > 0.

2.18 Theorem (Green’s representation formula)
Let Ω be a C1 domain and u ∈ C2

(
Ω̄
)
. Then for y ∈ Ω,

u(y) =
∫
∂Ω

(
u(x)

∂Γ
∂νx

(x, y)− Γ(x, y)
∂u

∂ν
(x)
)
dS(x) +

∫
Ω

Γ(x, y)∆u(x)dx,

where ∂/∂νx indicated that the deriviative is to be taken in the direction of the interior normal
with respect to the variable x.

J Choose ρ > 0 such that Bρ(y) ⊆ Ω. We apply Green’s formula (3) with w(x) = Γ(x, y) and
integrate over Ω\Bρ(y). Noting that Γ is harmonic in Ω\Bρ(y), we have∫

Ω\Bρ(y)

Γ(x, y)∆u(x)dx =
∫
∂Ω

(
Γ(x, y)

∂u

∂ν
(x)− u(x)

∂Γ
∂νx

(x, y)
)
dS(x)

+
∫
∂Bρ(y)

(
Γ(x, y)

∂u

∂ν
(x)− u(x)

∂Γ
∂νx

(x, y)
)
dS(x).

Note that in the secondary boundary integral, ν denotes the exterior normal of Ω\Bρ(y) and hence
the interior normal of Bρ(y). Since u ∈ C2

(
Ω̄
)
, ∆u is bounded. Since Γ is integrable, the left-hand

side tends to ∫
Ω

Γ(x, y)∆(u)dx.

On ∂Bρ(y), we have Γ(x, y) = Γ(ρ). Thus we have∣∣∣∣∣
∫
∂Bρ(y)

Γ(x, y)
∂u

∂ν
(x)dS(x)

∣∣∣∣∣ ≤ Γ(ρ)
∫
∂Bρ(y)

|Du(x) · ν(x)|dS(x)

≤ Γ(ρ)nωnρn−1 sup
Bρ(y)

|Du|.

Thus if n = 2, we have ∣∣∣∣∣
∫
∂Bρ(y)

Γ(x, y)
∂u

∂ν
(x)dS(x)

∣∣∣∣∣ ≤ Cρ log ρ→ 0
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as ρ→ 0, and if n ≥ 3 we have∣∣∣∣∣
∫
∂Bρ(y)

Γ(x, y)
∂u

∂ν
(x)dS(x)

∣∣∣∣∣ ≤ Cρ→ 0

as ρ→ 0.
Next, we observe

∂Γ
∂νx

(x, y) = DΓ(x, y) · ν(x) = DΓ(x, y) · x− y
ρ

,

which for n = 2 gives

∂Γ
∂νx

(x, y) =
1

2π
D(log |x− y|) · x− y

ρ

=
1

2π
(x− y) · (x− y)

ρ3
,

since ∂
∂xi

(log |x− y|) = xi−yi
|x−y|2 .

Next, for n ≥ 3 since we have

∂

∂xi

(
1

n(n− 2)ωn
r2−n

)
=

∂r

∂xi

d

dr

(
1

n(n− 2)ωn
|x− y|2−n

)
=

xi − yi
r2

1
n(n− 2)ωn

(2− n)r1−n,

it follows that
∂Γ
∂νx

(x, y) =
−1
nωn

ρ1−nρ2

ρ2
.

In fact, since 2ω2 = 2π, we have for all n ≥ 2 that

∂Γ
∂νx

(x, y) =
−1

nωnρn−1
.

Thus ∫
∂Bρ(y)

Γ(x, y)
∂u

∂ν
(x)dS(x) =

−1
nωnρn−1

∫
∂Bρ(y)

u(x)dS(x) = −u(y),

by Theorem 2.4.1.
Hence combining all of this we see that as ρ→ 0 on boths sides of∫

Ω\Bρ(y)

Γ(x, y)∆u(x)dx =
∫
∂Ω

(
Γ(x, y)

∂u

∂ν
(x)− u(x)

∂Γ
∂νx

(x, y)
)
dS(x)

+
∫
∂Bρ(y)

(
Γ(x, y)

∂u

∂ν
(x)− u(x)

∂Γ
∂νx

(x, y)
)
dS(x),

we obtain ∫
Ω

Γ(x, y)∆u(x)dx =
∫
∂Ω

(
Γ(x, y)

∂u

∂ν
(x)− u(x)

∂Γ
∂νx

(x, y)
)
dS(x) + u(y),

which is what we wanted. I

2.19 Definition
Let Ω be a C1 domain. A function G(x, y) defined for x, y ∈ Ω̄, x 6= y is call a Green’s function
for Ω if G(x, y) = 0 for x ∈ ∂Ω and h(x, y) := G(x, y) − Γ(x, y) is harmonic for x ∈ Ω (and
thus in particular at the point x = y). Since h(x, y) is harmonic with prescribed boundary values,
Corollary 2.8 forces h(x, y), and thus also G(x, y) to be unique (if it exists).
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2.20 Green’s functions and the representation formula
If a Greens’ function G(x, y) for Ω exists (which it does for Ω a C1 domain, although we do not
prove this) then putting w(x) = h(x, y) in Green’s formula (3) we obtain

−
∫

Ω

(G(x, y)− Γ(x, y)) ∆u(x)dx =
∫
∂Ω

(
u(x)

∂G

∂νx
(x, y)− u(x)

∂Γ
∂νx

(x, y) + Γ(x, y)
∂u

∂ν
(x)
)
dS(x),

and so combining this with Theorem 2.18 we obtain

u(y) =
∫
∂Ω

u(x)
∂G

∂νx
(x, y)dS(x) +

∫
Ω

G(x, y)∆u(x)dx.

Note that this shows in particular this proves:

2.21 Corollary
If u is harmonic on a domain Ω which admits a Greens’ function then u is determined by its values
on ∂Ω.

2.22 The Green’s function of a ball
We wish to the compute the Green’s function of the ball Bρ(0).

Given y ∈ Rn, define

y∗ =

{
ρ2y
|y|2 y 6= 0

∞ y = 0.

Thus y∗ is the point obtained by inversion in ∂Bρ(0). Now define

G(x, y) =

{
Γ(|x− y|)− Γ

(
|y|
ρ |x− y

∗|
)

y 6= 0

Γ(|x|)− Γ(ρ) y = 0.

Then h(x, y) = Γ
(
|y|
ρ |x− y

∗|
)
is harmonic (with respect to x) in Bρ(0), since if y ∈ Bρ(0) then

y∗ /∈ Bρ(0). As y → 0 we have

|y|
ρ
|x− y∗| = |y|

ρ
|
∣∣∣∣x− ρ2y

|y|2

∣∣∣∣→ ρ

and thus G(x, y) is continuous. Finally, the formula

G(x, y) = Γ
((
|x|2 + |y|2 − 2x · y

) 1
2
)
− Γ

((
|x|2|y|2

ρ2
+ ρ2 − 2x · y

) 1
2
)

shows that for x ∈ ∂Bρ(0) (so |x| = ρ) we have G(x, y) = 0. Thus G(x, y) is indeed the Green’s
function for Bρ(0).

We conclude this chapter by quoting the following useful result.

2.23 Theorem (Poisson’s integral formula)
Let g ∈ C0(∂Bρ(0)). Then the function u defined by

u(y) :=

{
ρ2−|y|2
nωnρ

∫
∂Bρ(0)

g(x)
|x−y|n dS(x) y ∈ Bρ(0)

g(y) y ∈ ∂Bρ(0),

is harmonic (and hence smooth, by Weyl’s Lemma (Theorem 2.12) in Bρ(0) and continuous on
Bρ(0).

This allows us to explicitly solve the Dirichlet problem for the Laplacian on a ball; we shall use
this a lot in the sequel.
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3 Perron’s method

3.1 Definition
Let Ω be a domain and v ∈ C0(Ω). We say that v is subharmonic if for every subdomain O ⊂⊂ Ω
and for every harmonic function u : O → R that is in addition continuous on O such that v ≤ u on
∂O we also have v ≤ u on O. We will often call the ‘old’ definition classically subharmonic from
now on, that is, u ∈ C2 (Ω) is classically subharmonic if ∆u ≥ 0. We also define superharmonic
continuous functions by reversing all the inequalities.

3.2 Proposition
Let Ω ⊆ Rn be a bounded domain. A function v ∈ C0(Ω) is subharmonic if and only if for every
ball Bρ(y) ⊆ Ω we have

v(y) ≤ 1
nωnρn−1

∫
∂Bρ(y)

v(x)dS(x),

or equivalently

v(y) ≤ 1
nωnρn

∫
Bρ(y)

v(x)dx.

J If v is subharmonic, then given Bρ(y) ⊆ Ω, by the Poisson integral formula (Theorem 2.23)
there exists a harmonic function u : Bρ(y) → R such that u = v on ∂Bρ(y). Then since v = u on
∂Bρ(y) we have

1
nωnρn−1

∫
∂Bρ(y)

v(x)dS(x) =
1

nωnρn−1

∫
∂Bρ(y)

u(x)dS(x).

Moreover since v is subharmonic we have

v(y) ≤ u(y) =
1

nωnρn−1

∫
∂Bρ(y)

u(x)dS(x) =
1

nωnρn−1

∫
∂Bρ(y)

v(x)dS(x).

For the converse, we note that the proof of the strong maximum principle for harmonic functions
(Corollary 2.6) used no properties of harmonic functions apart from the mean-value properties
(Theorem 2.4). Hence if v satisfies the hypotheses, and u is harmonic such that v ≤ u on ∂Bρ(y)
then v − u satisfies the strong maximum principle, and hence v ≤ u on Bρ(y). I

3.3 Lemma (Properties of subharmonic functions)
1. For u ∈ C2(Ω) , we have u subharmonic if and only if u is classically subharmonic, that is,

∆u ≥ 0 on Ω. Thus the new definition is a genuine enlargement of the class of (classically)
subharmonic functions.

2. (Strong maximum prinicple for subharmonic functions) If v is subharmonic in Ω
and there exists x0 ∈ Ω such that v(x0) = supΩ v(x) then v is constant. In particular, if
v ∈ C0(Ω̄) then v(x) ≤ max∂Ω v(y) for all x ∈ Ω.

3. (Harmonic replacements) If v ∈ C0
(
Ω̄
)
is subharmonic and Bρ(y) ⊂⊂ Ω then the har-

monic replacement V of v, defined by

V (x) :=

{
v(x) x ∈ Ω\Bρ(y),
ρ2−|x−y|2
nωnρ

∫
∂Bρ(y)

v(x)
|z−x|n dS(z) x ∈ Bρ(y),

is subharmonic in Ω and harmonic in Bρ(y).

4. If v1, . . . , vn are subharmonic then so is v defined by v(x) := maxi{vi(x)}.
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J To prove 1, first suppose u ∈ C2(Ω) is classically subharmonic. Suppose Bρ(y) ⊆ Ω. Choose
0 < r < ρ. Then from the proof of Theorem 2.4.1 we have

0 ≤ 1
nωnrn−1

∫
Br(y)

∆u(x)dx =
∂

∂r

(
1

nωnrn−1

∫
∂Br(y)

u(x)dS(x)

)
= φ′(r),

and integrating this gives φ(r) ≤ φ(ρ). Letting r → 0, we have φ(r)→ u(y) and thus

u(y) ≤ φ(ρ) =
1

nωnρn−1

∫
∂Bρ(y)

u(x)dS(x),

which verifies the hypotheses of Proposition 3.2. Hence u is subharmonic. For the converse, suppose
u ∈ C2 (Ω) is subharmonic but ∆u(y) < 0 for some y ∈ Ω. Then as u ∈ C2(Ω), we can find a ball
Bρ(y) ⊆ Ω such that ∆u(x) < 0 for x ∈ Bρ(y). Applying the first part of the proof to −u, we
conclude

u(y) >
1

nωnρn−1

∫
∂Bρ(y)

u(x)dS(x),

which contradicts the strong maximum principle (Corollary 2.6).
Next, 2 is immmediate from Proposition 3.2. To prove 3, first observe that v ≤ V as v is

subharmonic. Let O ⊂⊂ Ω, and u harmonic on O and continuous on Ō, with V ≤ u on ∂O.
Then also v ≤ u on ∂O, and hence v ≤ u on O. Thus V ≤ u on O\Bρ(y). Hence V ≤ u on
O ∩ ∂Bρ(y). Since V is harmonic (and thus in particular, subharmonic) on O ∩ Bρ(y), we have
V ≤ u on O ∩Bρ(y). Hence V ≤ u on O, which shows V is subharmonic.

Finally, to prove 4, let O ⊂⊂ Ω, u harmonic on O and continuous on Ō, and v ≤ u on ∂O.
Then for all i, vi ≤ u on ∂O, and hence vi ≤ u on O, and thus the same is true of v. I

The next result is the main one of this chapter, and it will take the rest of the chapter in order
to prove it.

3.4 Theorem (Perron’s Method)
Let Ω ⊆ Rn be a C2 domain (the result still holds if we do not assume such strong boundary
regularity on Ω, but the proof is harder). Let g ∈ C0(∂Ω). Then the Dirichlet problem for the
Laplacian is solvable in Ω, that is we can solve

∆u = 0 in Ω, u = g on ∂Ω.

The proof of Theorem 3.4 is in two stages. The first is based on the following definition.

3.5 Definition
A subharmonic function v ∈ C0

(
Ω̄
)
is called a subfunction with respect to g if v ≤ g on ∂Ω. Let

Sg be the set of all subfunctions with respect to g. Thus Sg is the set of all subsolutions to the
problem in hand.

3.6 Proposition
Define

u(x) := sup
v∈Sg

v(x).

Then u is harmonic on Ω.

J First we check u is well defined. We must show that Sg is non-empty, and that elements of
Sg are uniformly bounded. Choose 0 < c < inf∂Ω g ≤ sup∂Ω g < C. Then the constant function c
lies in Sg, and by the strong maximum principle (Lemma 3.3.2), if v ∈ Sg then v ≤ C.

Now let y ∈ Ω be arbitrary. By definition of u(y), there exists a sequence {vn} of members of
Sg such that vn(y) → u(y) from below. Moreover, replacing vn by max{v0, vn} (valid by Lemma
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3.3.4) we may assume without loss of generality that the {vn} are bounded below. Pick R > 0 such
that B2R(y) ⊆ Ω. Now consider the sequence {Vn}, where Vn is the harmonic replacement of vn
in B2R(y). Note that the (Vn) are bounded uniformly above and below in BR(y) by the maximum
(and the corresponding minimum - harmonic functions are both subharmonic and superharmonic)
principle. Now by Proposition 2.13.2 we have gradient bounds on the Vn; specifically we have
supn∈N |DVn| ≤ C. Then by the mean-value theorem, for any n and x, z ∈ BR(y) we have
|Vn(x) − Vm(z)| ≤ C|x − z| and hence the sequence {Vn} is equicontinuous. Thus by the Arzela-
Ascoli theorem, passing to a subseqence if neccesary, we may assume that the Vn converge uniformly
to a function V on BR(y). By Corollary 2.16, V is harmonic. The claim now is that V = u.

First, since Vn ∈ Sg by Lemma 3.3.1, we have vn ≤ Vn ≤ u by the maximum priniciple (since
Vn = vn on ∂BR(y) and hence Vn ≤ vn on BR(y) definition of u. But then

V (y) = lim
n→∞

Vn(y) ≥ lim
n→∞

vn(y) = u(y) ≥ V (y).

Note also by definition we have V ≤ u on BR(y) as the same is true of all the (Vn). We
thus have V ≤ u on BR(y) and V (y) = u(y). We will now show that V = u on BR(y). Indeed,
suppose V (z) < u(z) for some z ∈ BR(y). Then by assumption we can find w ∈ Sg such that
V (z) < w(z) ≤ u(z). Now define wn = max{w, Vn}, and then let Wn be the harmonic replacement
of wn in B2R(y). By the reasoning above, passing to a subsequence if necessary we may assume
that the (Wn) converge uniformly to some harmonic function W on BR(y).

Then since vn ≤ wn and wn ∈ Sg, the maximum principle implies V ≤ W ≤ u on BR(y).
But since W (y) ≤ u(y) = V (y), by applying the strong maximum prinicple for harmonic functions
(Corollary 2.6) toW−V we conclude thatW−V has an interior maximum and hence is a constant,
which is W (y)− V (y) = 0. The contradiction is then obtained, as

W (z) = lim
n→∞

Wn(z) = lim
n→∞

(max{w(z), Vn(z)) ≥ w(z) > V (z) = W (z).

This completes the proof of the proposition. I

The second stage of the proof of Perron’s method (Theorem 3.4) requires the following defini-
tion.

3.7 Definition
Let Ω ⊆ Rd be a bounded domain. Let ξ ∈ ∂Ω. A function β ∈ C0

(
Ω̄
)
is called a barrier at ξ

with respect to Ω if:

1. β > 0 in Ω̄\{ξ} and β(ξ) = 0.

2. β is superharmonic in Ω.

ξ ∈ ∂Ω is called regular if there exists a barrier β at ξ with respect to ∂Ω.

3.8 Proposition
Let Ω ⊆ Rn be a bounded domain. The Dirichlet problem

∆u = 0 in Ω, u = g on ∂Ω,

is solvable for all continuous g ∈ C0(∂Ω) if and only if every point ξ ∈ ∂Ω is regular.

First the easy direction. If it is solvable for all continuous g, given ξ ∈ ∂Ω, let g(x) = |x − ξ|.
Then the solution u for that g is a barrier at ξ with respect to Ω, since u(ξ) = g(ξ) = 0, and since
min∂Ω g(x) = 0, by the stong maximum prinicple, u > 0. Hence ξ is regular.

For the converse, we will show that if ξ ∈ ∂Ω is regular then

lim
x∈Ω→ξ

u(x) = g(ξ).
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Since by Proposition 3.2 we know u to be harmonic in Ω, it follows that u is then the desired
solution.

So let ξ ∈ ∂Ω be regular and β a barrier at ξ with respect to Ω. Let M := max∂Ω |g(x)|.
Continuity of g at ξ implies for every ε > 0 there exists δ > 0 and a constant C = C(ε) such that

|g(x)− g(ξ)| < ε for |x− ξ| < δ,

Cβ(x) ≥ 2M for |x− ξ| ≥ δ.

Now define
s+(x) = g(ξ) + ε+ Cβ(x),

s−(x) = g(ξ)− ε− Cβ(x).

Then s+ is superharmonic and s− is subharmonic in Ω. By choice of C, δ we have s− ≤ g ≤ s+

in ∂Ω. Thus s− is a subsolution and s+ is a supersolution. Thus s− ≤ u in Ω as s− ∈ Sg, and
moreover if v ∈ Sg then by the maximum principle we have v ≤ s+ in Ω. Taking the supremum
over such v, we obtain u ≤ s+ in Ω. Hence for all x ∈ Ω, we have

|u(x)− g(ξ)| ≤ ε+ Cβ(x).

Since limx→ξ β(x) = 0, the result follows. I

We now give a sufficient condition for every point of the boundary of a domain Ω to be regular.

3.9 Definition
A domain Ω ⊆ Rn satisfies an exterior sphere condition at ξ ∈ ∂Ω if there exists y ∈ Rn and
ρ > 0 such that Bρ(y) ∩ Ω = {ξ}.

3.10 Lemma
If Ω satisfies an exterior sphere condition at ξ, then ∂Ω is regular at ξ.

J Define

β(x) :=

{
ρ2−n − |x− y|2−n n ≥ 3
log |x−y|ρ n = 2.

