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Introduction

These are notes for the second half of the Part III course Advanced Probability given at the
University of Cambridge in Michaelmas 2014. The content of these notes is to be viewed as
examinable, with the exception of parts that are explicitly stated to be non-examinable.

The results (and most of the proofs) presented here are by now classical and can be found
in many standard textbooks on the subject; a short list of references is provided at the end.
No claim of originality is made.

These notes are based to a large extent on earlier lecture notes by P. Sousi, G. Miermont,
and J.R. Norris. Thanks are due to Adam Jones and Perla Sousi for useful comments and
suggestions.
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1 Conditional expectation

1.1 Basic objects: probability measures, σ-algebras, and random
variables

We begin by recalling some fundamental concepts in probability, and setting down notation.
Central to everything we do is the notion of a probability space: a triple (Ω,F ,P), where Ω
is a set, F is a σ-algebra, and P is a probability measure. In the probability context, the
subsets of Ω are called events.

Definition 1.1. A collection F of subsets of Ω is said to be a σ-algebra on Ω if the following
conditions hold:

• Ω ∈ F ,

• If A ∈ F , then Ac ∈ F ,

• If {Aj}∞j=0 is a collection of sets in F , then
⋃∞
j=0Aj ∈ F .

Informally speaking, a σ-algebra is a collection of sets that is closed under countable unions,
and the operation of taking complements. The pair (Ω,F) is usually called a measurable
space.

Definition 1.2. A set function µ : F → R is said to be a measure if

• µ(A) ≥ 0 for all A ∈ F ,

• µ(∅) = 0,

• µ
(⋃∞

j=1Aj

)
=
∑∞

j=1 µ(Aj) for any countable collection of pairwise disjoint sets in F .

More generally, if µ is a measure and A ⊂
⋃∞
j=1Aj, then µ(A) ≤

∑∞
j=1 µ(Aj); this property

is known as subadditivity.

We say that P is a probability measure if, in addition to the above requirements, P satisfies
P(Ω) = 1. The number P(A), A ∈ F , is called the probability of the event A; we say that
A occurs almost surely, abbreviated a.s., if P(A) = 1. Let A,B ∈ F be two events, and
suppose P(B) > 0. Then the conditional probability of A given B is defined by

P(A|B) =
P(A ∩B)

P(B)
.

We often need to build σ-algebras starting with some smaller collection of sets.

Definition 1.3. Let A be a collection of subsets of Ω, not necessarily forming a σ-algebra.
The σ-algebra generated by A is defined as

σ(A) =
⋂
{E : E is a σ − algebra containing A}.
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By definition, σ(A) is the smallest σ-algebra containing the collection A; such a σ-algebra
always exists since the collection of all subsets of Ω forms a σ-algebra.

When the base space Ω is endowed with a topology, and hence a notion of open sets, it is
often natural to work with the σ-algebra generated by the open sets.

Definition 1.4. Let (Ω, τ) be a topological space. The Borel σ-algebra of Ω is the σ-algebra
generated by the open sets O of Ω:

B(Ω) =
⋂
{E : E is a σ − algebra containing O}.

We shall usually write B(R) for the Borel σ-algebra on the real line, endowed with the usual
Euclidean topology.

We are primarily interested in functions defined on probability spaces.

Definition 1.5. A random variable X on (Ω,F ,P) is a function X : Ω→ R that is measur-
able with respect to F ; that is, for any open set V ⊂ R, the pre-image X−1(V ) ∈ F .

To be precise, we should add “real-valued” to the precedining definition, as the concept
of random variable can be generalized to include functions taking values in Rd, or any
measurable space (E, E). In the first chapters we shall mostly deal with the real-valued case.

The smallest σ-algebra on Ω that makes X : Ω → R a measurable map is called the σ-
algebra generated by X, and is denoted by σ(X). The property of being a random variable
is preserved under a number of operations. For instance, if (Xn)∞n=1 is a sequence of random
variables, then lim supnXn and lim infnXn are random variables, and if f : R → R is a
measurable map, and X is a random variable, then f(X) is a random variable.