Then β(ξ) = 0, and β is harmonic in Rn\{y}, and hence harmonic in Ω. Since for x ∈ Ω\{ξ}, we
have |x− y| > ρ, and hence β(x) > 0 for all x ∈ Ω\{ξ}. I

Finally, to complete the proof of Perron’s method we show that C2 domains satisfy an exterior
sphere condition at every point.

3.11 Lemma
If Ω ⊆ Rn is a C2 domain then Ω satisfies an exterior sphere condition at every point ξ ∈ ∂Ω.

J Let ξ ∈ ∂Ω. Then there exists R > 0 and a C2 function f : Rn−1 → R such that
after relabelling and reorientating the coordinates if necessary, Ω ∩ BR(ξ) = {x ∈ BR(ξ)|xn <
f(x1, . . . , xn)} (and so ∂Ω ∩ BR(ξ) = {x ∈ BR(ξ) | xn = f(x1, . . . , xn)}). Furthermore we may
assume that ξ is the origin in this coordinate system (so f(0) = 0), and the tangent plane to ∂Ω
at ξ is the plane {xn = 0}. If ν is the outward unit normal to Ω at ξ, so νn is positive, and in
our coordinate system ν = (0, 0, . . . , 0, 1). Now set y = ξ + δν, so in our coordinate system y is
the point (0, 0, . . . , 0, δ). We claim that for suitably small δ, the ball Bδ(y) intersects Ω only at
ξ. More precisely, we will prove that x ∈ Bδ(y) only if x ∈ BR(ξ) and xn > f(x1, . . . , xn), which
suffices.
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By Taylor’s theorem,

f(x1, . . . , xn−1) = f(0) +
n−1∑
i=1

Dif(0)xi +O(x2
1 + · · ·+ x2

n−1) = 0 +O(x2
1, . . . , x

2
n−1),

as all the first-order deriviatives must vanish at the origin since the tangent plane to ∂Ω at the
origin is the plane {xn = 0}. Hence there exists a constant M ≥ 0 such that

|f(x1, . . . , xn−1)| ≤M(x2
1 + · · ·+ x2

n−1)

for x ∈ BR(ξ). Now if x ∈ Bδ(y) then

|x− y|2 = x2
1 + · · ·+ x2

n − 2δxn + δ2 < δ2,

that is x ∈ Bδ(y) if and only if |x|2 < 2δxn. Now choose δ ≤ min{M2 ,
ε
2}. Then if x ∈ Bδ(y) we

have
f(x1, . . . , xn−1) ≤M(x2

1 + · · ·+ x2
n−1) ≤M |x|2 < 2Mδxn ≤ xn,

which completes the proof. I

With this, Perron’s method (Theorem 3.4) is of course proved.

4 General second order linear elliptic operators

4.1 Definition
We now proceed to study general second order linear operators L of the form

Lu(x) =
n∑

i,j=1

aij(x)Diju(x) +
n∑
j=1

bj(x)Dju(x) + c(x)u(x), (6)

for x ∈ Ω ⊆ Rn, say. In general we will omit the summation sign and write

L = aijDij + bjDj + c.

We will generally assume u is C2, and hence by setting a′ij(x) = aij(x)+aji(x)
2 we may assume the

matrix valued function A(x) = (aij(x)) is symmetric (this works as Diju = Djiu).
We say L is elliptic if A(x) is positive definite for all x ∈ Ω. By Rayleigh’s quotient this is

equivalent to the smallest eigenvalues λmin(x) satisfying

λmin(x) = min
|ξ|6=0

aij(x)ξiξj
|ξ|2

> 0

(here we are summing over i and j).
We say that L is uniformly elliptic if there exists a positive λ > 0 such that for all x ∈ Ω

and all ξ ∈ Rn,
aij(x)ξiξj ≥ λ|ξ|2.

We call λ the constant of uniform ellipticity.

4.2 Example
We cannot hope for a maximum principle or a minimum principle for every elliptic operator of the
form in (6).

Indeed, if Ω = (0, π) ⊆ R then
u(x) = sinx

satisfies the Dirichlet problem

∆u+ u = 0 in Ω, u = 0 on ∂Ω.
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However u has an interior maximum at π/2, and if u(x) = −sin x then it has an interior minimum
at π/2.

Similarly, taking Ω = (0, π)× (0, π) ⊆ R2, u(x, y) = sinx sin y solves the Dirichlet problem for
the Laplacian with zero boundary values, but has an interior maximum.

However, if λ ≤ 0, the Dirichlet problem

∆u+ λu = 0 in Ω, u = 0 on ∂Ω

has no non-zero solutions, as multiplying by u yields u∆u+ λu2 = 0, and since u vanishes on the
boundary, when we integrate by parts the boundary terms disappear to give

0 =
∫

Ω

u∆u+ λu2 =
∫

Ω

|Du|2 − λ
∫

Ω

u2,

which forces u = 0.

This is not surprising, since we have:

4.3 Theorem (Weak maximum principle for uniformly elliptic operators)
Let Ω ⊆ Rn be a bounded domain, and L = aijDij + bjDj + c be a uniformly elliptic operator
with constant of uniform ellipticity λ > 0, and suppose that aij(x), bj(x) and c(x) are all bounded
functions, and (without loss of generality) the matrix A(x) = [aij(x)] is symmetric.

Suppose u ∈ C2(Ω) ∩ C0
(
Ω̄
)
is a subsolution, that is, Lu ≥ 0 in Ω.

Then if c(x) ≤ 0 for all x ∈ Ω we have

sup
Ω
u ≤ max

∂Ω
u+,

where u+(x) := max{u(x), 0}. If c = 0 then we have

sup
Ω
u = max

∂Ω
u.

J First we prove the special case where Lu > 0 in Ω. Suppose c(x) ≤ 0, and suppose x0 is
an interior non-negative maximum for u. Then Du(x0) = 0 and the Hessian matrix D2u(x0) is
negative semi-definite. Since the matrix A(x0) = [aij(x0)] is positive definite, it follows that the
matrix product A(x0) ·D2u(x0) is negative semi-definite, and thus has a non-positive trace. But

trace(A(x0) ·D2u(x0)) = aij(x0)Dij(x0) ≥ Lu(x0) > 0;

this is a contradiction. Thus u has no non-negative interior maxima, and thus

sup
Ω
u ≤ max

∂Ω
u+.

If c = 0, then we do non need to assume x0 is a non-negative maximum of u for the above proof
to go through, and hence we obtain

sup
Ω
u = max

∂Ω
u

For the general case, set v(x) = u(x) + εeγx1 (where x1 is the first coordinate of x), and γ > 0
is a constant that we will choose later.

Then Lv(x) = Lu(x) + εL(eγx1(x)). Moreover,

Leγx1(x) = eγx1(a11(x)γ2 + γb1(x) + c(x)).

Now setting ξ = (1, 0, . . . , 0) we see that a11(x) ≥ λ, and hence Leγx1(x) ≥ eγx1(λγ2 + γb1(x) +
c(x)). Since b1 and c are bounded, we may choose γ large enough such that Leγx1(x) > 0 for all
x ∈ Ω (note that γ only depends on ‖b1‖L∞(Ω) , ‖c‖L∞(Ω) and λ). Thus if c(x) ≤ 0, we obtain

sup
Ω
v ≤ max

∂Ω
v+,
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and hence
sup

Ω
u ≤ sup

Ω
v ≤ max

∂Ω
v+ ≤ max

∂Ω
u+ + εmax

∂Ω
eγx1 .

But ε was arbitrary, and thus the result follows by letting ε→ 0. If c = 0, then we similarly obtain

sup
Ω
u ≤ sup

Ω
v = max

∂Ω
v = max

∂Ω
u+ εmax

∂Ω
eγx1 ,

and again letting ε→ 0 completes the proof. I

4.4 Corollary
In the above situation, if instead u ∈ C2(Ω) ∩ C0(Ω) is a supersolution, that is, Lu ≤ 0 in Ω
then if c(x) ≤ 0 for all x ∈ Ω we have

inf
Ω
u ≥ min

∂Ω
u−,

where u−(x) := min{u(x), 0}. If c = 0 then we have

inf
Ω
u = min

∂Ω
u.

J Apply Theorem 4.3 to −u. I

4.5 Corollary
If u ∈ C2(Ω) ∩ C0

(
Ω̄
)
is a solution, that is Lu = 0 in Ω then if c(x) ≤ 0 for all x ∈ Ω then

sup
Ω
|u| = max

∂Ω
|u|.

J By Theorem 4.3 for any x ∈ Ω, u(x) ≤ max∂Ω u
+ ≤ max∂Ω |u|, and also −u(x) ≤

max∂Ω u
+ ≤ max∂Ω |u|. Hence |u(x)| ≤ max∂Ω |u|. Taking the supremum over x ∈ Ω gives

the result. I

4.6 Example
These maximum principles are specific to second order equations. For example, taking Ω = (0, 1)
and defining

Lu =
∂4u

∂x4
,

we find that if we insist on boundary conditions u(0) = 0,u(1) = −1 then u(x) = 3x2 − 4x3 has a
stricitly positive maximum at x = 1/2.

The next result is another ‘maximum principle’ style result, this time taking advantage of the
shape of the domain Ω.

4.7 Proposition
Assume Lu = aijDiju+bjDju+cu is unifomly elliptic, with uniform ellipticity constant λ > 0, and
assume aij , bj and c are bounded functions Ω→ R, where Ω ⊆ Rn is a bounded domain contained
in a strip

{x ∈ Rn | |xi| ≤ d}.

Suppose u ∈ C2(Ω) ∩ C0
(
Ω̄
)
is a subsolution to Lu = f , where f : Ω→ R is a bounded function.

Let

β := sup
Ω

d|b1|+ d2|c|
λ

,

and set

C :=

(
e2(1+β) − 1

)
d2

λ
.
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Then if c ≤ 0 in Ω we have
sup

Ω
u ≤ max

∂Ω
u+ + C sup

Ω
|f |,

and if c ≡ 0 in Ω then we have

sup
Ω
|u| ≤ max

∂Ω
|u|+ C sup

Ω
|f |.

J To simplify the problem, we rescale. Set ãij(x) = λ−1aij(dx),b̃j(x) = λ−1dbj(dx), c̃(x) =
λ−1d2c(dx) and f̃(x) = λ−1d2f(x). Set Ω̃ = {x ∈ Rn | dx ∈ Ω}, and define ũ(x) = u(dx). Then
if L̃(·) = ãijDij(·) + b̃j(·) + c̃(·) we see that Lu ≥ f in Ω if and only if L̃ũ ≥ f̃ in Ω̃. Moreover,
Ω̃ ⊆ {x ∈ Rn | |x1| ≤ 1} and the uniform ellipticity constant of (ãij) is 1. In other words, without
loss of generality we may assume that d = λ = 1.

Thus we have β = supΩ {|b1(x)|+ |c(x)|} and C = e2(1+β) − 1. Now if M = supΩ |f |, set

w(x) = M
(
eγ(1+x1) − 1

)
,

where γ > 0 is some positive constant to be chosen later.
Observe

Lw =
(

sup
Ω
|f |
)
L
(
eγ(1+x1) − 1

)
= M

(
eγ(1+x1)

(
γ2a11(x) + γb1(x) + c(x)

)
− c(x)

)
,

which, for x ∈ Ω (so |x1| ≤ 1) gives

Lw ≥M
(
γ2 − |b1|γ

)
,

where we have used the fact that µ = 1, and that |a11| ≤ µ (cf. (9.4)). Now if we choose γ = 1 +β
we have Lw ≥M .

Now set v(x) = u(x)+w(x). Then Lv ≥ 0, and hence by the weak maximum principle (Theorem
4.3) if c ≤ 0 we have

sup
Ω
v ≤ max

∂Ω
v+,

and hence

sup
Ω
u ≤ sup

Ω
v ≤ max

∂Ω
v+ = max

∂Ω
u+ + max

∂Ω
w+ = max

∂Ω
u+ +M

(
e2(1+β) − 1

)
,

as required. Finally if c ≡ 0, then Theorem 4.3 gives us

sup
Ω
|v| = max

∂Ω
|v|,

and hence

sup
Ω
|u| ≤ sup

Ω
|v| = max

∂Ω
|v| ≤ max

∂Ω
|u|+ max

∂Ω
|w| = max

∂Ω
|u|+M

(
e2(1+β) − 1

)
.

This completes the proof. I

We now wish to prove a form of the strong maximum principle for operators of the form (6).

4.8 Theorem (Hopf’s strong maximum principle)
Let Ω ⊆ Rn be a domain (not necessarily bounded), and Lu = aijDiju+bju+cu a uniformly elliptic
operator in Ω with aij , bj and c bounded functions. Suppose Lu ≥ 0 in Ω, with u ∈ C2(Ω)∩C0

(
Ω̄
)
.

Then if c ≤ 0, u cannot attain a non-negative maximum in Ω unless it is constant. If c ≡ 0, u
cannot attain a maximum in Ω unless it is constant. If x0 is an interior maximum or an interior
minimum such that u(x0) = 0 then u ≡ 0 irrespective of the sign of c.

In order to prove this we need the following important result.
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4.9 Proposition (Hopf’s boundary point lemma)

Let u ∈ C2(BR(y)) ∩ C0
(
BR(y)

)
and L as in the statement of Theorem 4.8. Suppose Lu ≥ 0,

and suppose there exists x0 ∈ ∂BR(y) such that u(x) < u(x0) for all x ∈ BR(y)\{x0}. Then if any
of the three following conditions hold:

1. c ≤ 0 in BR(y) and u(x0) ≥ 0,

2. c ≡ 0 in BR(y),

3. u(x0) = 0,

then
lim inf
x→x0

u(x0)− u(x)
|x− x0|

> 0,

where the angle between the vector x− x0 and the normal at x0 is less than π
2 − δ for some fixed

δ > 0.
In particular if u ∈ C2 (BR(y)) ∩ C1

(
BR(y)

)
then if r(x) = |x − y| is an exterior normal to

∂BR(y) then

∂u

∂r
(x0) > 0.

J For 0 < ρ < R, on the annular region BR(y)\Bρ(y) we consider v(x) := e−γ|x−y|
2 − e−γR2

,
we have

Div(x) = −2γ(xi − yi)e−γ|x−y|
2
,

and
Dijv(x) = (4γ2(xi − yi)(xj − yj)− 2γδij)e−|x−y|

2
,

and thus

Lv(x) =

4γ2
n∑

i,j=1

aij(x)(xi − yi)(xj − yj)− 2γ
∑

(ni=1aii(x) + bi(x)(xi − yi))

 e−γ|x−y|
2

+c(x)
(
e−γ|x−y|

2
− e−γR

2
)
.

For sufficiently large γ, because of the assumed boundedness of the coefficients of L and the
ellipiticity condition, we have Lv > 0 in the annulus BR(y)\Bρ(y). By assumption u(x)−u(x0) < 0
in BR(y) and thus by compactness there exists ε > 0 such that w(x) = u(x) − u(x0) + εv(x) < 0
for x ∈ ∂Bρ(y). Since v = 0 on ∂BR(y), this holds on ∂BR(y), too.

On the other hand,
Lw(x) ≥ −Lu(x0)(x) = −c(x)u(x0) ≥ 0

(this holds if either of the three possible hypotheses hold).
Thus by the weak maximum principle, it follows that w(x) ≤ 0 for all x ∈ BR(y)\Bρ(y).

Provided the deriviative exists, we therfore have

∂w

∂r
(x0) ≥ 0,

and hence,
∂u

∂r
(x0) ≥ −ε∂v

∂r
(x0) = ε

(
2γRe−γR

2
)
> 0.

In any case

lim inf
x→x0

u(x0)− u(x)
|x− x0|

> 0,

with the requirement stated on the angle between x − x0 and the normal to x0 clearly being
satisfied. I
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We now prove Theorem 4.8.

J (Proof fo Theorem 4.8) Assume u has a maximum M in Ω (if c 6= 0 and M 6= 0,
we must in addition assume M ≥ 0). Assume for contradiction that u is not constant. Then
Σ := {x ∈ Ω | u(x) < M} is open and nonempty, and moreover ∂Σ ∩ Ω 6= ∅. Choose y ∈ Σ such
that y is strictly closer to ∂Σ than ∂Ω (if Ω is not bounded this restriction is not necessary), and
choose R maximal such that BR(y) ⊆ Σ. If #

{
BR(y) ∩ ∂Σ

}
> 1, by slightly moving y towards

one of the points of intersection, and shrinking R suitably, we may assume BR(y) ∩ ∂Σ = {x0},
say, Then we have u(x0) = M for x0 ∈ ∂BR(y), and u(x) < u(x0) for x ∈ BR(y). By Hopf’s
boundary point lemma (Proposition 4.9), Du(x0) 6= 0, which is a contradiction as x0 is assumed
to be a local interior maximum. I

5 Sobolev spaces

5.1 Motivation for Sobolev spaces
Let us return to to the Dirichlet problem for the Laplacian: let Ω ⊆ Rn be a C1 domain, and
g ∈ C2

(
Ω̄
)
. We wish to solve ∆u = 0 in Ω, u = g on ∂Ω. By Section 2.1, finding a C2 solution u

is equivalent to finding a minimizer of F(·) =
∫

Ω
|D · |2 over the class

C := {v ∈ C2(Ω) | v = g on ∂Ω}

(note C 6= ∅, as g ∈ C). In other words, we need u ∈ C such that

F(u) = inf
v∈C
F(u).

We know by definition of the infimum that there exists a minimising sequence {vj} ∈ C such
that

F(vj)→ inf
v∈C
F(v).

What we want is some u ∈ C such that there exists a subsequence {vj′} with vj′ → u in some
sense, such that under this convergence the functional F is lower semi-continuous, that is,

F( lim
j′→∞

vj′) ≤ lim
j′→∞

F(vj′)

(since the right-hand limit is assumed to be the infimum, we don’t need continuity - lower semi-
continuity is enough).

Unfortunately this will not necessarily hold in C; we need a larger space.

5.2 The completion S
Define an inner product on C by

〈u, v〉 :=
∫

Ω

Du ·Dv.

Under the associated norm ‖·‖, {vj} is Cauchy, as

‖vj‖2 =
∫

Ω

|Dvj |2 = F(vj),

and thus since {F (vj)} is convergent, it is in particular Cauchy. The natural thing to do therfore
is to let S be the completion of C with respect to this norm (C is not already complete under this
norm). Note S is then a Hilbert space.
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5.3 Solving the Dirichlet problem for Poisson’s equation
Now in the notation above set f = −∆g and w = u − g. Then w solves ∆w = f in Ω, w = 0 on
∂Ω if and only if u solves ∆u = 0 in Ω, u = g on ∂Ω. Thus let

C0 :=
{
v ∈ C2 (Ω) | v = 0 on ∂Ω

}
with completion S0. Consider the bounded linear functional L on C0 defined by

L(ϕ) = −
∫

Ω

fϕ.

Observe that if w solves ∆w = f in Ω, w = 0 on ∂Ω, then for any ϕ ∈ C0,∫
Ω

Dw ·Dϕ = −
∫

Ω

∆wϕ = −
∫

Ω

fϕ = L(ϕ),

as the boundary terms vanish since ϕ,w = 0 on ∂Ω. In other words,

〈w,ϕ〉 = L(ϕ).

Now by the Hahn-Banach theorem, L extends to a bounded linear functional L̃ on S, and since S
is a Hilbert space, by the Riesz representation theorem, there exists some w̃ ∈ S such that

L̃(ϕ) = 〈w̃, ϕ〉

for all ϕ ∈ S. From what we have shown, this w̃ is a generalised solution to the problem. Thus
by working in S we can indeed find a possible solution. The challenge is then to try and show that
actually w̃ ∈ C, and hence is the actual solution we are looking for. This is a tricky problem, and
depends on f and Ω.

The problem with this approach is that in order to prove regularity results on S, we need an
explicit construction for it; the abstract completion is not good enough. This leads us to define
Sobolev spaces, which will turn out that these spaces are the completions we are referring to
above (see Chapter 7). We will spend the rest of this chapter and the next on general Sobolev
space theory, returning to the study of PDE’s in Chapter 7.

5.4 Definition
Suppose u ∈ L1

loc(Ω) and α is any multiindex. A function vα ∈ L1
loc(Ω) is called the αth weak

derivative of u if for any ϕ ∈ C∞c (Ω) we have∫
Ω

vαϕ = (−1)|α|
∫

Ω

uDαϕ.

We write vα = Dαu; for this definition to make sense we need to know weak derivatives are
unique if they exist.

5.5 Lemma
A αth weak derivative of u, if it exists, is uniquely defined up to a set of measure zero.

J Assume v, w ∈ L1
loc(Ω) satisfy∫

Ω

uDαϕ = (−1)|α|
∫

Ω

vϕ = (−1)|α|
∫

Ω

wϕ

for all ϕ ∈ C∞c (Ω). Then
∫

Ω
(v − w)ϕ = 0 for all ϕ ∈ C∞c (Ω), and hence v(x) − w(x) = 0 for a.e.

x ∈ Ω. I



5 Sobolev spaces 28

5.6 Definition
A function u ∈ L1

loc(Ω) is called k times weakly differentiable if all its weak derivatives exist
for |α| ≤ k. Let W k(Ω) denote the set of k times weakly differentiable functions:

W k(Ω) := {u ∈ L1
loc(Ω)|u is k times weakly differentiable}.

Observe that clearly Ck(Ω) ⊆W k(Ω).

5.7 Examples
1. The function u : R→ R, u(x) = |x| is weakly differentiable, with

Du(x) =

{
1 x ≥ 0
−1 x < 0.

2. The function u : (−1, 1)→ R defined by

u(x) =

{
1 0 ≤ x ≤ 1
0 −1 ≤ x < 0

is not weakly differentiable, since for x 6= 0, u is classically differentiable, with Du = 0, and
thus as an L1

loc-function, Du ≡ 0, and hence Lemma 5.5 would forces the weak derivatives of
u to be identically zero. But it is not the case that for every ϕ ∈ C∞c ((−1, 1)) that

0 =
∫ 1

−1

ϕ(x) · 0dx = −
∫ 1

−1

Dϕ(x)u(x) = −
∫ 1

0

Dϕ(x)dx = ϕ(0)

(since ϕ(1) = 0 as ϕ is compactly supported in (−1, 1)).

5.8 Lemma
Let Ω ⊆ Rn be a domain.

1. If u ∈ C0(Ω) and σ > 0. Then the mollification uσ converges uniformly to u as σ → 0 on
any domain O ⊂⊂ Ω.

2. If instead u ∈ Lploc(Ω) (for p <∞) then uσ converges to u in Lploc(Ω), that is, ‖uσ − u‖Lp(O) →
0 as σ → 0 for any domain O ⊂⊂ Ω.

J We have

uσ(x) = σ−n
∫
Bσ(x)

η

(
x− y
σ

)
u(y)dy =

∫
B1(0)

η(z)u(x− σz)dz,

where z = x−y
σ . Thus if O ⊂⊂ Ω and 2σ < dist(Ω′, ∂Ω) then using the fact that∫

B1(0)

η = 1,

we have

sup
O
|u− uσ| ≤ sup

x∈O

∫
B1(0)

η(z)|u(x)− u(x− σz)|dz

≤ sup
x∈O

sup
z∈B1(0)

|u(x)− u(x− σz)|.

Since u is uniformly continuous over the compact set {x ∈ O | dist(x,O) ≤ σ}, uσ tends to u
uniformly on O. This proves 1.
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To prove 2, since η is non-negative, if q = 1− 1/p we have by Hölder’s inequality

|uσ(x)| =

∣∣∣∣∣σ−n
∫
Bσ(x)

η

(
x− y
σ

)
u(y)dy

∣∣∣∣∣
≤

∫
B1(0)

η(z)
1
q

(
η(z)

1
p |u(x− σz)|

)
dz

≤

(∫
B1(0)

η(z)

) 1
q
(∫

B1(0)

η(z)|u(x− σz)|pdz

) 1
p

,

and thus
|uσ(x)|p =

∫
B1(0)

η(z)|u(x− σz)|pdz.

Thus if O ⊂⊂ Ω and 2σ < dist(O, ∂Ω),∫
O
|uσ(x)|pdx ≤

∫
O

∫
B1(0)

η(z)|u(x− σz)|pdzdx,

and by Fubini’s theorem,∫
O

∫
B1(0)

η(z)|u(x− σz)|pdzdx =
∫
B1(0)

η(z)
∫
O
|u(x− σz)|pdxdz

≤
∫
Bσ(O)

|u(x)|pdx,

where Bσ(O) := {x ∈ Ω | dist(x,O) < σ}. Consequently

‖uσ‖Lp(O) ≤ ‖u‖Lp(Bσ(O)) .

Now choose 2δ < dist(O, ∂Ω), ε > 0 and a C0(Ω) function w satisfying

‖u− w‖Lp(O) ≤ ε

(which certainly exists as C0(Ω) is dense in Lp(Ω)). Then

‖u− uσ‖Lp(O) ≤ ‖u− w‖Lp(O) + ‖w − wσ‖Lp(O) + ‖wσ − uσ‖Lp(O) ,

and hence by 1,
lim sup
σ→0

‖u− uσ‖Lp(O) ≤ 2ε.

This completes the proof of 2. I

5.9 Lemma
Suppose u ∈ L1

loc(Ω) and Dαu exists. Then if σ < dist(x,Ω),

Dα(uσ)(x) = (Dαu)σ(x)

(that is, the action of taking weak derivatives commutes with mollification).

J Simply compute:

(Dαu)σ(x) =
∫
Bσ(x)

ησ(x− y)Dαu(y)dy

= (−1)α
∫
Bσ(x)

Dα
y ησ(x− y)u(y)dy,
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where Dα
y ησ(x − y) is the αth derivative of ησ(x − y) as a function of y, where we have used the

fact that ησ ∈ C∞c (Ω). But now by the chain rule

(−1)|α|Dα
xησ(x− y) = Dα

y ησ(x− y),

and thus

(−1)|α|
∫
Bσ(x)

Dα
y ησ(x− y)u(y)dy =

∫
Bσ(x)

Dα
xησ(x− y)u(y)dy

= Dα
x

(∫
Bσ(x)

ησ(x− y)u(y)dy

)
= Dα(uσ)(x). I

5.10 Proposition
Let Ω be a bounded domain. Let u, v ∈ L1

loc(Ω) and α a multiindex. Then v = Dαu if and only
if there exists a sequence {wm} of C∞(Ω) functions converging to u in L1

loc(Ω) whose derivative
Dαwm converge to v in L1

loc(Ω).

J Suppose v = Dαu. By Step 1 from the proof of Theorem 2.12, uσ is smooth. Thus by Lemma
5.8.2 and Lemma 5.9, if we take a sequence {σm} such that σm ↓ 0 and then set wm := uσm , we
have wm → u and Dαum → v.

Conversely, suppose wm → u and Dαwm → v in L1
loc(Ω). Take ϕ ∈ C∞c (Ω). Then ϕ and Dαϕ

are bounded, and hence we may apply the dominated convergence theorem to conclude∫
Ω

uDαϕ = lim
m→∞

∫
Ω

umD
αϕ = − lim

m→∞

∫
Ω

Dαumϕ = −
∫

Ω

vϕ,

and thus by the uniqueness result Lemma 5.5, v = Dαu. I

Note that the converse above actually only required wm ∈ C |α| (Ω).

5.11 Proposition (a chain rule)
Let f ∈ C1(R) such that f ′ ∈ L∞(R). Let Ω ⊆ Rn be a bounded domain and u ∈ W 1(Ω). Then
f ◦ u ∈W 1(Ω) and D(f ◦ u) = f ′(u)Du.

J Choose {um} to be a sequence of smooth functions in Ω such that um → u and Dum → Du
in L1

loc(Ω). It is enough to show that f ◦ um → f ◦ u and f ′ (um) ◦Dum → D (f ◦ u) in L1
loc(Ω)

(since the previous theorem is an ‘if and only if‘ statement). Take O ⊂⊂ Ω. Then since f ′ is
bounded, ∫

O
|f(um)− f(u)| ≤ sup

O
|f ′|

∫
O
|um − u| → 0 as m→∞.

Next,∫
O
|f ′(um)Dum − f ′(u)Du| ≤

∫
O
|f ′(um)||Dum −Du|+

∫
O
|Du||f ′(um)− f ′(u)|

≤ sup
O
|f ′|

∫
O
|Dum −Du|+

∫
O
|Du||f ′(um)− f ′(u)|.

The first integral tends to zero as m tends to infinity. By passing to a subsequence if necessary we
may assume um(x) → u(x) for a.e. x ∈ O. Since f ′ is continuous, f ′(um(x)) → f ′(u(x)) for a.e.
x ∈ O. Since f ′ is bounded, we have |f ′(um) − f ′(u)||Du| ≤ C|Du| ∈ L1(O), and thus we may
apply the dominated convergence theorem to conclude the last integral also tends to zero. This
completes the proof. I
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5.12 Lemma
Let Ω ⊆ Rn be a bounded domain, and u ∈ W 1(Ω). Then u+, u− and |u| are also in W 1(Ω).
Moreover,

Du+(x) =

{
Du(x) x > 0
0 x ≤ 0,

Du−(x) =

{
0 x ≥ 0
Du(x) x < 0,

D|u|(x) =


Du(x) x > 0
0 x = 0
−Du(x) x < 0.

J Set

fε(t) :=

{√
t2 + ε2 − ε t > 0

0 t ≤ 0,

and observe that fε ∈ C1(R) and f ′ε ∈ L∞(R); indeed |f ′ε| ≤ 1 since

f ′ε(t) :=

{
t√

t2+ε2
t > 0

0 t ≤ 0.

Thus Proposition 5.11 is applicable, and we conclude that fε ◦ u ∈ W 1(Ω) and that moreover
for any ϕ ∈ C∞c (Ω) we have∫

Ω

fε(u)Dϕ = −
∫
{x∈Ω|u(x)>0|

ϕ
uDu√
u2 + ε2

,

and thus letting ε ↓ 0 (which is applicable on both sides by the dominated convergence theorem)
we see that ∫

Ω

u+Dϕ =
∫
{x∈Ω | u(x)>0}

ϕDu,

which proves the result for u+. Since u− = −(−u)+ and |u| = u+−u−, the second and third parts
follow immediately from this. I

5.13 Corollary
Let u ∈W 1(Ω). Then Du = 0 a.e. on any set where u is constant.

J Without loss of generality we may assume the constant to be zero. Then the result is
immediate from Lemma 5.12, since Du = Du+ −Du−. I

5.14 Definition
Let Ω ⊆ Rn. Let 1 ≤ p <∞ and k ∈ N. Define the Sobolev space

W k,p(Ω) := {u ∈W k(Ω)|Dαu ∈ Lp(Ω) for all |α| ≤ k}

(note that taking α = (0, . . . , 0) shows that u ∈W k,p(Ω)⇒ u ∈ Lp(Ω)).
Define a norm on W k,p(Ω) by

‖u‖Wk,p(Ω) :=

∑
|α|≤k

∫
Ω

|Dαu|p
 1

p

.



5 Sobolev spaces 32

5.15 Lemma
This is indeed a norm.

J It is clear that ‖λu‖Wk,p(Ω) = |λ| ‖u‖Wk,p(Ω) and that ‖u‖Wk,p(Ω) = 0 if and only if u = 0
a.e., since ‖u‖Wk,p(Ω) ≥ ‖u‖Lp(Ω). Suppose u, v ∈W k,p(Ω). Then by Minkowski’s inequality,

‖u+ v‖Wk,p(Ω) =

∑
|α|≤k

‖Dαu+Dαv‖pLp(Ω)

 1
p

≤

∑
|α|≤k

(
‖Dαu‖Lp(Ω) + ‖Dαv‖Lp(Ω)

)p 1
p

≤

∑
|α|≤k

‖Dαu‖pLp(Ω)

 1
p

+

∑
|α|≤k

‖Dαv‖pLp(Ω)

 1
p

= ‖u‖Wk,p(Ω) + ‖v‖Wk,p(Ω) . I

5.16 Lemma
The norm

‖u‖′Wk,p(Ω) :=
∑
|α|≤k

‖Dαu‖Lp(Ω)

is an equivalent norm to ‖·‖Wk,p(Ω).

J Note that ‖·‖′Wk,p(Ω) is clearly a norm. Since the function f(t) := t1/p is convex, we have
for any non-negative numbers n1, . . . , nm:

(np1 + · · ·+ npm)
1
p = f(np1 + · · ·+ npm) ≤ f(np1) + · · ·+ f(npm) = n1 + · · ·+ nm,

and thus we have ‖u‖Wk,p(Ω) ≤ ‖u‖
′
Wk,p(Ω) for all u ∈ W k,p(Ω). For the reverse inequality, we

observe that there is a function g(m, p) such that there are at most g(m, p) cross terms in the
expansion of (n1 + · · · + nm)p, where each ni is a non-negative number. Since each cross term is
at most nP1 + · · ·+ npm, we obtain the (poor) estimate

(n1 + · · ·+ nm)p ≤ (1 + g(m, p))(np1 + · · ·+ npm),

and this allows us to conclude ‖u‖′Wk,p(Ω) ≤ (1 + g(k, p)) ‖u‖Wk,p(Ω) for all u ∈ W k,p(Ω). The
proof is complete. I

5.17 Definition
We define W k,p

0 (Ω) := C∞c (Ω) to be the closure of C∞c (Ω) under the W k,p(Ω) norm. In general we
have W k,p

0 (Ω)  W k,p(Ω).

5.18 Proposition
Both W k,p(Ω) and W k,p

0 (Ω) are Banach spaces under the W k,p(Ω) norm.

J It is enough to show thatW k,p(Ω) is complete, as (by definition)W k,p
0 (Ω) is a closed subspace

of W k,p(Ω) and thus inherits the completeness properties of W k,p(Ω). Assume {um} ∈ W k,p(Ω)
is Cauchy under ‖·‖Wk,p(Ω). Then for each |α| ≤ k, {Dαum} is Cauchy in Lp(Ω), and thus by
completeness of Lp(Ω) there exists functions vα ∈ Lp(Ω) such that Dαum → vα. In particular,
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um → v(0,0...,0) =: u in Lp(Ω). We now claim that u ∈W k,p(Ω) and in fact vα = Dαu. Indeed, fix
ϕ ∈ C∞c (Ω) and observe by the dominated convergence theorem,∫

Ω

uDαϕ = lim
m→∞

∫
Ω

umD
αϕ = lim

m→∞
(−1)|α|

∫
Ω

Dαumϕ = (−1)α
∫

Ω

vαϕ.

Thus our claim is valid. Since Dαum → Dαu in Lp(Ω) for all |α| ≤ k, we see that um → u in
W k,p(Ω), which completes the proof. I

5.19 Corollary
W k,2(Ω) and W k,2

0 (Ω) are Hilbert spaces under the inner product

〈u, v〉 :=
∑
|α|≤k

∫
Ω

Dαu ·Dαv.

5.20 Theorem (Poincaré inequality)

Let Ω ⊆ Rn be a bounded domain. If u ∈W 1,p
0 (Ω) then

‖u‖Lp(Ω) ≤ C ‖Du‖Lp(Ω) , C = C(n,Ω, p).

J Note first that convergence inW k,p(Ω) implies convergence in Lp(Ω) as ‖u‖Lp(Ω) ≤ ‖u‖Wk,p(Ω).
It is therefore enough to prove the result for u ∈ C∞c (Ω), as then by choosing {um} ∈ C∞c (Ω) such
that um → u in W 1,p

0 (Ω) to conclude that

‖u‖Lp(Ω) = lim
m→∞

‖um‖Lp(Ω) ≤ C lim
m→∞

‖Dum‖Lp(Ω) = C ‖Du‖Lp(Ω) .

Furthermore, by taking the limit as p ↓ 1, we may assume p > 1.
So let p > 1, and u ∈ C∞c (Ω). Fix a point y ∈ Ω, and let X be the C1 vector field

X(x) = |u(x)|p(x− y)

(this is C1 as p > 1). Then

divx(X) = n|u|p + p|u|p−1sgn(u)Du · (x− y),

where the subscript ‘x’ indicates that we are taking the divergence of X as a function of x, and

sgn(u)(x) =


1 u (x) ≥ 0
0 u (x) = 0
−1 u (x) < 0.

Since u is compactly supported, the divergence theorem gives us
∫

Ω
divx(X) = 0, and hence

n

∫
Ω

|u|p = −p
∫

Ω

|u|p−1sgn(u)Du · (x− y).

Thus ∫
Ω

|u|p ≤ pd

n

∫
Ω

|u|p−1|Du|,

where d := diam(Ω). We now apply Hölder’s inequality to conclude that∫
Ω

|u|p ≤ pd

n

(∫
Ω

|u|(p−1)q

) 1
q
(∫

Ω

|Du|p
) 1
p

,

and then dividing through by
(∫

Ω
|u|(p−1)q

)1/q
=
(∫

Ω
|u|p

)1−1/p we obtain(∫
Ω

|u|p
) 1
p

≤ pd

n

(∫
Ω

|Du|p
) 1
p

.

This completes the proof. I
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5.21 Corollary
Let Ω ⊆ Rn be bounded. In W k,p

0 (Ω) the norm

‖u‖Wk,p
0 (Ω) :=

∑
|α|=k

‖Dαu‖Lp(Ω)

is an equivalent norm to the norm ‖·‖Wk,p(Ω).

It is enough to show that there exists C ≥ 0 such that ‖u‖Wk,p(Ω) ≤ C ‖u‖Wk,p
0 (Ω) for all

u ∈ W k,p
0 (Ω) (the converse is trivially true). We in fact show that there exists C ≥ 0 such that

‖u‖′Wk,p(Ω) ≤ C ‖u‖Wk,p
0 (Ω) for all u ∈ W k,p

0 (Ω), which suffices by Lemma 5.16. This however is
immediate by induction and the previous theorem. I

5.22 Lemma
If ϕ ∈ C∞c (Ω) and u ∈W k,p(Ω) then ϕu ∈W k,p(Ω) and

Dα(ϕu) =
∑
β≤α

(
α

β

)
DβϕDα−βu,

where β ≤ α if and only if βi ≤ αi for all i, and(
α

β

)
=

α!
β!(α− β)!

.

J Induction on |α|. Suppose |α| = 1. Choose any ψ ∈ C∞c (Ω). Then as Dα(ϕψ) = ϕDαψ +
ψDαϕ, ∫

Ω

ϕuDαψ =
∫

Ω

(uDα(ϕψ)− u(Dαϕ)ψ = −
∫

(ϕDαu+ uDαϕ)ψ,

and hence Dα(ϕu) = ϕDαu+ uDαϕ as desired.
Now suppose ` < k, and the desired result holds for all |α| ≤ ` and for all ϕ ∈ C∞c (Ω). Choose

a multiindex α with |α| = ` + 1. Then α = β + γ, where |β| = ` and |γ| = 1. Then with ψ as
above, ∫

Ω

ϕuDαψ =
∫

Ω

ϕuDβ(Dγψ) = (−1)|β|
∫

Ω

∑
ε≤β

(
β

ε

)
DεϕDβ−εuDγψ

(by the inductive assumption applied to Dγψ ∈ C∞c (Ω))

= (−1)|β|+|γ|
∫

Ω

∑
ε≤β

(
β

ε

)
Dγ(DεϕDβ−εu)ψ

(by the induction assumption again, this time with ‘u’= Dβ−εu ∈ W k−|β|+|ε|,p(Ω), and Dεϕ ∈
C∞c (Ω))

= (−1)|α|
∫

Ω

∑
ε≤β

(
β

ε

)(
DεϕDα−εu+DτϕDα−τu

)
ψ

(where τ = ε+ γ, so α− τ = β − ε)

= (−1)|α|
∫

Ω

 ∑
0≤ε≤β

(
α− γ
ε

)
DεϕDα−εu+

∑
γ≤τ≤α

(
α− γ
τ − γ

)
DτϕDα−τu

ψ

= (−1)|α|
∫

Ω

 ∑
0≤ε≤α

(
α

ε

)
DεϕDα−εu

ψ,
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since (
α− ε
ε− γ

)
+
(
α− ε
ε

)
=
(
α

ε

)
.