An important example of a random variable is the indicator function 1(A) of an event A ∈ F ,
defined via

1(A)(ω) = 1(ω ∈ A) =

{
1, ω ∈ A,
0, ω /∈ A .

We say that X is a simple random variable if X is a finite linear combination of indicator
functions, that is,

X =
n∑
j=1

cj1(Aj), Aj ∈ F , cj ∈ R.

A simple random variable is positive if all the coefficients satisfy cj ≥ 0.

The expected value or expectation of a postive simple random variable is easy to define: we
simply set

E

[
n∑
j=1

cj1(Aj)

]
=

n∑
j=1

cjP(Aj).

If X is a non-negative random variable, then X can be obtained as a pointwise limit of
positive simple random variables. A concrete way of approximating X is to set

Xn(ω) = 2−nb2nX(ω)c ∧ n, n = 1, 2, . . . ;
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then X = limn→∞Xn pointwise. (We shall use similar constructions many times; it is
probably worth spending a moment thinking about what the Xn look like.) Using such an
approximation, we set

E[X] = lim
n→∞

E[Xn],

and we verify that the limit is independent of the choice of (Xn). Finally, if X is a general
random variable, we write

X = X+ −X−,

where X+ = max(X, 0) and X− = max(−X, 0), and define

E[X] = E[X+]− E[X−],

provided at least one of the numbers E[X+] and E[X−] are finite. We say that a random
variable is integrable if E[|X|] <∞; if this is the case, we write X ∈ L1.

More generally, for p ≥ 1 and a measurable function X : Ω→ R on (Ω,F ,P), we define the
Lp norms

‖X‖p = (E[|X|p])1/p =

(∫
Ω

|X|pdP
)1/p

.

We denote the set of measurable functions having finite Lp norm by Lp = Lp(Ω,F ,P). When
p =∞, we set

‖X‖∞ = inf{λ ≥ 0: |X| ≤ λ a.s.}.

A basic theorem in functional analysis states that Lp, 1 ≤ p ≤ ∞, is a Banach space (over
the reals), that is, a real vector space that is complete with respect to the norm ‖ · ‖p.
The case p = 2 is of special importance.

Theorem 1.6. The space (L2, ‖ · ‖2) is a Hilbert space, with inner product 〈X, Y 〉 = E[XY ].

If V is a closed subspace, then for all X ∈ L2, there exists a Y ∈ V such that

‖X − Y ‖2 = inf
Z∈V
‖X − Z‖2,

and 〈Y,X − Y 〉 = 0.

Up to a set of measure 0, this Y is unique.

The random variable Y in Theorem 1.6 is called the orthogonal projection of X onto V .

Here are the three main convergence theorems of integration theory.

Theorem 1.7. [Monotone convergence theorem] Let (Xn)∞n=1 be a sequence of non-
negative random variables, with Xn ↑ X almost surely as n→∞. Then

E[Xn] ↑ E[X] as n→∞.

Theorem 1.8. [Fatou’s lemma] Let (Xn)∞n=1 be a sequence of non-negative random vari-
ables. Then

E[lim inf
n

Xn] ≤ lim inf
n

E[Xn].
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To remember which way the inequality goes, consider the sequence Xn = n1((0, 1/n)) on
the unit interval equipped with Lebesgue measure.

Theorem 1.9. [Dominated convergence theorem] Let (Xn)∞n=1 be a sequence of random
variables. If Xn → X almost surely, and if, for all n, |Xn| ≤ Y almost surely for some
integrable random variable Y , then

E[Xn]→ E[X] as n→∞.

Here is another theorem that is often very useful.

Theorem 1.10. [Jensen’s inequality] Let X be an integrable random variable, and let
ϕ : R→ R be a convex function. Then

ϕ(E[X]) ≤ E[ϕ(X)].