This completes the proof of the induction step, and thus of the lemma. I

This result is a minor extension of Proposition 5.10.

5.23 Lemma (local approximation by smooth functions)
Let Ω ⊆ Rn be a bounded domain, and let u ∈ W k,p(Ω), where 1 ≤ p < ∞. Then uσ → u in
W k,p

loc (Ω) as σ → 0.

J By Lemma 5.8.2 and Lemma 5.9, together with the definition of Sobolev spaces, we have
Dαuσ → Dαu in Lp(O) for any O ⊂⊂ Ω and any |α| ≤ k. Consequently,

‖uα − u‖pWk,p(O) =
∑
|α|≤k

‖Dαuσ −Dαu‖pLp(O) → 0

as σ → 0. This completes the proof. I

We can now use this lemma to derive an important density theorem for W k,p(Ω).

5.24 Theorem (global approximation by smooth functions)
Let Ω ⊆ Rn be a bounded domain. Then C∞(Ω) ∩W k,p(Ω) is dense in W k,p(Ω).

J Let {Ωi | i ∈ N} be a nested sequence of subdomains of Ω, with Ωi ⊂⊂ Ωi+1 and
⋃
i∈N Ωi = Ω.

Set Ω0 = Ω−1 = ∅, and then set Ui := Ωi+1\Ωi−1, for i ≥ 0. Let {ρi}i≥0 be a partition of unity
subordinate to the open cover {Ui}i≥0 of Ω.

Now given u ∈W k,p(Ω) and ε > 0, choose {σi} positive real numbers such that

σi ≤ dist(Ωi, ∂Ωi+1),

and ∥∥(ρiu)σi − ρiu
∥∥
Wk,p(Ω)

≤ ε

2i
,

where (ρiu)σi is the mollification of ρiu - note that (ρiu)σi is supported in Ui and that Lemma
5.22 shows that ρiu ∈W k,p(Ω), and hence Lemma 5.23 justifies the existence of such {σi}.

Now set

v :=
∞∑
i=1

(ρiu)σi .

Observe that on any subdomain O ⊂⊂ Ω, v is a finite sum, and hence v ∈ C∞(Ω). Since∑∞
i=1 ρi ≡ 1, we have for any O ⊂⊂ Ω,

‖v − u‖Wk,p(O) ≤
∞∑
i=1

∥∥(ρiu)σi − ρiu
∥∥ ≤ ∞∑

i=1

ε

2i
= ε.

Now we can take the supremum over O ⊂⊂ Ω to conclude that ‖v − u‖Wk,p(Ω) ≤ ε, and this
completes the proof. I

It is not true in general that if Ω ⊆ Rn is a bounded domain then C∞
(
Ω̄
)
∩W k,p(Ω) is dense

in W k,p(Ω). However if we assume additional regularity properties on Ω, we obtain the following
result, which we won’t prove.

5.25 Theorem
Let Ω ⊆ Rn is a bounded domain, such that ∂Ω is Lipschitz then C∞

(
Ω̄
)
∩W k,p(Ω) is dense in

W k,p(Ω).
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6 Embedding theorems

In this chapter we state and prove important embedding theorems. More precisely, we wish to
find ` = ` (k, p, n) such that W k,p (Ω) ⊆ C` (Ω) for a domain Ω ⊆ Rn. We then discuss when the
embedding is compact; this will be extremely important in Chapter 7.

6.1 Theorem (Sobolev embedding theorems)
Let Ω ⊆ Rn be a domain.

1. (Sobolev’s inequality) If 1 ≤ p < n, set p∗ := np
n−p , so

1
p∗ = 1

p −
1
n . Then there exists a

constant C = C(n, p) such that for all u ∈W 1,p
0 (Ω),

‖u‖Lp∗ (Ω) ≤ C ‖Du‖Lp(Ω) ,

and hence W 1,p
0 (Ω) ↪→ Lp

∗
(Ω).

2. (Morrey’s inequality) If n < p < ∞, set γ = 1 − n
p . Then exists a constant C = C(n, p)

such that for all u ∈W 1,p
0 (Ω),

‖u‖C0,γ(Ω) ≤ C ‖Du‖Lp(Ω) ,

and hence W 1,p
0 (Ω) ↪→ C0,γ(Ω) (where ‖u‖C0,γ(Ω) = supΩ |u| + supx 6=y∈Ω

|u(x)−u(y)|
|x−y|γ - see

Definition 6.6).

This is arguably the hardest result in the course, and will take us some time to prove. Moreover
it is not the most general result of this kind; we shall prove a more general embedding theorem
in Theorem 6.14, and in Section 6.17 we discuss the extension to the case of W k,p (Ω) instead of
W k,p

0 (Ω).

6.2 The case p = n

We will also say a quick word about the Sobolev borderline case p = n. In this case one can
prove:

• If Ω is a bounded domain then for any q ∈ [n,∞), there exists a constant C = C(n, q) such
that for all u ∈W 1,n

0 (Ω),
‖u‖Ln(Ω) ≤ C|Ω|

1
q ‖Du‖Lq(Ω) ,

and hence W 1,n
0 (Ω) ↪→ Lq(Ω).

This will be less important for us (although we will need it in the proof of Theorem 6.14), and we
will not prove it.

6.3 Dimension counting
Before we embark on the proof of Theorem 6.1 let us make the following remark. Suppose we
knew that Sobolev’s inequality (Theorem 6.1.1) held for some p∗. It turns out that by ‘dimension
counting’ we can work out what p∗ must be. Here is the argument.

Take 1 ≤ p < n and suppose p∗ is such that

‖u‖Lp∗ (Ω) ≤ C ‖Du‖Lo(Ω) . (7)

Set uλ(x) := u (λx). Then∫
Ω

|uλ (x)|p
∗
dx =

∫
Ω

|u (λx)|p
∗
dx =

1
λn

∫
Ω

|u(x)|p
∗
dx
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and ∫
Ω

|Duλ (x)|p dx =
∫

Ω

|Du (λx)|p dx =
λp

λn

∫
Ω

|Du (x)|p dx,

and hence by (7),
λ−

n
p∗ ‖u‖Lp∗ (Ω) ≤ Cλ · λ

−np ‖Du‖Lp(Ω) ,

and hence
‖u‖Lp∗ (Ω) ≤ Cλ

1−np−
n
p∗ ‖Du‖Lp(Ω) .

But now if 1− n
p −

n
p∗ 6= 0 then by either letting λ→ 0 or λ→∞ we obtain a contradiction. Thus

for Theorem 6.1.1 to hold for some p∗ we must have

1− n

p
− n

p∗
= 0,

that is,
p∗ =

np

n− p
.

6.4 Generalised Holder inequality
To prove Theorem 6.1 we will need the generalised Holder inequality, which states that if
1 ≤ p1 ≤ · · · ≤ pm ≤ ∞ are real numbers such that

∑m
i=1

1
pi

= 1, then if uk ∈ Lpk(Ω) for
k = 1, . . . ,m we have ∫

Ω

|u1 . . . um| ≤
m∏
k=1

‖uk‖Lpk (Ω) .

6.5 Proof of Sobolev’s inequality (Theorem 6.1.1)
J We will first prove the estimate for u ∈ C∞c (Ω), that is, we show for u ∈ C∞c (Ω) we have

‖u‖Lp∗ (Ω) ≤ C ‖Du‖Lp(Ω) .

Assume first that p = 1, so p∗ = n
n−1 . Since u has compact support, extending u to be

identically zero outside Ω we have for each i = 1, . . . , n and x ∈ Ω that

u(x) =
∫ xi

−∞
Diu(x1, . . . , xi−1, yi, xi+1, . . . , xn)dyi,

and so

|u(x)|
n
n−1 ≤

(
n∏
i=1

∫ ∞
−∞
|Du|dyi

) 1
n−1

.

Thus integrating the above with respect to x1 gives∫ ∞
−∞
|u|

n
n−1 dx1 ≤

∫ ∞
−∞

n∏
i=1

(∫ ∞
−∞
|Du|dyi

) 1
n−1

dx1

≤
(∫ ∞
−∞
|Du|dy1

) 1
n−1

∫ ∞
−∞

n∏
i=2

(∫ ∞
−∞
|Du|dyi

) 1
n−1

dx1

≤
(∫ ∞
−∞
|Du|dy1

) 1
n−1

(
n∏
i=2

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dyi

) 1
n−1

,

where we have used the generalised Holder inequality, with each pi = 1
n−1 .

Now we repeat and integrate with respect to x2 to obtain∫ ∞
−∞

∫ ∞
−∞
|u|

n
n−1 dx1dx2 ≤

(∫ ∞
−∞

∫ ∞
−∞
|Du|dy1dy2

) 1
n−1

∫ ∞
−∞

∏
i 6=2

I
1

n−1
i dx2,
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where
I1 :=

∫ ∞
−∞
|Du|dy1

and
Ii :=

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dyi for i = 3, . . . , n.

Applying the generalised Holder inequaity again we see that have
∫∞
−∞

∫∞
−∞ |u|

n
n−1 dx1dx2 is less

than or equal to(∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dy2

) 1
n−1

(∫ ∞
−∞

∫ ∞
−∞
|Du|dy1dx2

) 1
n−1 n∏

i=3

(∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞
|Du|dx1dx2dyi

) 1
n−1

.

Continuing in this way we obtain∫
Ω

|u|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞

. . .

∫ ∞
−∞
|Du|dx1 . . . dyi . . . dyn

) 1
n−1

=
(∫

Ω

|Du|
) n
n−1

,

which proves the estimate for p = 1 (here C(n, p) = 1).
Now suppose 1 < p < n, and consider |u|γ for some constant γ > 0. Then since |u|γ ∈W 1,1

0 (Ω),
from the case p = 1, we have(∫

Ω

|u|
γn
n−1

)n−1
n

≤
∫

Ω

|D|u|γ |

= γ

∫
Ω

|u|γ−1|Du|

≤ γ

(∫
Ω

|u|
(γ−1)p
p−1

) p−1
p
(∫

Ω

|Du|p
) 1
p

,

where we used Hölder’s inequality on the last line.
Now set

γ :=
p(n− 1)
n− p

> 1,

so γn
n−1 = (γ−1)p

p−1 = p∗ = np
n−p . Then we obtain(∫

Ω

|u|p
∗
) γ
p∗

≤ γ
(∫

Ω

|u|p
∗
) γ−1

p∗
(∫

Ω

|Du|p
) 1
p

,

and thus
‖u‖Lp∗ (Ω) ≤

p(n− 1)
n− p

‖Du‖Lp(Ω) ,

so C(n, p) = p(n−1)
n−p .

This proves the stated estimate for u ∈ C∞c (Ω). It remain to prove the estimate for arbitrary
u ∈ W 1,p

0 (Ω) and show that W 1,p
0 (Ω) ↪→ Lp

∗
(Ω). For this, pick u ∈ W 1,p

0 (Ω) and let {um} be a
sequence of C∞c (Ω) functions converging to u inW 1,p(Ω). Applying the estimates to the differences
um−um′ , we see that {um} is a Cauchy sequence is Lp

∗
(Ω). Thus um → ũ ∈ Lp∗(Ω) say. But then

we have u(x) = limm→∞ um(x) = ũ(x) for a.e. x ∈ Ω, and hence u = ũ (up to a set of measure
zero), which proves W 1,p

0 (Ω) embeds in Lp
∗
(Ω) as required.

Finally, since we have
‖um‖Lp∗ (Ω) ≤ C ‖Dum‖Lp(Ω) ,

since um → u = ũ in both W 1,p
0 (Ω) and Lp

∗
(Ω), we also have

‖u‖Lp∗ (Ω) ≤ C ‖Du‖Lp(Ω) .

The proof is complete. I

We now aim to prove Morrey’s inequality (Theorem 6.1.2). The key ingredient will be the
Theorem 6.7 below, also due to Morrey.
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6.6 Definition
Let Ω ⊆ Rn be a domain and γ ∈ (0, 1). Recall that we define the γ-Hölder norm for a function
u ∈ C0 (Ω) by

‖u‖C0,γ(Ω) := sup
Ω
|u|+ sup

x 6=y∈Ω

|u(x)− u(y)|
|x− y|γ

(which is not necessarily finite) and let C0,γ (Ω) denote the set of u ∈ C0 (Ω) such that ‖u‖C0,γ(Ω) <
∞.

6.7 Theorem (Morrey’s Lemma)
Let n < p ≤ ∞. If u ∈ C1(Rn) then there exists a constant C = C(n, p) such that if γ = 1 − n

p
then

‖u‖C0,γ(Rn) ≤ C ‖u‖W 1,p(Rn) .

Note that we are not neccesarily assuming the right-hand side is finite, although if it isn’t, the
result is trivial, so we may assume that the right-hand side is finite. Observe we are using the full
Sobolev norm on the right-side, since u is not assumed to be compactly supported, so Lemma 5.16
is not applicable.

J We will break the proof down into 3 stages.
Step 1: The key estimate: choose any ball Bρ(x) ⊆ Rn. We will show there exists a constant

C = C(n), such that ∫
Bρ(x)

|u(y)− u(x)|dy ≤ ρn

n

∫
Bρ(x)

|Du(y)|
|y − x|n−1

dy. (8)

To prove this, fix any point ξ ∈ ∂B1(0). Then if 0 < s < ρ, we have

|u(x+ sξ)− u(x)| =
∣∣∣∣∫ 1

0

d

dt
(u(x+ stξ)dt

∣∣∣∣
≤ s

∫ 1

0

|Du(x+ stξ)|dt,

since |ξ| = 1. Thus integrating over ∂B1(0) and changing the order of integration, we obtain∫
∂B1(0)

|u(x+ sξ)− u(x)|dS(ξ) ≤ s
∫ 1

0

∫
∂B1(0)

|Du(x− stξ)|dS(ξ)dt.

Now we change variables to y = x + sξ on the left-hand side and z = x + stξ on the right-hand
side to obtain

s1−n
∫
∂Bs(x)

|u(y)− u(x)|dy ≤ s

∫ 1

0

(st)1−n
∫
∂Bst(x)

|Du(z)|dzdt

≤ s

∫ 1

0

∫
∂Bst(x)

|Du(z)|
|z − x|n−1

dzdt since st = |z − x| when z ∈ ∂Bsr(x),

≤
∫ s

0

∫
∂Bσ(x)

|Du(z)|
|z − x|n−1

dzdσ with σ = st,

=
∫
Bs(x)

|Du(z)|
|z − x|n−1

dz.

So far we therefore have

s1−n
∫
∂Bs(x)

|u(y)− u(x)|dy ≤
∫
Bs(x)

|Du(z)|
|z − x|n−1

dz,
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and so multiplying both sides by sn−1 and integrating s from 0 to ρ we obtain∫ ρ

0

∫
∂Bs(x)

|u(y)− u(x)|dyds ≤
∫ ρ

0

sn−1

∫
Bs(x)

|Du(z)|
|z − x|n−1

dzds,

which gives ∫
Bρ(x)

|u(y)− u(x)|dy ≤ ρn

n

∫
Bρ(x)

|Du(z)|
|z − x|n−1

dz,

which is equation 8.
Step 2: Estimating sup |u|. Now we show that

sup
Rn
|u| ≤ C ‖u‖W 1,p(Rn) , (9)

where C = C(n, p).
We have

|u(x)| ≤ |u(x)− u(y)|+ |u(y)|,

and so integrating over B1(x) with respect to y,

|u(x)|ωn ≤
∫
B1(x)

|u(x)− u(y)|dy +
∫
B1(x)

|u(y)|dy.

Now taking ρ = 1 in (8) and applying Hölder’s inequality to the second term, we obtain

|u(x)|ωn ≤
1
n

∫
B1(0)

|Du(y)|
|y − x|n−1

dy +

(∫
B1(x)

dy

) p−1
p

‖u‖Lp(Rn) .

Now we apply Hölder’s inequality to the first integral to obtain

|u(x)|ωn ≤ 1
n

(∫
B1(0)

|y − x|
p(1−n)
p−1 dy

) p−1
p

‖Du‖Lp(Rn) +

(∫
B1(x)

dy

) p−1
p

‖u‖Lp(Rn)

≤ C ‖u‖W 1,p(Rn) .

The last equality holds since p > n implies p(1−n)
p−1 > −n, and thus

∫
B1(0)

|y − x|
p(1−n)
p−1 dy is finite.

Step 3: Estimating the Holder constant. Now we prove that with γ = 1 − n
p , there exists

C = C(n, p) such that for x 6= y ∈ Rn,

|u(x)− u(y)|
|x− y|γ

≤ C ‖Du‖Lp(Ω) . (10)

Once we have shown this will have completed the proof, since combining (9) and (10) we will have
the existence of a constant C = C(n, p) such that

sup
Rn
|u|+ sup

x 6=y∈Rn

|u(x)− u(y)|
|x− y|γ

≤ C ‖u‖W 1,p(Rn).

So fix x 6= y and set ρ = |x− y|. Let W := Bρ(x) ∩Bρ(y). Then we have

|u(x)− u(y)| ≤ |u(x)− u(z)|+ |u(z)− u(y)|,
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and so integrating over W with respect to z gives

|u(x)− u(y)|Cρn ≤
∫
W

|u(x)− u(z)|dz +
∫
W

|u(z)− u(y)|dz

≤
∫
Bρ(x)

|u(x)− u(z)dz +
∫
Bρ(y)

|u(z)− u(y)dz since W ⊆ Bρ(x),W ⊆ Bρ(y),

(∗)
≤ ρn

n

(∫
Bρ(x)

|Du(z)|
|z − x|n−1

dz +
∫
Bρ(y)

|Du(z)|
|z − y|n−1

dz

)
(∗∗)
≤ ρn

n

(∫
Bρ(x)

|x− z|
p(1−n)
p−1 dz

) p−1
p

‖Du‖Lp(Bρ(x))

+
ρn

n

(∫
Bρ(y)

|y − z|
p(1−n)
p−1 dz

) p−1
p

‖Du‖Lp(Bρ(y)) ,

where (∗) used (8) and (∗∗) is by Hölder’s inequality.
This time we are forced to actually compute

∫
Bρ(x)

|x− z|
p(1−n)
p−1 dz.

Let r = |x− z|. We obtain∫ ρ

0

r(n−1)+
p(1−n)
p−1 dr = C

(
ρn+

p(1−n)
p−1

)
,

where C = C(n, p), and thus

(∗∗) =
ρn

n
·Cρ

n(p−1)
p +(1−n)

(
‖Du‖Lp(Bρ(x)) + ‖Du‖Lp(Bρ(y)

)
= Cρnργ

(
‖Du‖Lp(Bρ(x)) + ‖Du‖Lp(Bρ(y)

)
,

and taking the norm over the larger domain of Rn finally gives us

|u(x)− u(y)| ≤ Cργ ‖Du‖Lp(Rn) .