The notion of independence is arguably the key concept that distinguishes probability theory
from general measure theory. In elementary probability, the notion of independence of events
is defined by requiring

P(A ∩B) = P(A)P(B), A,B ∈ F .
This generalizes to σ-algebras as follows.

Definition 1.11. A collection {Gj}∞j=1 of σ-algebras contained in F is said to be independent
if the following holds: for all Gj ∈ Gj and all distinct indices j1, . . . , jn,

P(Gj1 ∩ · · · ∩Gjn) =
n∏
k=1

P(Gjk).

We should point out that it is not enough that P(Gi ∩Gj) = P(Gi)P(Gj) for all pairs i 6= j;
this latter property is known as pairwise independence.

Two random variables X and Y are said to be independent if the σ-algebras σ(X) and
σ(Y ) are independent in the sense of the preceding definition, and a random variable is
independent of a σ-algebra F if σ(X) and F are independent.

Let {Ak}∞k=1 be a sequence of events. We define

lim sup
k

Ak =
⋂
k

⋃
l≥k

Al and lim inf
k

Ak =
⋃
k

⋂
l≥k

Al.

It is customary in probability to write {Ak infinitely often} and {An eventually} for lim supAn
and lim inf An, respectively. (Think about what ω ∈ lim supnAn entails.)

The Borel-Cantelli lemmas will prove very useful.

Lemma 1.12. [Borel-Cantelli lemmas] Let {Ak}∞k=1 be a sequence of events.

1. If
∑

k P(Ak) <∞, then P(Ak i.o.) = 0.

2. If the events are independent, and
∑

k P(Ak) =∞, then P(Ak i.o) = 1.

Note the independence assumption in the second Borel-Cantelli lemma.
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1.2 Conditional expectation

We begin by reviewing the definition of conditional expectation of a random variable with
respect to an event. If X is an integrable random variable, and A ∈ F is an event with
P(A) > 0, we can define

E[X|A] =
E[X1(A)]

P(A)
.

This produces a number that can be viewed as the average of X over the event A. Our goal
now is to generalize the definition of conditional expectation to σ-algebras. In that case, the
conditional expectation will be a new random variable that is measurable with respect to
the σ-algebra that we are conditioning on. (In the single-event case, this random variable is
degenerate.)

Suppose first that X ∈ L1, and that G = σ(Bj : j ∈ N) is generated by a countable family of
disjoint events, that is, Ω =

⋃∞
j=1Bj. Let us agree to set E[X|Bj] = 0 if P(Bj) = 0. Guided

by the formula defining conditional expectation for a single event, we introduce the random
variable

Y =
∞∑
j=1

E[X|Bj]1(Bj). (1.1)

We recall that the E[X|Bj] are simply numbers, and so for ω ∈ Ω,

Y (ω) =
∞∑
j=1

E[X|Bj]1(ω ∈ Bj).

Explicitly, if ω ∈ B1, say, then E[X|G](ω) = E[X|B1] = E[X1(B1)]/P(B1).

The random variable Y is measurable with respect to the σ-algebra G since each 1(Bj) is,
and moreoever,

E[|Y |] ≤
∞∑
j=1

E[|X|1(Bj)] = E[|X|]

since {Bj}∞j=1 are disjoint. We conclude that (1.1) defines an integrable, G-measurable ran-
dom variable.

Now let G ∈ G, and note that

E[X1(G)] = E[Y 1(G)]. (1.2)

In the general case, we want G-measurability and (1.2) to be the defining properties of
conditional expectation. Our next objective is to prove the following basic result.

Theorem 1.13. Let X be an integrable random variable on (Ω,F ,P), and let G ⊂ F be a
σ-algebra. Then there exists a random variable Y with the following properties:

• Y is G-measurable,

• Y is integrable, and

E[X1(A)] = E[Y 1(A)] for all A ∈ G.
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If Z is another random variable satisfying these two requirements, then Y = Z almost surely.