Recalling that ρ = |x−y|, this gives the desired estimate and thus completes the proof of Morrey’s
lemma. I

6.8 Proof of Morrey’s inequality (Theorem 6.1.2)
J The proof of Morrey’s inequality is now very straightforward, that is, that if n < p <∞, then
if γ = 1− n

p , there exists a constant C = C(n, p) such that for all u ∈W 1,p
0 (Ω),

‖u‖C0,γ(Ω̄) ≤ C ‖Du‖Lp(Ω) ,

and hence W 1,p
0 (Ω) ↪→ C0,γ

(
Ω̄
)
.

Indeed, given u ∈ W 1,p
0 (Ω), let {um} be a sequence of C∞c (Ω) functions converging to u in

W 1,p(Ω). Then by Morrey’s lemma (Theorem 6.7), we have supΩ |um| bounded for all m (by
‖u‖W 1,p(Ω)), so {um} is uniformly bounded. Similary, as for all m and all x, y ∈ Ω, we have
|um(x)−um(y)| ≤ |x− y|γ , the sequence {um} is equicontinuous. Hence by Arzela-Ascoli, passing
to a subsequence if neccessary, we may assume um → ũ uniformly on compacta, where ũ ∈ C0,γ(Ω).
But then we have u(x) = limm→∞ um(x) = ũ(x) for a.e. x ∈ Ω, and hence u = ũ (up to a set of
measure zero), which proves W 1,p

0 (Ω) embeds in C0,γ
(
Ω̄
)
as required.

Finally, since we have
‖um‖C0,γ(Ω̄) ≤ C ‖um‖W 1,p(Ω) ,

since um → u = ũ in both W 1,p
0 (Ω) and C0,γ

(
Ω̄
)
, we also have

‖u‖C0,γ(Ω̄) ≤ C ‖u‖W 1,p(Ω) .

The proof is complete. I

This thus finally completes the proof of the Sobolev embedding theorems. We will now grad-
ually move onto tackling the issue of compactness; the statement we are aiming for is Rellich’s
Compactness Theorem, given in Theorem 6.16 below.
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6.9 Corollary
Let Ω ⊆ Rn be a bounded domain. If n < p < ∞ then any u ∈ W 1,p

loc (Ω) is a.e. (classically)
differentiable, and its classical derivative agrees with its weak derivative.

J First we need a slight variant on the estimate (8). Suppose v ∈ C1(Ω) and B2ρ(x) ⊂⊂ Ω.
Then if y ∈ Bρ(x), we claim

|v(x)− v(y)| ≤ Cρ1−np ‖Dv‖Lp(B2ρ(x)) . (11)

The proof proceeds almost identically to that of (8):

|v(x)− v(y)| ≤ |v(x)− v(z)|+ |v(z)− v(y)|,

and then integrating over Bρ(y) gives

ωnρ
n|v(x)− v(y)| ≤

∫
Bρ(y)

|v(x)− v(z)|dz +
∫
Bρ(y)

|v(z)− v(y)|dy.

Then if in the first integral we integrate over the larger domain B2ρ(x), we can see as in the proof
of (8) that∫
Bρ(y)

|v(x)−v(z)|dz+
∫
Bρ(y)

|v(z)−v(y)|dy ≤ (2ρ)n

n

∫
B2ρ(x)

|Dv(z)|
|z − x|n−1

dz+
ρn

n

∫
Bρ(y)

|Du(z)|
|z − y|n−1

dz,

and then as in the proof of (8) this provides the desired result.
Next, since C1(Ω)∩W 1,p(Ω) is dense inW 1,p(Ω) by Theorem 5.24 (this is why we require p <∞

in the statement of this corollary), this estimate remains true for v ∈ W 1,p(Ω) by approximation;
moreover since we integrate only over balls compactly contained in Ω, this also holds throughout
W 1,p

loc (Ω).
Now let u ∈W 1,p

loc (Ω). Then for a.e. x ∈ Ω, we have by Lebesgue’s differentiation theorem (see
Section 1.3),

1
ωnρn

∫
Bρ(x)

|Du(x)−Du(z)|dx→ 0 as ρ ↓ 0

(more precisely, for every Lebesgue point x ∈ Ω this holds, and a.e. x is a Lebesgue point).
Fix any such point x, and set

v(y) := u(y)− u(x)−Du(x) · (y − x).

Note that v(x) = 0, and v ∈ W 1,p
loc (Ω), with Dv(y) = Du(y) − Du(x). We apply the estimate

above, with ρ = |x− y| to obtain

|u(y)− u(x)−Du(x) · (y − x)| ≤ Cρ

(∫
B2ρ(x)

|Du(x)−Du(z)|pdz

) 1
p

= o(ρ) = o(|x− y|),

by Lebesgue’s differentiation theorem.
This proves u is a.e. classically differentiable, and its gradient is precisely the weak gradient. I

6.10 Definition
Let Ω ⊆ Rn be a bounded domain. Let u ∈ L1

loc(Ω). Given h ∈ R and O ⊂⊂ Ω such that
dist(O, ∂Ω) > |h|, define the jth difference quotient of size h of u to be

∆h
j u(x) :=

u(x+ hej)− u(x)
h

,

and set ∆hu = (∆h
1u, . . . ,∆

h
nu).
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6.11 Proposition (first difference quotient lemma)
Let Ω ⊆ Rn be a bounded domain, and let O ⊂⊂ Ω, and 0 < |h| < dist(O, ∂Ω). Let u ∈W 1,p(Ω),
where 1 ≤ p <∞. Then ∆h

j u ∈ Lp(O) and∥∥∆h
j u
∥∥
Lp(O)

≤ ‖Dju‖Lp(Ω) .

J First suppose u ∈ C1(Ω) ∩W 1,p(Ω). Then

∆h
j u(x) =

u(x+ hej)− u(x)
h

=
1
h

∫ h

0

Dj(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)dt,

and thus by Hölder’s inequality,

|∆h
j u(x)|p ≤ 1

h

∫ h

0

|Dj(x1, . . . , xi−1, xi + t, xi+1, . . . , xn)|pdt,

and thus by Fubini, ∫
O
|∆h

j u|pdx ≤
1
h

∫ h

0

∫
B|h|(O)

|Dju|pdxdt ≤
∫

Ω

|Dju|pdx,

where B|h|(O) = {x ∈ Rn | dist(x,O) < |h|} ⊆ Ω.
Then since C1(Ω) ∩ W 1,p(Ω) is dense in W 1,p(Ω), given u ∈ W 1,p(Ω) we can find {um} ∈

C1(Ω) ∩W 1,p(Ω) such that um → u in W 1,p(Ω). Then
{

∆h
j um

}
is Cauchy in Lp(O), and thus

converges to some ∆h
j ũ, say. But of course, limm→∞∆h

j um = ∆h
j u, and so ∆h

j u ∈ Lp(O), and then
finally as ∥∥∆h

j u
∥∥
Lp(Ω)

≤ ‖Djum‖Lp(Ω)

for all m, passing to the limit in m completes the proof. I

6.12 Weak convergence
We recall the concept of weak convergence. Let X denote a real Banach space. We say a
subsequence {um} in X converges weakly to u ∈ X, written um ⇀ u, if for each f ∈ X∗ we have
f(um)→ f(u) in R.

Convergence is easily seen to imply weak convergence, and any weakly convergent subsequence
is bounded. Moreover, if um ⇀ u then

‖u‖ ≤ lim inf
m→∞

‖um‖ .

If X is a reflexive Banach space and {um} is a bounded sequence, then there exists a sub-
sequence (m′) and u ∈ X such that {um′} is weakly convergent to u. In particular, if {um} is a
bounded sequence in Lp(Ω) (for Ω ⊆ Rn open and 1 < p < ∞), then there exists a subsequence
(m′) and u ∈ Lp(Ω) such for all v ∈ Lq(Ω) (where 1

p + 1
q = 1) we have∫

Ω

vum →
∫

Ω

vu

(this uses the fact that Lp(Ω)∗ ∼= Lq(Ω), and so any bounded linear functional f on Lp(Ω) can be
written as u f7→

∫
Ω
vu for some v ∈ Lq(Ω)), and ‖u‖Lp(Ω) ≤ lim infm→∞ ‖um‖Lp(Ω)).

6.13 Proposition (second difference quotient lemma)
Let Ω ⊆ Rn be a bounded domain. Let u ∈ Lp(Ω), where 1 < p < ∞. Suppose there exists a
constant K such that ∆h

j u ∈ Lp(O) and
∥∥∆h

j u
∥∥
Lp(O)

≤ K for all h > 0 and O ⊂⊂ Ω satisfying
0 < h < dist(O, ∂Ω). Then the weak derivative Dju exists and satisfies

‖Dju‖Lp(Ω) ≤ K.
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J Choose any sequence {hm} ↓ 0. Set um := ∆hm
j u. Let O ⊂⊂ Ω be arbitrary, Then for m

sufficiently large we have
‖um‖Lp(O) ≤ K.

Thus there exists a subseqence {m′} and v ∈ Lp(O) such that um′ ⇀ v, with ‖v‖Lp(O) ≤ K. In
particular, for any ϕ ∈ C1

c (Ω) we have ∫
O
ϕum′ →

∫
O
ϕv.

Now for hm < dist(supp(ϕ), ∂Ω), we have∫
O
ϕum′ =

∫
O

(
u(x+ hm′ej)− u(x)

h

)
ϕ(x)dx

=
1
h

∫
O
u(y)ϕ(y − hm′ej)− u(y)ϕ(y)dy

=
∫
O
u(y)

(
ϕ(y − hm′ej)− ϕ(y)

h

)
dy

= −
∫
O
u∆−hm′j ϕ (12)

(note we do not need to change domains here as ϕ is compactly supported).
But now by the dominated convergence theorem,

−
∫
O
u∆−hm′j ϕ→ −

∫
O
uDjϕ.

Thus v = Dju and so Dju ∈ Lp(O). Since O and j were arbitrary, we conclude u ∈ W 1,p(Ω).
Finally, since

‖v‖Lp(O) ≤ lim inf
m→∞

‖um‖Lp(O) ≤ K,

we have shown ‖Dju‖Lp(O) ≤ K for all Ω′ ⊂⊂ Ω, we conclude that ‖Dju‖Lp(Ω) ≤ K. The proof is
complete. I

We record here for use later that in (12) we proved the following integral identity for difference
quotients: that ∫

Ω

v∆h
j u = −

∫
Ω

u∆−hj v. (13)

Here is the extension to Theorem 6.1 to the case where k is not necessarily equal to 1.

6.14 Theorem (general Sobolev inequalities)

Let Ω ⊆ Rn be a bounded open domain. Let u ∈W k,p
0 (Ω). Then:

1. If k < n
p then u ∈ Lp∗(Ω) where p∗ = np

n−kp (so 1
p∗ = 1

p−
k
n ). In addition we have the estimate

‖u‖Lp∗ (Ω) ≤ C ‖u‖Wk,p
0 (Ω) ,

where C = C(k, n, p,Ω) (where the ‖·‖Wk,p
0 (Ω) is the norm from Corollary 5.21).

2. If k > n
p then u ∈ Cm,γ

(
Ω̄
)
, where m = k −

⌊
n
p

⌋
− 1 and

γ =

{
1 +

⌊
n
p

⌋
− n

p
n
p /∈ N

any number γ such that 0 < γ < 1 n
p ∈ N.

In addition we have the estimate

‖u‖Cm,γ(Ω) ≤ C ‖u‖Wk,p
0 (Ω) ,

where C = C(k, p, n, γ,Ω).
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J First assume the hypotheses of 1. Then Dαu ∈ Lp(Ω) for all |α| = k, and we have for any β
such that |β| = k − 1 that Dβu ∈ Lp1(Ω), and Dβu ∈ W 1,p

0 (Ω) . Hence by the Sobolev inequality
(Theorem 6.1.1) we have Dβu ∈ Lp1(Ω) where 1

p1
= 1

p −
1
n , and moreover that∥∥Dβu

∥∥
Lp1 (Ω)

≤ C ‖Dαu‖Lp(Ω) ≤ C ‖u‖Wk,p
0 (Ω) .

Thus u ∈ W k−1,p1
0 (Ω). Similarly we find that u ∈ W k−2,p2

0 (Ω) where 1
p2

= 1
p1
− 1

n = 1
p −

2
n . After

k steps we have u ∈ W 0,p∗

0 (Ω) = Lp
∗
(Ω), where p∗ is an in the statement. The stated estimate is

obtained by multiplying the relevant estimates at each stage of the above argument. This proves
1.

To prove 2, first suppose n
p /∈ N. Then as before we see that u ∈ W k−`,r

0 (Ω) for 1
r = 1

p −
`
n ,

provided `p < n. Choose ` such that
` <

n

p
< `+ 1;

that is, ` =
⌊
n
p

⌋
. Then r = np

n−`p > n. Hence by Morrey’s inequality (Theorem 6.1.2) we have

Dαu ∈ C0,1−nr (Ω) for all |α| ≤ k − `− 1. Observe that

1− n

r
= 1− n

p
− ` = 1 +

⌊
n

p

⌋
− n

p
= γ,

and hence u ∈ Cm,γ
(
Ω̄
)
, with m = k − ` − 1 = k −

⌊
n
p

⌋
− 1. The stated estimate follows by

multiplying, as before. This proves 13 when n
p /∈ N.

Finally, suppose n
p ∈ N. Set ` = n

p − 1. Then as above u ∈ W k−`,r
0 (Ω) where r = np

n−`p = n.
Then Dαu ∈ W 1,n

0 (Ω) for any |α| ≤ k − ` − 1 = k − n
p . Thus the (unproved) assertion for the

Sobolev borderline case (see Section 6.2) shows that Dαu ∈ Lq(Ω) for any n ≤ q < ∞. Then
Morrey’s inequality (Theorem 6.1.2) shows that Dαu ∈ C0,1−nq

(
Ω̄
)
for all n < q < ∞ and all

|α| ≤ k −
⌊
n
p

⌋
− 1 = m. Thus u ∈ Cm.γ

(
Ω̄
)
for an 0 < γ < 1. As before, the stated estimate

follows by multiplying, and this completes the proof. I

All the embeddings we have proved so far are necessarily continuous, as the embedding operator
I : X ↪→ Y (where X = W k,p

0 (Ω) and Y is whichever space corresponds to these particular values
of k, n, p) is a bounded linear functional (since we always proved bounds) and hence is continuous.
For applications to PDE however, we will need to know more that just that I is continuous. We
require compactness, in the following sense.

6.15 Definition
Let X ⊆ Y be Banach spaces, and I : X ↪→ Y the embedding operator. We say that X is
compactly embedded in Y , written X ⊂⊂ Y , if I is a compact operator, that is, for any
bounded set A ⊆ X we have I(A) precompact in Y .

6.16 Theorem (Rellich’s compactness theorem)

Let Ω ⊆ Rn be a bounded domain. Suppose u ∈W k,p
0 (Ω).

1. If kp < n, set p∗ = np
n−kp . Then for any 1 ≤ q < p∗ we have W k,p

0 (Ω) ⊂⊂ Lq(Ω).

2. If kp > n, then W k,p
0 (Ω) ⊂⊂ Cm,β

(
Ω̄
)
,where β is any number such that 0 < β < γ, and

m, γ are as in the statement of Theorem 6.14.2.

3. If kp = n, then W k,p
0 (Ω) ⊂⊂ Lq(Ω) for any 1 ≤ q <∞.

We won’t prove 3.



6 Embedding theorems 46

J First we prove 1, which is by far the hardest part. Let A ⊆W k,p
0 (Ω) be bounded, so say for

all u ∈ A we have
‖u‖Wk,p

0 (Ω) ≤ K.

We want to show that A
‖·‖Lq(Ω) is compact in Lq(Ω), for any 1 ≤ q < p∗, where the notation

A
‖·‖Lq(Ω) indicates we are taking the closure with respect to the Lq(Ω) norm. Since we are working

in metric spaces, it is enough to show that A is totally bounded as a subset of Lq(Ω).
We prove this first in the special case that q = 1. First we will show that Aσ := {uσ | u ∈ A}

is totally bounded. Note first that in the following calculations, we do not need to bother with
alterning the domain to Ωσ = {x ∈ Ω | dist(x, ∂Ω) > σ} as any u ∈ A is compactly supported in
Ω. We have for any u ∈ A that for any x ∈ Ω,

|uσ(x)| =

∣∣∣∣∣σ−n
∫
Bσ(x)

η

(
x− y
σ

)
u(y)dy

∣∣∣∣∣ ≤ σ−n sup η ‖u‖L1(Ω) ,

and moreover

|Duσ(x)| =

∣∣∣∣∣σ−n−1

∫
Bσ(x)

Dη

(
x− y
σ

)
u(y)dy

∣∣∣∣∣ ≤ σ−n−1 sup |Dη| ‖u‖L1(Ω) .

Thus Aσ is a uniformly bounded, equicontinuous subset of C0
(
Ω̄
)
, and hence precompact in C0

(
Ω̄
)

by the Arzela-Ascoli theorem, and thus also precompact in L1(Ω).
Next, we estimate for u ∈ A ∩ C∞c (Ω) that

|u(x)− uσ(x)| ≤
∫
B1(0)

η(z)|u(x)− u(x− σz)|dz

=
∫
B1(0)

η(z)
∣∣∣∣∫ 1

0

d

dt
(u(x− tσz)dt

∣∣∣∣ dz
= σ

∫
B1(0)

η(z)
∣∣∣∣∫ 1

0

Du(x− tσz) · zdt
∣∣∣∣ dz

≤ σ

∫
B1(0)

∫ 1

0

η(z)|Du(x− tσz)|dtdz,

and thus integrating over Ω (if necessary, we could integrate over Rn instead since u is compactly
supported, and thus we can extend u by defining u to be zero off Ω) we obtain∫

Ω

|u(x)− uσ(u)dx ≤ σ

∫
B1(0)

η(z)
∫ 1

0

∫
Ω

|Du(x− tσz)dxdtdz

≤ σ

∫
Ω

‖Du‖L1(Ω)

= σ|Ω| ‖Du‖L1(Ω) .

Hence since A is bounded in W k,p(Ω) there exists a constant C such that

‖uσ − u‖L1(Ω) ≤ Cσ,

and hence A is contained in a neighborhood of Aσ, that is, A ⊆ BCσ(Aσ) (where the neighbor-
hood is with respect to the L1(Ω) norm), and consequently A is totally bounded in L1(Ω). This
establishes the result for q = 1. Note that we have not yet used the embedding theorems.

Now take 1 < q < p∗. Observe that∫
Ω

|u|q =
∫

Ω

|u|(1−λ)q|u|λq

≤
(∫

Ω

|u|p1((1−λ)q)

) 1
p1
(∫

Ω

|u|p2λq

) 1
p2
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for any 0 < λ < 1 and any p1, p2 ≥ 1 such that 1
p1

+ 1
p2

= 1.
Since 1 < q < p∗ there exists 0 < λ < 1 such that

p∗

(1− λ)q
+

1
λq

= 1.

Set p1 = p∗

(1−λ)q and p2 = 1
λq . Then we obtain

∫
Ω

|u|q ≤
(∫

Ω

|u|p
∗
) (1−λ)q

p∗
(∫

Ω

|u|
)λq

,

(where the right-hand side is well defined by the Sobolev embedding theorem), and thus

‖u‖Lq(Ω) ≤ ‖u‖
1−λ
Lp∗ (Ω) ‖u‖L1(Ω) ≤ C ‖u‖

1−λ
Wk,p(Ω) ‖u‖L1(Ω) ≤ C

′ ‖u‖L1(Ω) .

Since A is totally bounded in L1(Ω) it follows A is totally bounded in Lq(Ω), and this proves 1.
To prove 2, which is much easier, if kp > n, fix 0 < β < γ. Then if A is a bounded set in the

W k,p(Ω) norm of functions in W k,p
0 (Ω) then A is bounded and equicontinuous under the Cm,β

(
Ω̄
)

norm and hence by Arzela-Ascoli is precompact. The proof is complete. I

6.17 Extension to W k,p(Ω)

The various embedding and compactness theorems can be extended to W k,p(Ω) (instead of just
W k,p

0 (Ω)) if we assume some additional regularity on the boundary of Ω. This is fairly easy to
prove if Ω has C1 boundary, and remains true if Ω has only Lipschitz boundary.

Finally we remark that the various embedding and compactness theorems we have proved are
optimal - given values of k, n, p the associated values p∗,m, γ are the best possible.

7 Weak solutions of the Dirichlet problem

In this chapter we will show how Sobolev spaces allow to us obtain weak solutions to PDE’s,
and thus connect the technical definition of Sobolev spaces with the original motivation we gave
in Section 5.1.

7.1 Assumptions
Until further notice, we make the following assumptions:

• Ω ⊆ Rn is a bounded domain.

• Lu = Di(aijDju) + bjDju+ cu is a divergence form operator satisfying:

– (E) uniform ellipticity: there exists λ > 0 such that for all x ∈ Ω and all ξ ∈ Rn we
have aij(x)ξiξj ≥ λ|ξ|2,

– (B) boundedness: aij , bj , c are measurable functions such that there exist Λ,M > 0
such that for all x ∈ Ω,

n∑
i,j=1

|aij(x)|2 ≤ Λ,

λ−2
n∑
j=1

|bj(x)|2 + λ−1|c(x)|2 ≤M.
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7.2 Definitions
Let ϕ ∈W 1,2(Ω), g, f1, . . . , fn ∈ L2(Ω). Define:

A(u, v) :=
∫

Ω

∑
i,j

aijDjuDiv −
∑
j

bj(Dju)v − cu,

F (v) :=
∫

Ω

∑
i

fiDiv − gv.

We consider the Dirichlet Problem: (F)

Lu = g +
∑
i

Difi in Ω, u = ϕ on ∂Ω

for u ∈W 1,2(Ω).
Note that this problem doesn’t appear well posed, as fi is not necessarily (weakly) differentiable,

and since ∂Ω is a set of measure zero, it is meaningless to require u = ϕ on ∂Ω since u is only
defined up to a set of measure zero!

Here is how we get round this: we say u ∈ W 1,2(Ω) is a weak solution to (F) if for all
v ∈W 1,2

0 (Ω) we have
A(u, v) = F (v)

and that also
u− ϕ ∈W 1,2

0 (Ω).

Note that these do make sense!

The next step is to formulate and prove a weak maximum prinicple for (weak) solutions to (F).
In order for this to be possible we need to be able to make sense of expressions like u ≤ 0 on ∂Ω
for u ∈W 1,2 (Ω). That is the content of the next definition.

7.3 Definitions
Given u ∈W 1,2(Ω) we say that u ≤ 0 on ∂Ω if u+ ∈W 1,2

0 (Ω) (note u+ ∈W 1,2(Ω) by Lemma5.12).
Observe that is u ∈ W 1,2(Ω) ∩ C0(Ω) then u+ ∈ W 1,2

0 (Ω) if and only if u(x) ≤ 0 for all x ∈ ∂Ω.
Similarly we say u ≥ 0 on ∂Ω if −u ≤ 0 on ∂Ω, and we say u ≤ v on ∂Ω if u− v ≤ 0 on ∂Ω.

Next, we define for u ∈W 1,2(Ω)

sup
∂Ω

u := inf{k | u ≤ k on ∂Ω},

and similarly
inf
∂Ω
u := − sup

∂Ω
(−u).

With these definitions on board, here is the version of the weak maximum prinicple we wish to
prove.

7.4 Theorem (Weak maximum prinicple)
Suppose u is a subsolution of L, that is, Lu ≥ 0 on ∂Ω. Then if c(x) ≤ 0 for all x ∈ Ω,

sup
Ω
u ≤ sup

∂Ω
u+,

where the supremum on the left is the essential supremum.

J Since c ≤ 0 the assumption Lu ≥ 0 is equivalent to the statement that for all non-negative
v ∈W 1,2

0 (Ω) we have A (u, v) ≥ 0.
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Suppose the result is false, and choose t such that sup∂Ω u < t < supΩ u. Set v := (u(x)− t)+

- note that v ∈W 1,2
0 (Ω) and v is non-negative and

Dv =

{
Du u > t

0 u ≤ t.

Then
A(u, v) =

∫
Ω∩{u>t}

aijDjvDiv − bj(Djv)v − cu(u− t) ≤ 0,

and hence using uniform ellipticity (E) and the fact that c is non-negative, we obtain

λ

∫
Ω∩{u>t}

|Dv|2 ≤
∫

Ω∩{u>t}
bj(Djv)v

≤ λ
√
M

(∫
Ω∩{u>t}

|Dv|2
) 1

2
(∫

Ω∩{u>t}
v2

) 1
2

(by Hölder’s inequality and (B)).
Now if we set Γ := supp(Dv) ⊆ supp(v), we may as well write instead∫

Ω

|Dv|2 ≤M
∫

Γ

v2,

or
‖Dv‖2L2(Ω) ≤M ‖v‖

2
L2(Γ)

Now we apply Theorem 6.1.1 to obtain for n ≥ 3 that

C−1 ‖v‖
L

2n
n−2 (Ω)

≤ ‖Dv‖L2(Ω) .

But then by Hölder’s inequality,∫
Γ

v2 ≤
(∫

Γ

v
2n
n−2

)n−2
n
(∫

Γ

dx

)1−n−2
n

≤ ‖v‖2
L

2n
n−2 (Ω)

|Γ| 2n ,

(where |Γ| is the Lebesgue volume of Γ) and thus we obtain

C−1 ‖v‖
L

2n
n−2 (Ω)

≤M 1
2 ‖v‖

L
2n
n−2 (Ω)

|Γ| 1n .

In other words, there exists a constant K = K(n,M) such that

|Γ| ≥ K−n.

But this inequality is independent of t, and thus holds as t→ supΩ u. Hence u attains its supremum
on a set of positive measure, but then on Γ we have Du = 0 by Corollary 5.13, contradicting the
choice of Γ. I

7.5 Corollary (uniqueness of solutions to (F))

Let u, v ∈W 1,2
0 (Ω) be two (weak) solutions of (F). Then u ≡ v.

J It is enough to note by the weak maximum principle above and the corresponding weak
minimum prinicple that if Lu = 0 in Ω then u = 0 in Ω. I

We now need some functional analysis to proceed further with our study of weak solutions.
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7.6 Theorem (Lax-Milgram Theorem)
Let H be a Hilbert space and B : H ×H → H a bilinear map such that:

• B is bounded, that is, there exists K ≥ 0 such that |B(x, y)| ≤ K ‖x‖ ‖y‖ for all x, y ∈ H,

• B is coercive, that is, there exists ν ≥ 0 such that B(x, x) ≥ ν ‖x‖2 for all x ∈ H.

Then if F ∈ H∗ is any bounded linear functional there exists a unique wF ∈ H such that

F (x) = B(wF , x) for all x ∈ H.

Note that if B is symmetric then this follows immediately from the Riesz representation theo-
rem, as we may define a new inner product 〈·, ·〉B on H by setting

〈x, y〉B := B(x, y),

and then applying the Reisz representation theorem to 〈·, ·〉B .

J Given x ∈ H, consider the element fx ∈ H∗ defined by fx(y) = B(x, y). By the Riesz
representation theorem there exists a unique zx ∈ H such that

fx(y) = 〈zx, y〉 for all y ∈ H.

Define T : H → H by Tx = zx, so
B(x, y) = 〈Tx, y〉 .

Then T is linear, and moreover since

‖Tx‖2 = 〈Tx, Tx〉 = A(x, Tx) ≤ K ‖x‖ ‖Tx‖ ,

‖Tx‖ ‖x‖ ≥ 〈Tx, x〉 = A(x, x) ≥ ν ‖x‖2 ,
we obtain ν ≤ ‖T‖ ≤ K and thus T is bounded and bounded below.

Since T is bounded below, T is injective. Moreover the range of T , R(T ) is closed: if {Txn} is
Cauchy, then so is {xn}, since

‖Txn − Txm‖ ≥ ν ‖xn − xm‖ → 0,

and thus if xn → x then Txn → Tx ∈ R(T ). Next, if y ∈ R(T )⊥ then since

ν ‖y‖ ≤ B(y, y) = 〈Ty, y〉 = 0,

we have y = 0, and consequently T is a bounded linear isomorphism, with inverse T−1.
Now given F ∈ H∗, apply the Riesz representation to find zF ∈ H such that F (x) = 〈zF , x〉,

and then set wF := T−1zF . Then

F (x) = 〈zF , x〉 = 〈TwF , x〉 = A(wF , x),

and the proof is complete. I

We recall without proof the Fredholm alternative:

7.7 Theorem (Fredholm alternative)
Let T : H → H be a compact linear operator on a Hilbert space H. Then precisely one of the
following holds:

1. the homogeneous equation x− Tx = 0 has a non-trivial solution x ∈ H,

2. for every y ∈ H the equation x− Tx = y has a uniquely determined solution x ∈ H.

Moreover in the second case, the operator (I − T )−1 whose existence is asserted there is bounded.

Using these results we can now prove the key result of this chapter.
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7.8 Theorem (Solving (F))
If c ≤ 0 in Ω the problem (F) is uniquely solvable for any choice of g, f1, . . . , fn ∈ L2(Ω) and any
ϕ ∈W 1,2(Ω).

J Set H := W 1,2
0 (Ω) for this proof. We proceed in six steps.

Step 1: Reduction to zero boundary data: setting w = u− ϕ, we see that

A(w, v) = A(u, v)−A(ϕ, v),

and thus u solves (F) if and only if A(w, v) = G(v) for all v ∈ H where

G(v) = F (v)−A(ϕ, v)

=
∫

Ω

n∑
i=1

 n∑
j=1

fj − aijDjϕ

Div +

g − cϕ− n∑
j=1

bjDjϕ

 v

=:
∫

Ω

n∑
i=1

f̃iDiv + g̃v;

note that g̃, f̃1, . . . , f̃n ∈ L2(Ω) and w ∈ H. Thus we have reduced (F) to the zero boundary data
problem.

Step 2: Showing that A is almost coercive: observe that

A(u, u) =
∫

Ω

aijDjuDiu− bj(Dju)u− cu

≥
∫

Ω

λ|Du|2 − bj(Dju)u− cu.

Using the fact that ab ≤ εa2 + 1
4εb

2 for any a, b, ε > 0 (which follows from writing

ab = (a
√

2ε)
(

b√
2ε

)
,

and applying Cauchy-Schwarz), we see that∫
Ω

|Du||u| ≤ ε
∫

Ω

|Du|2 +
1
4ε

∫
Ω

u2.

Thus if we choose ε = λ/2, we see that

∫
Ω

n∑
j=1

(Dju)bju ≤ λ

2

∫
Ω

|Du|2 +
λ

2
1
λ2

sup
x∈Ω

 n∑
j=1

|bj(x)|2
∫

Ω

u2

=
λ

2

∫
Ω

|Du|2 +
λM

2

∫
Ω

u2,

and thus
A(u, u) ≥ λ

2

∫
Ω

|Du|2 − λM

2

∫
Ω

u2.

In other words, A is almost coercive.

Step 3: Modifying L to make A coercive: define Lσu := Lu − σu. Then the corresponding
bilinear form Aσ satisfies

Aσ(u, u) = A(u, u) + σ

∫
Ω

u2.
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Now choose σ such that σ ≥ λM . Then we obtain

Aσ(u, u) ≥ λ

2

(∫
Ω

|Du|2 +
∫

Ω

u2

)
=

λ

2
‖u‖2W 1,2(Ω) ,

and thus Aσ is coercive.

Step 4: Applying the Lax-Milgram Theorem. We claim that Aσ is bounded. It is enough to
check that A is bounded, and this follows as

|A(u, v)| =
∣∣∣∣∫

Ω

aijDjuDiv − bj(Dju)v − cuv
∣∣∣∣

≤
n∑

i,j=1

sup
x∈Ω
|aij(x)|

∫
Ω

|Du||Dv|+
n∑
i=1

sup
x∈Ω
|bj(x)|

∫
Ω

|Du||v|+ sup
x∈Ω
|c(x)|

∫
Ω

|u||v|

≤ K ‖u‖W 1,2(Ω) ‖v‖W 1,2(Ω)

for some K ≥ 0.
Now we claim that F (v) =

∫
Ω

∑n
i=1 fiDiv + gv is a bounded linear functional on H. This is

clear, since the fi and g are in L2(Ω). Thus we may apply the Lax-Milgram Theorem 7.6 to obtain
a unique w ∈ H such that

Aσ(w, v) = 〈Lσw, v〉 = F (v)

for all v ∈ H.

Step 5: Using the Fredholm alternative. Now note that:

Lu = F ⇔ Lσu+ σJu = F

⇔ u+ σL−1
σ (Ju) = L−1

σ (F ),

where J is the embedding H → H∗ defined by

Ju(v) =
∫

Ω

uv.

Set Tu = −σL−1
σ (Ju). If we knew that T was compact, since the equation

u− Tu = 0

has no non-trivial solutions by Corollary 7.5 (as u = Tu if and only if Lu = 0), we could infer by
theFredholm alternative (Theorem 7.7) that the equation

u− Tu = v

was uniquely solvable for all v ∈ H, and thus that the equation Lu = F was uniqely solvable for
all F ∈ H∗. This would therefore complete the proof.

Step 6: It thus remains to show that T is compact. Since L−1
σ is continuous, it is enough

to show that J is compact. To prove this we write J as the composition J = J1 ◦ J2 where
J2 : H ↪→ L2(Ω) and J1 : L2(Ω)→ H∗ is given by

J1u(v) =
∫

Ω

uv.

Since J1 is clearly continuous, it is enough to show that J2 is compact. But this is precisely the
statement of Theorem 6.16 (we either use Theorem 6.16.2 or Theorem 6.16.3 depending as to
whether n > 2 or n = 2 respectively). Hence J2 is compact, thus so is T ; this completes the
proof. I
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8 Regularity of weak solutions

We have proved the existence and uniqueness of weak solutions to (F) under certain conditions.
Unfortunately a weak solution is in general not much good if that is all it is; the aim now is to
show that (under extra conditions) the weak solutions are actually bona fide real solutions to the
problem at hand. The first step is improve W 1,2-regularity to W 2,2-regularity.

8.1 Theorem (interior W 2,2(Ω) regularity)
Let u ∈ W 1,2(Ω) be a weak solution of the equation Lu = f , where L is uniformly elliptic in the
bounded domain Ω ⊆ Rn,

Lu = Di(aijDju) + bjDju+ cu,

where the aij ∈ C0,1
(
Ω̄
)
, the bj and c are in L∞(Ω) and f ∈ L2(Ω). Then we have u ∈ W 2,2

loc (Ω)
and for any subdomain O ⊂⊂ Ω,

‖u‖W 2,2(O) ≤ C
(
‖u‖W 1,2(Ω) + ‖f‖L2(Ω)

)
for C = C(n, λ,K, d), where λ is the constant of uniform ellipticity, d = dist(O, ∂Ω) and

K = max
{
‖aij‖C0,1(Ω̄) , ‖bj‖L∞(Ω) , ‖c‖L∞(Ω)

}
.

J Since u is a weak solution,∫
Ω

aijDjuDiv =
∫

Ω

gv for all v ∈W 1,2
0 (Ω),

where g := bjDju+ cu− f .
Now fix ϕ ∈ C1

c (Ω) such that 0 ≤ ϕ ≤ 1, and take

v := ∆−h
(
ϕ∆hu

)
,

where ∆h = ∆h
k for some 1 ≤ k ≤ n (see Definition 6.10), where |2h| < dist(supp(ϕ), ∂Ω).

Observe that

Div = ∆−hDi

(
ϕ2∆hu

)
=

= ∆−h
(
2ϕDiϕ∆hu+ ϕ2∆h(Diu)

)
= 2∆−h(ϕDiϕ∆hu) + ∆−h(ϕ2∆h(Diu)).

Thus ∫
Ω

aijDjuDiv =
∫

Ω

2aijDju∆−h
(
ϕDiϕ∆hu

)
+
∫

Ω

aijDju∆−h
(
ϕ2∆h (Diu)

)
.

Let’s work on the last integral: firstly by the integral identity (13),∫
Ω

aijDju∆−h
(
ϕ2∆h (Diu)

)
=
∫

Ω

∆h (aijDju)ϕ2∆h (Diu) .

Next, since for any f1, f2 we have

∆h
k(f1f2)(x) = f1(x+ hek)∆h

kf2(x) + f2(x)∆h
kf1(x),

in particular

∆h (aijDju) (x) = aij(x+ hek)∆h (Dju(x)) + ∆h (aij(x))Dju(x).

Thus∫
Ω

∆h (aijDju)ϕ2∆h (Diu) =
∫

Ω

ϕ2aij(x+ hek)∆h (Dju) ∆h (Diu) +
∫

Ω

ϕ2∆h(aij)Dju∆h (Diu) .
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Denote by:

A :=
∫

Ω

ϕ2∆h(aij)Dju∆h (Diu) ,

B :=
∫

Ω

2aijDju∆−h
(
ϕDiϕ∆hu

)
,

C :=
∫

Ω

g∆−h
(
ϕ2∆hu

)
.

We therefore have ∫
Ω

ϕ2aij(x+ hek)∆h (Dj(u)) ∆h (Diu) = C −A−B.

Now consider the left hand side: by the assumption on uniform ellipticity we have

λ

∫
Ω

ϕ2|∆hDu|2 ≤
∫

Ω

ϕ2aij(x+ hek)∆h (Dj(u)) ∆h (Diu) .

Next we work on the three terms A,B and C individually. First A :

|A| =
∣∣∣∣∫

Ω

ϕ2
(
∆h(aij

)
Dju∆h (Diu)

∣∣∣∣
≤ ε

∫
Ω

ϕ2|∆hDu|2 +
1
4ε

∫
Ω

ϕ2|∆h(aij)|2|Dju|2 using ab ≤ εa2 +
1
4ε
b2,

≤ ε

∫
Ω

ϕ2|∆hDu|2 +
Cn2K2

4ε
‖Du‖L2(Ω) .

Now B:

|B| =
∣∣∣∣∫

Ω

2aijDju∆−h
(
ϕDiϕ∆hu

)∣∣∣∣
≤ 2n2K ‖Du‖L2(Ω)

(∫
Ω

|∆−h
(
ϕDiϕ∆hu

))
.

Now we apply the first difference quotient lemma (Proposition 6.11), noting that this is appli-
cable as we may as well just integrate over the compact subdomain supp(ϕ) to obtain

|B| ≤ 2n2K ‖Du‖L2(Ω)

∥∥D (ϕDiϕ∆hu
)∥∥
L2(Ω)

.