Any random variable satisfying the conditions of Theorem 1.13 is said to be (a version of)
the conditional expectation of X given G; we then write Y = E[X|G] a.s. We can also take
the conditional expectation of a random variable with respect to another random variable;
this is simply

E[X|Y ] = E[X|σ(Y )].

By approximation, the equality for indicator functions in the second part of Theorem 1.13
can be replaced by the requirement that for all bounded G-measurable random variables Z,

E[XZ] = E[Y Z].

The proof we give features some techniques, such as truncation, that we will employ in many
places.

Proof of Theorem 1.13. We first demonstrate existence of conditional expectation. We
begin by imposing the more restrictive assumption X ∈ L2; this enables us to appeal to
Hilbert space techniques such as orthogonal projection. We verify that for any sub-σ-algebra
G, L2(Ω,G,P) is a closed subspace of L2(Ω,F ,P). This subspace, together with its orthogonal
complement, spans all of L2(Ω,F ,P), that is,

L2(F) = L2(G)⊕ L2(G)⊥

meaning that any X ∈ L2(F) can be written in a unique way as

X = Y + Z, Y ∈ L2(G), Z ∈ L2(G)⊥.

We now set E[X|G] = Y ; this immediately makes E[X|G] measurable with respect to G.
Now let A ∈ G; then 1(A) ∈ L2(G), and as Z ∈ L2(G)⊥, we obtain

E[X1(A)] = E[Y 1(A)] + E[Z1(A)] = E[Y 1(A)],

the desired second property. As A ∈ G was arbitrary, this shows existence of conditional
expectation for random variables X ∈ L2.

We pause to record one important property of conditional expectation: if X ≥ 0 then
E[X|G] ≥ 0 almost surely. To see this, consider the event {E[X|G] < 0} ∈ G, use that

E[X1(E[X|G] < 0)] = E[E[X|G]1(E[X|G] < 0)].

The left-hand side is non-negative by assumption, the right-hand side is non-positive by
construction, and this forces P(E[X|G] < 0) = 0.

We now use an approximation scheme to extend the construction to general integrable ran-
dom variables. Now suppose X is non-negative, and introduce the trunctions Xn = X ∧ n,
n = 1, 2, . . .. Each Xn is bounded and non-negative, and in particular Xn ∈ L2 for each n.
Thus there exists a sequence of G-measurable random variables Yn satisfying

E[Xn1(A)] = E[Yn1(A)]
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for any A ∈ G. We now argue that (Yn) forms an increasing sequence; this follows from the
fact that

Xn+1 −Xn ≥ 0 implies E[Xn+1 −Xn|G] ≥ 0,

plus linearity. Hence ↑ Yn = Y exists, and is G-measurable as a pointwise limit of G-
measurable functions. We now invoke the monotone convergence theorem, and obtain

E[X1(A)] = lim
n→∞

E[Xn1(A)] = lim
n→∞

E[Yn1(A)] = E[Y 1(A)]

for any A ∈ G. In particular, the choice A = Ω shows that Y is integrable whenever X is.
Hence we may set E[X|G] = Y , and all the requirements are met.

Finally, we decompose an arbitrary X ∈ L1 as X = X+ − X−, apply the previous argu-
ment to the positive and negative parts, and set E[X|G] = E[X+|G] − E[X−|G]. It is then
straightforward to check the the random variable so constructed satisfies the assertions of
the theorem.

We now establish uniqueness (up to sets of measure 0) of conditional expectation. Let us
assume that Z is another random variable satisfying both conclusions of the Theorem. We
consider the event A = {Y > Z}; this is event is in G as both random variables were assumed
G-measurable. Appealing to linearity, we find that

E[(Y − Z)1(A)] = E[Y 1(A)]− E[Z1(A)] = E[X1(A)]− E[X1(A)] = 0.