But then∫
Ω

|D(ϕDiϕ∆hu)|2 =
∫

Ω

|D(ϕDiϕ)∆hu+ ϕDiϕ∆h (Du) |2

≤
∥∥D(ϕDiϕ)∆hu

∥∥
L2(Ω)

+ sup
Ω
|Dϕ|

∫
Ω

ϕ2|∆hDu|2

≤
(

sup
Ω
|Dϕ|2 + sup

Ω
|D2ϕ|

)(
‖Du‖L2(Ω) + sup

Ω
|Dϕ|

∫
Ω

ϕ2|∆hDu|2
)

using the first difference quotient lemma several times.
Finally work on C :

|C| =
∣∣∣∣∫

Ω

g∆−h(ϕ2∆hu)
∣∣∣∣ ≤

≤ ‖g‖L2(Ω)

∥∥∆−h
(
ϕ2∆hu

)∥∥
L2(Ω)

≤ c
(
‖u‖W 1,2(Ω) + ‖f‖L2(Ω)

)∥∥D (ϕ2∆hu
)∥∥
L2(Ω)

≤ c
(
‖u‖W 1,2(Ω) + ‖f‖L2(Ω)

)(
2 sup

Ω
|Dϕ| ‖Du‖L2(Ω) +

∫
Ω

ϕ2
∣∣∆hDu

∣∣2) ,
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where we used the first difference quotient lemma.
Putting this altogether we obtain

λ

∫
Ω

ϕ2|∆hDu|2 ≤ |C|+ |A|+ |B|

≤ ε

∫
Ω

ϕ2|∆hDu|2 +
Cn2K2

4ε
‖Du‖L2(Ω)

+
(

sup
Ω
|Dϕ|2 + sup

Ω
|D2ϕ|

)(
‖Du‖L2(Ω) + sup

Ω
|Dϕ|

∫
Ω

ϕ2|∆hDu|2
)

+c
(
‖u‖W 1,2(Ω) + ‖f‖L2(Ω)

)(
2 sup

Ω
|Dϕ| ‖Du‖L2(Ω) +

∫
Ω

ϕ2
∣∣∆hDu

∣∣2) .
Now let O ⊂⊂ Ω be arbitrary, and choose ϕ ∈ C1

c (Ω) such that ϕ = 1 on O and |Dϕ| ≤ 2/d and∣∣D2ϕ
∣∣ ≤ 4/d2 on Ω. We then obtain an expression of the form∥∥∆hDu

∥∥
L2(Ω′)

≤ C(n, λ,K, d)
(
‖u‖W 1,2(Ω) + ‖f‖L2(Ω)

)
,

and we can then apply the second difference quotient lemma (Proposition 6.13) to conclude that
u ∈W 2,2(Ω) and

‖Du‖L2(Ω′) ≤ C(n, λ,K, d)
(
‖u‖W 1,2(Ω) + ‖f‖L2(Ω)

)
.

This completes the proof. I

8.2 Writing the equation in general form
In the situation above, the assertion Lu = f is equivalent to∫

Ω

aijDjuDiv − bj (Dju) v − cuv =
∫

Ω

fv for all v ∈W 1,2
0 (Ω).

But now since we know that u is actually in W 2,2
loc (Ω) by Theorem 8.1, we can integrate by parts

(valid as v ∈W 1,2
0 (Ω)) to obtain∫

Ω

(aijDiju− (bjDiaij)Dju+ cu− f) v = 0 for all v ∈W 1,2
0 (Ω),

and hence that

aijDiju− (bj −Diaij)Dju+ cu− f = 0 almost everywhere.

This will be useful when proving global regularity later in this chapter (specifically, Step 2 in the
proof of Theorem 8.7).

We note now a fact that we will use without comment many times throughout this lecture:
if Ω ⊆ Rn is a bounded domain and O ⊂⊂ Ω is a subdomain then we can always find another
subdomain U such that O ⊂⊂ U ⊂⊂ Ω.

8.3 Addendum
We can actually improve the estimate of Theorem 8.1 and deduce that we can bound the W 2,2(O)
norm of u with the L2(Ω) norm, not the W 1,2(Ω) norm. More precisely, under the same conditions
of Theorem 8.1, we have u ∈W 2,2

loc (Ω) and for any O ⊂⊂ Ω we have

‖u‖W 2,2(O) ≤ C
(
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
for C = C(n, λ,K, d).
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J Indeed, given O ⊂⊂ Ω, choose U such that O ⊂⊂ U ⊂⊂ Ω. Then the argument of Theorem
8.1 shows that

‖u‖W 2,2(O) ≤ C
(
‖u‖W 1,2(U) + ‖f‖L2(U)

)
for an appropiate constant C. Choose a new cutoff function ϕ ∈ C∞c (Ω) such that ϕ = 1 on U and
0 ≤ ϕ ≤ 1. Now consider v = ϕ2u ∈W 1,2

0 (Ω): we have∫
Ω

aijDjuDiv =
∫

Ω

gv,

where g is as in the proof of Theorem 7.8, and thus

λ

∫
Ω

ϕ2|Du|2 ≤ C
∫

Ω

ϕ2 (|f |+ |Du|+ |u|) |u|,

and then by repeated use of Hölder’s inequality gives an expression of the form∫
Ω

ϕ2|Du|2 ≤ C
∫

Ω

f2 + u2.

Thus we obtain
‖u‖W 1,2(U) ≤ C

(
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
,

and thus
‖u‖W 2,2(O) ≤ C

(
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
as required. I

After W 2,2-regularity the next natural step is to try for W 3,2-regularity. In fact, as is often
the case, once W 2,2-regularity is established, it is often much easier to obtain higher regularity.
Clearly the solution cannot possess more regularity than the coefficients of L allow; we shall now
see below that this is only obstruction.

8.4 Theorem (higher interior regularity)
Let u ∈ W 1,2(Ω) be a weak solution of the equation Lu = f , where L is uniformly elliptic in the
bounded domain Ω ⊆ Rn,

Lu = Di(aijDju) + bjDju+ cu,

where the aij ∈ Ck,1
(
Ω̄
)
and the bj , c ∈ Ck−1,1

(
Ω̄
)
and f ∈ W k,2(Ω). Then we have u ∈

W k+2,2
loc (Ω) and for any subdomain O ⊂⊂ Ω,

‖u‖Wk+2,2(O) ≤ C
(
‖u‖W 1,2(Ω) + ‖f‖Wk,2(Ω)

)
for C = C(n, λ,K, d), where λ is the constant of uniform ellipticity, d = dist(O, ∂Ω) and

K = max
{
‖aij‖Ck,,1(Ω̄) , ‖bj‖Ck−1,1(Ω̄) , ‖c‖Ck−1,1(Ω̄)

}
.

J Induction on k. The case k = 0 is precisely Theorem 8.1. For notational simplicity will shall
prove the case k = 1 given the case k = 0; the general inductive step is similar (only we integrate
by parts many times and the function ĝ is somewhat messier).

Thus by what already have u ∈W 2,2
loc (Ω), and if O ⊂⊂ Ω then there exists C depending on the

appropiate things such that

‖u‖W 2,2(O) ≤ C
(
‖u‖W 1,2(Ω) + ‖f‖W 0,2(Ω)

)
.

Take U ⊂⊂ O and let 1 ≤ ` ≤ n. Choose any test function v ∈ C∞c (O), and set w = D`ϕ. Then
we have ∫

Ω

aijDjuDiw =
∫

Ω

gw.
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Now we integrate by parts to obtain∫
Ω

aijDj(D`u)Div =
∫

Ω

ĝv,

where
−D`aijDju+D`g.

By approximation this actually holds for all v ∈W 1,2
0 (O).

Next, we claim that ĝ ∈ L2(O) - this follows immediately given the hypotheses on the coeffi-
cients and the fact that u ∈ W 2,2(O). Thus we can apply Theorem 8.1, noting that ‖ĝ‖L2(O) ≤

C
(
‖u‖W 2,2(O) + ‖f‖W 1,2(Ω)

)
, to conclude that D`u ∈W 2,2(U) and

‖D`u‖W 2,2(U) ≤ C
(
‖u‖W 2,2(O) + ‖f‖L2(O)

)
.

Since ` was arbitrary, we conclude that u ∈ W 3,2
loc (Ω), and that we have an estimate of the

desired form
‖u‖W 3,2(U) ≤ C

(
‖u‖W 1,2(Ω) + ‖f‖W 1,2(Ω)

)
.

This completes the inductive step (with k = 1) and thus the proof. I

8.5 Corollary (smoothness in the interior)
Suppose that u ∈W 1,2(Ω) is a weak solution of the equation Lu = f , where L is uniformly elliptic
in the bounded domain Ω ⊆ Rn,

Lu = Di(aijDju) + bjDju+ cu,

where the aij , bj , c, f ∈ C∞
(
Ω̄
)
. Then u ∈ C∞(Ω), that is, u is a classical solution to Lu = f in

Ω.

J By Theorem 8.4, u ∈ W k,2
loc (Ω) for all k ∈ N. Hence by the general Sobolev inequality

Theorem 6.14.2 we have u ∈ Cm(Ω) for each m ∈ N. Thus u ∈ C∞(Ω). I

We now wish to discuss the regularity of weak solutions on the boundary, which will allows us
to prove global regularity of weak solutions. First however we mention a trick we will need in the
proof of Theorem 8.7 below.

8.6 Straightening out the boundary
Let Ω ⊆ Rn be a bounded domain such that ∂Ω is C2. Fix x0 ∈ ∂Ω. Then (possibly after
relabelling and reorienting the coordinate axes) there exists r > 0 and a C2 function γ : Rn−1 → R
such that

Br(x0) ∩ ∂Ω = {x | γ(x′) < xn},

where we use the notation x′ := (x1, . . . , xn−1). Consider now the functions ψ, η : Rn → Rn defined
by

ψ(x) = (x′, xn − γ(x′)),

η(y) = (y′, yn + γ(y)).

Then η = ψ−1 and ψ ‘straightens out’ the boundary of ∂Ω near x0, mapping ∂Ω onto an upper
half plane. Note that the Jacobian of ψ, J(ψ) is identically 1.



8 Regularity of weak solutions 58

8.7 Theorem (global W 2,2(Ω) regularity)
Let u ∈ W 1,2(Ω) be a weak solution of the equation Lu = f , where L is uniformly elliptic in the
bounded domain Ω ⊆ Rn,

Lu = Di(aijDju) + biDiu+ cu,

where the aij ∈ C0,1
(
Ω̄
)
, the bj and c are in L∞(Ω) and f ∈ L2(Ω).

Moreover, assume that ∂Ω is of class C2 and that there exists a function ϕ ∈W 2,2(Ω) for which
u− ϕ ∈W 1,2

0 (Ω).
Then we have u ∈W 2,2(Ω) and,

‖u‖W 2,2(Ω) ≤ C
(
‖u‖L2Ω) + ‖f‖L2(Ω) + ‖ϕ‖W 2,2(Ω)

)
for C = C(n, λ,K, ∂Ω), where λ is the constant of uniform ellipticity and

K = max
{
‖aij‖C0,1(Ω) , ‖bj‖L∞(Ω) , ‖c‖L∞(Ω)

}
.

J We will prove this in two steps.

Step 1: Reducing to a special case.
Replacing u by u − ϕ we see as in Step 1 of the proof of Theorem 7.8 that with no loss of

generality we may assume ϕ = 0 and hence u ∈ W 1,2
0 (Ω). Then by the argument in Addendum

8.3 we may estimate
‖u‖W 1,2(Ω) ≤ C

(
‖u‖L2(Ω) + ‖f‖L2(Ω)

)
,

where C = C(n, λ,K).
Since ∂Ω is C2, using the trick in Section 8.6 above, there exists for each point x0 ∈ ∂Ω a ball

B = Br(x0) and a bijective mapping ψ ∈ C2(B) from B onto an open set D ⊆ Rn such that

ψ(B ∩ Ω) ⊆ Rn+ =: {y ∈ Rn | yn > 0},

and ψ(B ∩ ∂Ω) = ∂Rn+, with ψ−1 ∈ C2(D). Let Bρ(x0) ⊂⊂ B, and set

B+ := Bρ(x0) ∩ Ω,

D
′

:= ψ(Bρ(x0)),

and D+ := ψ(B+).
Now define ũ(y) := u(x), where ψ(x) = y. Define L̃ by L̃ũ(y) = Lu(x). Explicitly,

L̃ũ = Di (ãijDj ũ) + b̃iDiũ+ c̃ũ = f̃(y),

where

ãij(y) =
∂ψi
∂ψr

∂ψi
∂ψs

aij(x), b̃i(y) =
∂2ψi
∂xr∂xs

ars(x) +
∂ψi
∂xr

br(x),

and
c̃(y) = c(x), f̃(y) = f(x).

We certainly have b̃j , c̃ ∈ L∞(ψ(B ∩ Ω)) and f̃ ∈ L2(ψ(B ∩ Ω)). Moreover it is clear that ãij ∈
C0,1

(
ψ(B ∩ Ω)

)
. Let us check that L̃ is still uniformly elliptic in ψ(B ∩ Ω). Indeed, given any

ξ ∈ Rn,
n∑

i,j=1

ãij(y)ξiξj =
n∑

i,j,r,s=1

ars(x)
∂ψi
∂ψr

∂ψj
∂ψs

ξiξj

=
n∑

r,s=1

ars(x)
∂(ψ · ξ)
∂ψr

∂(ψ · ξ)
∂ψs

≥ λ|Dψ · ξ|2

≥ λ̃ ‖ξ‖ ,
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where to see that last inequality write ξ̄ := Dψ · ξ, and so ξ = Dϕ · ξ̄, and thus ‖ξ‖ ≤ C
∥∥ξ̄∥∥ for

some C = C(ψ, γ).
Next note that since u ∈ W 1,2

0 (Ω), the transformed solution v = u ◦ ψ−1 is in W 1,2(D+) and
satisfies ϕv ∈W 1,2

0 (D+) for all ϕ ∈ C1
0 (D′).

Step 2: Applying the previous results.
We will now just write u instead of ũ etc. in order to simplify the notation. Accordingly, let

us suppose that u ∈ W 1,2(D+) satisifies satisfies Lu = f in D+ and that ϕu ∈ W 1,2
0 (D+) for any

ϕ ∈ C1
0 (D′). Then for |h| < dist(supp(ϕ), ∂D′) and 1 ≤ k ≤ n − 1, we have ϕ2∆h

ku ∈ W
1,2
0 (D+).

Consequently the proof of Theorem 8.1 will apply and we may conclude that Diju ∈ L2(ψ(Bρ(x0)∩
Ω)) as long as i+ j < 2n.

The remaining deriviative Dnnu can be estimated directly using the ideas of Section 8.2: ex-
plicitly since we have

annDnnu+ (bm −Dnann)Dnu+ cu− f = 0,

almost everywhere we have

Dnnu = − 1
λ

(bn −Dnann)Dnu+ cu− f −
∑

i+j<2n

Diju

 ,

and hence we have (where all norms are taken with respect to L2(ψ(Bρ(x0) ∩ Ω))),

‖Dnnu‖ ≤ C

 ∑
i,j<2n

‖Diju‖+ ‖Du‖+ ‖u‖+ ‖f‖

 .

Thus we have bounds on all the derivatives.

Step 3: Returning to Ω.
Hence, returning to the original domain Ω with the mapping ψ−1 ∈ C2(D) we obtain that

u ∈W 2,2(Bρ(x0)∩Ω). Since x0 was an arbitrary point of ∂Ω and by Theorem 8.1 we already have
u ∈ W 2,2

loc (Ω) we infer that u ∈ W 2,2(Ω). Finally, by choosing a finite number of points xi in the
compact set ∂Ω such that the balls Bρ(xi) cover ∂Ω, we obtain the estimate of the theorem from
Theorem 8.1 and the estimate in Step 1. The proof is complete. I

As before, once we have established W 2,2-regularity it is comparitively easy to prove as much
regularity as the coefficients of L allow.

8.8 Theorem (higher global regularity)
Let Ω ⊆ Rn be a bounded domain with Ck+2 boundary. Let u ∈ W 1,2(Ω) be a weak solution of
the equation Lu = f , u− ϕ ∈W 1,2

0 (Ω), where L is uniformly elliptic in Ω,

Lu = Di(aijDju) + bjDju+ cu,

and ϕ ∈ W k+2,2(Ω), aij ∈ Ck,1
(
Ω̄
)
, bj , c ∈ Ck−1,1

(
Ω̄
)
and f ∈ W k,2(Ω). Then we have u ∈

W k+2,2(Ω) and

‖u‖Wk+2,,2(Ω) ≤ C
(
‖u‖L2(Ω) + ‖f‖Wk,2(Ω) + ‖ϕ‖Wk+2,2(Ω)

)
for C = C(n, λ,K, k, ∂Ω), where λ is the constant of uniform ellipticity and

K = max
{
‖aij‖Ck,,1(Ω̄) , ‖bj‖Ck−1,1(Ω̄) , ‖c‖Ck−1,1(Ω̄)

}
.

J Induction on k; the case k = 0 is Theorem 8.7. Observe that, using the notation from the
proof of Theorem 8.7, the conditions u ∈ W 2,2(D+), ηu ∈ W 1,2

0 (Ω) for all η ∈ C1
c (D′) imply that
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ηDku ∈W 1,2
0 (Ω) for 1 ≤ k ≤ n− 1. Indeed, the first difference quotient lemma (Proposition 6.11)

gives us η∆h
ku ∈W

1,2
0 (D+) and∥∥η∆h

ku
∥∥
W 1,2(D+)

≤ ‖η‖C1(D+) ‖u‖W 2,2(D+)

for sufficiently small h. Thus choosing hm ↓ 0 we obtain a subsequence {hm′} such that
{
η∆hm′

k u
}

is weakly convergent in the Hilbert spaceW 1,2
0 (Ω). The limit of this sequence is clearly the function

ηDku. Further global regularity then follows as in Theorem 8.4. I

8.9 Corollary (global smoothness)
Let Ω ⊆ Rn be a bounded domain with ∂Ω of class C∞. Suppose that u ∈ W 1,2(Ω) be a weak
solution of the equation Lu = f , u− ϕ ∈W 1,2

0 (Ω) where L is uniformly elliptic in Ω

Lu = Di(aijDju) + bjDju+ cu,

and aij , bj , c, f, ϕ ∈ C∞
(
Ω̄
)
. Then u ∈ C∞

(
Ω̄
)
.

J Identical to the proof of Corollary 8.5. I

9 The Euler-Lagrange equations

In this final chapter we return to the opening chapter’s brief description of the Euler-Lagrange
equations and variational problems (see Sections 1.4 and 1.5). We conclude the course by briefly
outlining the method of elliptic bootstrapping.

9.1 The direct method of calculus of variations
Let us return to the Dirichlet problem: ∆u = 0 in Ω, with u−ϕ ∈W 1,2

0 (Ω), for some ϕ ∈W 1,2(Ω).
Set

F(v) :=
∫

Ω

|Dv|2,

and let C := {v ∈ W 1,2(Ω) | v − ϕ ∈ W 1,2
0 (Ω)}. Note that C 6= ∅, as ϕ ∈ C. We wish to minimise

F in the class C.
Set

m := inf
v∈C
F(v),

and take a minimising sequence {vk}. Note that m ≥ 0 (and so in particular, m > −∞).
We may assume there exists C ≥ 0 such that F(vk) ≤ C for all k. Hence∫

Ω

|D(vk − ϕ)|2 ≤ C + ‖Dϕ‖L2(Ω) ,

and thus by Poincaré’s inequality (Proposition 5.20), since vk − ϕ ∈W 1,2
0 (Ω) we have

‖vk − ϕ‖L2(Ω) ≤ C ‖D(vk − ϕ)‖L2(Ω) ,

and thus {vk} is a bounded sequence in the Hilbert space W 1,2(Ω). Thus there exists a weakly
convergent subsequence v′k ⇀ u ∈ W 1,2(Ω) (see Section 6.12). Then vk ⇀ u and Dvk′ ⇀ Du in
L2(Ω), and since a closed convex subset of a normed space is weakly closed, the norm is weakly
semicontinuous, and we conclude that∫

Ω

|Du|2 ≤ lim inf
k′→∞

∫
Ω

|Dvk′ |2 = m,

and hence u does indeed minimise F .
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By taking the first variation, we see that

0 =
d

ds
(F(u+ sη))

∣∣∣
s=0

=
∫

Ω

Du ·Dη for all C∞(Ω),

and hence u ∈ C∞(Ω) by Theorem 2.12. Thus we have (once again) solved the Dirichlet problem
for the Laplacian, this time by what is called the direct method of calculus of variations. We
now wish to study more general variational problems.

9.2 Definition
Let F : Ω× R× Rn → R be smooth, where Ω ⊆ Rn is a bounded domain with smooth boundary.
Let 1 < q <∞.

We say that F is a Lagrangian if F satisfies the following two conditions:

1. Coercivity: there exists constants α > 0, β ∈ R such that

F (x, z, p) ≥ α|p|q − β for all x ∈ Ω, z ∈ R and p ∈ Rn;

in particular F is bounded below.

2. Convexity in the ‘p’ variable: the mapping

p 7→ F (x, z, p)

is convex for each x ∈ Ω, z ∈ R. That is, for each ξ ∈ Rn,
n∑

i,j=1

Fpipj (x, z, p)ξiξj ≥ 0.

Equivalently, the Hessian matrix
[
Fpipj (x, z, p)

]
should be positive semi-definite for each

x ∈ Ω and z ∈ R.

We then study as before the variational functional (♠)

F(u) :=
∫

Ω

F (x, u,Du)dx

for u : Ω→ R, and look for minimizers of F within a given class.

Note that coercivity implies that:

F(v) ≥ α ‖Dv‖qLq(Ω) − β|Ω|. (14)

Hence F(v)→∞ as ‖Dv‖Lq(Ω) →∞. The next section explains why the convexity assumption is
a natural one to make.

9.3 The second variation
Suppose we know that there exists a smooth minimizer u of

F(v) =
∫

Ω

F (x, u,Du).

Then let ϕ ∈ C∞c (Ω) be arbitrary and set

i(s) := F(u+ sϕ).

Then we have
i′(0) = 0, i′′(0) ≥ 0.



9 The Euler-Lagrange equations 62

Let us compute the second variation i′′(s):

i′′(s) =
∫

Ω

Fpipj (x, u+sϕ,Du+sDϕ)DiϕDjϕ+2Fpiz(x, u+sϕ,Du+sDϕ)ϕDiϕ+Fzz(x, u+sϕ,Du+sDϕ)ϕ2,

and thus setting s = 0 gives

0 ≤ i′′(0) =
∫

Ω

Fpipj (x, u,Du)DiϕDjϕ+ Fpiz(x, u,Du)ϕDiϕ+ Fzz(x, u,Dϕ)ϕ2. (15)

By approximation this actually holds for any Lipschitz continuous function v vanishing on ∂Ω. Fix
an arbitrary ξ ∈ Rn and set

ρ(x) :=

{
x 0 ≤ x ≤ 1

2

1− x 1
2 ≤ x ≤ 1

and ρ(x+ 1) = ρ(x) for all x ∈ R.

Note that |ρ′| = 1 almost everywhere. Now set

v(x) := ερ

(
x · ξ
ε

)
ϕ(x),

where ϕ ∈ C∞c (Ω). Then v is a Lipschitz continuous function vanishing on ∂Ω, and note that

Div = ρ′
(
x · ξ
ε

)
ξiϕ(x) + ερ

(
x · ξ
ε

)
Diϕ

= ρ′
(
x · ξ
ε

)
ξiϕ(x) +O(ε) as ε→ 0.

Thus substituting v into equation (15) gives

0 ≤
∫

Ω

Fpipj (x, u,Du)(ρ′)2ξiξjϕ
2 +O(ε).

Since |ρ′| = 1 almost everywhere, letting ε→ 0 gives us

0 ≤
∫

Ω

Fpipj (x, u,Du)ξiξjϕ2,

and then since this holds for all ϕ ∈ C∞c (Ω), we deduce that

n∑
i,j=1

Fpipj (x, u,Du)ξiξj ≥ 0.

Thus the convexity assumption above is a necessary one in order to allow for the existence of a
smooth minimizer.

We now state and prove two theorems which allow us to use the direct method of the calculus
of variations to solve the variational problem (♠) for a Lagrangian.

9.4 Theorem (weak lower semicontinuity)
Let Ω ⊆ Rn be a bounded domain with smooth boundary. Let F : Ω × R × Rn → R be a La-
grangian. Then F(·) is weakly lower semicontinuous in W 1,q(Ω).

J We will actually prove this under the weaker assumption that if F is bounded below and
convex in the ‘p’ variable then F(·) is weakly lower semicontinuous; this result does not need the
full strength of the coercivity condition from Definition 9.2.

Suppose {uk} ⊆W 1,2(Ω) is such that uk converges weakly to u in W 1,q(Ω). Set

m := lim inf
k→∞

F(uk).
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We must show that F(u) ≤ m. By definition of W 1,q(Ω) weak convergence we have uk ⇀ u and
Duk ⇀ uk weakly in Lq(Ω). Since the sequence {uk} is weakly convergent in W 1,q(Ω) the uk are
uniformly bounded in W 1,q(Ω), that is

sup
k
‖uk‖W 1,q(Ω) <∞.

Thus passing to a subsequence if necessary, we may assume that

m = lim
k→∞

F(uk).

Furthermore, by Theorem 6.16 we haveW 1,q(Ω) ⊂⊂ Lq(Ω), and since {uk} is a uniformly bounded
sequence, we have uk → u strongly in Ω, and hence by passing to another subsequence if necessary,
we may assume that uk(x)→ u(x) for a.e. x ∈ Ω.

Now fix ε > 0. Egoroff’s theorem (see Section 1.3) asserts that there exists a measurable set
Eε such that |Ω\Eε| ≤ ε and uk → u uniformly on Eε. Now set

Fε :=
{
x ∈ Ω | |u(x)|+ |Du(x)| ≤ 1

ε

}
.

Then |Ω\Fε| → 0 as ε→ 0, and hence if we set

Gε := Eε ∩ Fε

then |Ω\Gε| → 0 as ε→ 0.
Now assume that since F is bounded below, by adding a constant if necessary we may as well

assume that F ≥ 0. Now by convexity,

F (x, uk, Duk) ≤ F (x, uk, Du) +DpF (x, uk, Du) · (Duk −Du)

for each x ∈ Ω, and thus integrating gives

F(uk) =
∫

Ω

F (x, uk, Duk)

≥
∫
Gε

F (x, uk, Duk)

≥
∫
Gε

F (x, uk, Du) +
∫
Gε

F (x, uk, Du) · (Duk −Du).

Since uk → u uniformly and |u(x)|+ |Du(x)| ≤ 1
ε on Gε, we may apply the dominated convergence

theorem to conclude that

lim
k→0

∫
Gε

F (x, uk, Du) =
∫
Gε

F (x, u,Du).

Moreoever, since DpF (x, uk, Du) → DpF (x, u,Du) uniformly on Gε and Duk ⇀ Du weakly in
Lq(Ω), we have

lim
k→0

∫
Gε

DpF (x, uk, Du) · (Duk −Du) = 0.

We thus have
m = lim

k→0
F(uk) ≥

∫
Gε

F (x, u,Du).

This holds for each ε > 0. We now let ε tend to zero, and then using the fact that F is non-negative,
by the monotone convergence theorem we conclude

m ≥
∫

Ω

F (x, u,Du) = F(u)

as required. I
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9.5 Theorem (existence of minimizer of (♠))
Let Ω ⊆ Rn be a bounded domain with smooth boundary. Let F : Ω × R × Rn → R be a
Lagrangian, and F the functional (♠). Suppose ϕ ∈ W 1,q(Ω) is given. Then there exists u in the
set C := {v ∈W 1,q(Ω) | v − ϕ ∈W 1,q

0 (Ω)} such that

F(u) = inf
v∈C
F(v).

J Set m := infv∈C F(v). We may clearly assume that m is finite. Select a minimising sequence
{uk}. By adding a constant if necessary, we may assume that β = 0 in (14). Thus F ≥ α|p|q and
hence

F(w) ≥ α
∫

Ω

|Dw|q.

Since m is finite, this shows that
sup
k
‖Duk‖Lq(Ω) <∞.

Now fix any w ∈ C. Then uk−w ∈W 1,q
0 (Ω) and hence by Poincaré’s inequality (Proposition 5.20)

we have

‖uk‖Lq(Ω) ≤ ‖uk − w‖Lq(Ω) + ‖w‖Lq(Ω)

≤ C ‖Duk −Dw‖Lq(Ω) + C ′,

and thus
sup
k
‖uk‖Lq(Ω) <∞.

Thus the sequence {uk} is bounded in W 1,q(Ω). Passing to a subsequence if necessary, we may
therefore that {uk} is weakly convergent to some u ∈ W 1,q(Ω). Next claim that u ∈ C: since
W 1,q

0 (Ω) is a closed linear subspace of W 1,q(Ω), W 1,q
0 (Ω) is weakly closed (this is Mazur’s theo-

rem), and hence u− ϕ ∈W 1,q
0 (Ω) since the same is true of each uk − ϕ.

Then by Theorem 9.4,

F(u) ≤ lim inf
k
F(uk) = m = inf

v∈C
F(v).

The proof is complete. I

The next thing to do is show that under suitable growth conditions on F , the minimizers of
(♠) do indeed solve the Euler-Lagrange equations.

9.6 Definition
We say that u ∈ C = {v ∈ W 1,q(Ω)|u − ϕ ∈ W 1,q

0 (Ω)} is a weak solution of the associated
Euler-Lagrange equations (5) (see Section 1.5) if∫

Ω

Fpi(x, u,Du)Div + Fz(x, u,Du)v = 0 for all v ∈W 1,q
0 (Ω).

9.7 Proposition
Suppose the Lagrangian F satisfies the following growth condition: there exists C ≥ 0 such that
for all x ∈ Ω, z ∈ R and p ∈ Rn,

1. |F (x, z, p)| ≤ C
(
|z|q−1 + |p|q−1|+ 1

)
,

2. |DpF (x, z, p)| ≤ C
(
|z|q−1 + |p|q−1|+ 1

)
,

3. |DzF (x, z, p)| ≤ C
(
|z|q−1 + |p|q−1|+ 1

)
.
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Then if u ∈ C is a minimizer of F(·) then u is a weak solution to the associated Euler-Lagrange
equations.

J Fix some v ∈W 1,q
0 (Ω). Set

i(s) := F(u+ sv).

Then by condition (1), i(s) is finite for all s ∈ R. Now take s 6= 0, and consider the difference
quotient

i(s)− i(0)
s

=
∫

Ω

1
s

(F (x, u+ sv,Du+ sDv)− F (x, u,Du))

=
∫

Ω

F s(x)dx,

where
F s(x) :=

1
s

(F (x, u+ sv,Du+ sDv)− F (x, u,Du))

for a.e. x ∈ Ω.
Clearly

F s(x)→
n∑
i=1

Fpi(x, u,Du)Div + Fz(x, u,Du)v

almost everywhere as s→ 0.
Now by Young’s inequality

ab ≤ ar

r
+
bq

q
for

1
r

= 1− 1
q
,

and thus we can use the hypotheses (2) and (3) to conclude that

|F s(x)| ≤ |DpF (x, u+ sv,Du+ sDv)|r

r
+
|Dv|q

q
+
|DzF (x, u+ sv,Du+ sDv)|r

r
+
|v|q

q

≤
(
|u+ sv|q−1 + |Du+ sDv|q−1

) q
q−1

q
q−1

+
|Dv|q

q
+

(
|u+ sv|q−1 + |Du+ sDv|q−1

) q
q−1

q
q−1

+
|v|q

q

= C (|Du|q + |u|q + |Dv|q + |v|q + 1) .

Since u, v ∈ W 1,q(Ω) we conclude that C (|Du|q + |u|q + |Dv|q + |v|q + 1) ∈ Lq(Ω) and hence
we may apply the dominated convergence theorem to conclude that i′(0) exists and is equal to∫

Ω

Fpi(x, u,Du)Div + Fz(x, u,Du)v.

But since i(·) has a minimum at 0 by assumption, we can thus conclude i′(0) = 0, and hence u is
indeed a weak solution. I

We will now give a short survey on the regularity of minimizers.

9.8 Regularity of minimizers
Let is make the following simplifying assumptions on our Lagrangian F :

• F is a function only of p.

• F is at least C2.

• |D2
pF (p)| ≤ C for all p ∈ Rn (this is stonger than the condition required in Proposition 9.7,

that is, |DpF (p)| ≤ C(|p|+ 1), but is necessary for the next theorem).
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• F is uniformly convex, tht is, there exists θ > 0 such that for all ξ ∈ Rn

n∑
i,j=1

Fpipj (p)ξiξj ≥ θ|ξ2|.

Then by Proposition 9.7, any minimizer u ∈ C := {v ∈ W 1,2(Ω) | v − ϕ ∈ W 1,2
0 (Ω)}, where ϕ is a

given function in W 1,2(Ω) is a weak solution to the Euler-Lagrange equation

Di (Fpi(Du)) = 0 in Ω,

that is, for each v ∈W 1,2
0 (Ω) we have ∫

Ω

Fpi(Du)Div = 0.

As a first step to proving additional regularity of u we have:

9.9 Theorem (interior W 2,2(Ω) regularity)
Assume the hypotheses of Section 9.8. Suppose u ∈ W 1,2(Ω) is a weak solution to the Euler
Lagrange equation Di(Fpi(Du)) = 0 in Ω. Then u ∈W 2,2

loc (Ω).

J Fix some subdomain O ⊂⊂ Ω, and then choose a subdomain U such that O ⊂⊂ U ⊂⊂ Ω.
Select a smooth cutoff function ϕ ∈ C∞c (Ω) satisfying ϕ = 1 on O and ϕ = 0 on Rn\U . Choose
|h| small and set

v := ∆−h(ϕ2∆hu),

where ∆hu = ∆h
ku for some 1 ≤ k ≤ n. Using the integral identity (13) we deduce that∫

Ω

∆h (Fpi(Du))Di(ϕ2∆hu) = 0.

Now observe that

∆h (Fpi(Du(x))) =
Fpi(Du(x+ hek))− Fpi(Du(x))

h

=
1
h

∫ 1

0

d

ds
(Fpi (sDu(x+ hek) + (1− s)Du(x))) ds

=
∫ 1

0

Fpipj ((sDu(x+ hek) + (1− s)Du(x)) ds
(Dju(x+ hek)−Dj(x))

h

=
n∑
j=1

ahij(x)∆h(Dju),

where

ahij(x) :=
∫ 1

0

Fpipj (sDu(x+ hek) + (1− s)Du(x)) ds.

Thus we obtain ∫
Ω

∆h (Fpi(Du))Di(ϕ2∆hu) =
∫

Ω

ahij∆
h(Dju)Di(ϕ2∆hu)

=: A+B,

where
A :=

∫
Ω

ϕ2ahij∆
h(Dju)∆h(Diu),

B :=
∫

Ω

2ahij∆
h(Dju)

(
∆hu

)
ϕDiϕ.
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Uniform convexity implies that

A ≥ θ
∫

Ω

ϕ2|∆h(Du)|2,

and we can estimate B as follows:

|B| ≤ C
∫
U
ϕ|∆h(Du)||∆hu|,

since |D2
pF (Du)| ≤ C implies that |ahij(x)| ≤ C, note also we are now integrating over U , and then

C

∫
U
ϕ|∆h(Du)||∆hu| ≤ ε

∫
Ω

ϕ2|∆h(Du)|2 +
C

ε

∫
Ω′
|∆hu|2.

Thus we obtain a bound ∫
Ω

ϕ2|∆h(Du)|2 ≤ C

∫
U
|∆hu|2

≤ C ′ ‖Du‖L2(Ω) ,

by the first difference quotient lemma (Proposition 6.11). But then as ϕ ≡ 1 on O, we obtain∥∥∆h
k(Du)

∥∥
L2(O)

≤ C ‖Du‖L2(Ω)

for each k = 1, . . . , n and |h| sufficiently small. The second difference quotient lemma (Proposition
6.13) then shows that Du ∈W 1,2(O), and hence u ∈W 2,2(O). This is true for each O ⊂⊂ Ω, and
so we conclude that u ∈W 2,2

loc (Ω) as desired. I

9.10 Higher regularity
Unfortunately we cannot simply use induction to get higher order weak derivatives (and thus
eventually, smoothness) as in the linear setting of Chapter 8. Indeed, given ϕ ∈ C∞c (Ω), inserting
Dkϕ into the equation gives ∫

Ω

Fpj (Du)Di(Dkϕ) = 0,

and setting w = Dku ∈W 1,2(Ω) we obtain by integration by parts that∫
Ω

Fpipj (Du)DjwDjϕ = 0,

and then by approximation this holds for any v ∈W 1,2
0 (Ω) , and thus w weakly solves the equation

Di(Fpipj (Du)Djw) = 0 in Ω.

Setting aij := Fpipj (Du) we have w a weak solution of

Di(aijDjw) = 0 in Ω.

Unfortunately, we cannot apply the regularity theory from Chapter 8 (eg. Theorem 8.1), since
we only know that aij ∈ L∞(Ω). To get any further we need the following deep results:

9.11 Theorem (De-Giorgi, Nash, Moser)
Let Ω ⊆ Rn be a bounded domain. Suppose aij ∈ L∞(Ω) and the equation

Lu = Di(aijDju) = 0

is uniformly elliptic in Ω with constant of uniform ellipiticity λ. Suppose u ∈W 1,2(Ω) is a weak so-
lution. Then u is locally Hölder continuous: there exists α ∈ (0, 1), where α = α

(
n, λ, ‖aij‖L∞(Ω)

)
such that u ∈ C0,α

loc (Ω). Moreover, we have the following local estimate: for any O ⊂⊂ Ω,

‖u‖C0,α(O) ≤ C ‖u‖Lp(Ω)

where C = C
(
n, λ, ‖aij‖L∞(Ω) , p, d

)
, for d = dist(O, ∂Ω).
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9.12 Theorem (Schauder)

Let Ω ⊆ Rn be a bounded domain. Suppose aij ∈ Ck,γloc (Ω) and the equation

Lu = Di(aijDju) = 0

is uniformly elliptic in Ω with constant of uniform ellipiticity λ. Suppose u ∈ W 1,2(Ω) is a weak
solution. Then actually u ∈ Ck+1,γ

loc (Ω).

Both Theorem 9.11 and Theorem 9.12 are in fact just special cases of more general results.

9.13 Elliptic bootstrapping
We can now deduce the desired regularity properties. Assume F is at least C2. Then by Theorem
9.11 we deduce that w ∈ C0,α

loc (Ω), and thus u ∈ C1,α
loc (Ω). But then by definition of the aij , we

then have aij ∈ C0,α
loc (Ω), and thus Theorem 9.12 implies that w ∈ C1,α

loc (Ω). But then u ∈ C2,α
loc (Ω).

Now repeat: we can keep doing this ‘bootstrapping’ method until we are prevented from going
any further by insufficient regularity of F .

In particular, if F is smooth, satisfies the conditions in Section 9.8 and u ∈W 1,2(Ω) is a weak
solution of

Di (Fpi(Du)) = 0 in Ω,

then in fact u is smooth. To sum up, we have proved:

9.14 Theorem
Let Ω ⊆ Rn be a bounded domain with smooth boundary. Let F be a smooth Lagrangian satisfying
the conditions of Section 9.8. Then there exists a smooth minimizer of the variational functional
(♠), which in turn is a smooth solution of the Euler-Lagrange equations

Di (Fpi(Du)) = 0 in Ω.