This means that P(Ac) = 1 and Z ≥ Y almost surely. By reversing the roles of Y and Z we
conclude that also Y ≥ Z almost surely, and uniqueness follows.

Here are some immediate consequences of Theorem 1.13 and its proof.

Theorem 1.14. Let X, Y ∈ L1(Ω,F ,P), and let G ⊂ F be a σ-algebra. Then the following
hold:

• If X ≥ 0, then E[X|G] ≥ 0 almost surely,

• Conditional expectation is linear, that is, for any a, b ∈ R,

E[aX + bY |G] = aE[X|G] + bE[Y |G]

almost surely,

• |E[X|G]| ≤ E[|X||G] almost surely,

• E[E[X|G]] = E[X],

• If X is G-measurable, then E[X|G] = X almost surely, and

• If X is independent of G, then E[X|G] = E[X] almost surely.

The basic convergence theorems for expectation we stated earlier have counterparts for con-
ditional expectation.
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Theorem 1.15. Let (Xn)∞n=1 be a sequence of integrable random variables, let X be a random
variable, and let G ⊂ F be a σ-algebra. Then the following hold:

• (Conditional monotone convergence theorem)
If Xn ≥ 0 and Xn ↑ X almost surely, then E[Xn|G] ↑ E[X|G],

• (Conditional Fatou’s lemma)
If Xn ≥ 0, then E[lim infnXn|G] ≤ lim infn E[Xn|G],

• (Conditional dominated convergence theorem)
If |Xn| ≤ Y for some random variable Y having E[Y ] < ∞, and Xn → X almost
surely, then limn E[Xn|G] = E[X|G].

We leave the proofs to the reader.

Theorem 1.16. [Conditional version of Jensen’s inequality] If ϕ : R → R is convex,
and E[|ϕ(X)|] <∞, or else if ϕ is non-negative, then

ϕ(E[X|G]) ≤ E[ϕ(X)|G] almost surely.

In particular, the operation of taking conditional expectation is a contraction on Lp; for all
1 ≤ p <∞,

‖E[X|G]‖p ≤ ‖X‖p.

Proof. It is shown in [7, §6.6] that any convex function ϕ : R → R can be obtained as a
supremum over affine functions. This means that there exist numbers a1, a2, . . . and b1, b2, . . .
such that

ϕ(x) = sup
k≥1

(akx+ bk) .

In particular, ϕ(x) ≥ akx+ bk for all k. By Theorem 1.14, we have, for each k, E[ϕ(X)|G] ≥
akE[X|G] + bk on an event with probability 1; the desired inequality follows after taking the
countable union of these events.

To see that conditioning is a contraction, we apply the previous result with ϕ(x) = |x|p to
obtain

E[|X|p|G] ≥ |E[X|G]|p ,

and then take expectations on both sides. The desired conclusion now follows from the fact
that

E[E[|X|p|G]] = E[|X|p]

by Theorem 1.14.

Conditional expectation enjoys the so-called tower property; that is, the “smaller σ-algebra
wins.”

Proposition 1.17. Let H ⊂ G and X ∈ L1(Ω,F ,P). Then

E[E[X|G]|H] = E[X|H] a.s.
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Proof. By definition, E[X|H] is H-measurable. If A ∈ H, then A ∈ G by assumption, and
hence

E[E[X|H]1(A)] = E[X1(A)] = E[E[X|G]1(A)].

This is valid for any event A ∈ H, and the conclusion follows.

The content of the next Proposition is often summarized by saying that we can take out
what is known.

Proposition 1.18. Let X ∈ L1, and let G be a σ-algebra. If Y is bounded and G-measurable,
then

E[XY |G] = Y E[X|G] a.s.

Proof. Suppose first that Y is the indicator function of some set in G, that is Y = 1(B),
B ∈ G. Then, for any A ∈ G, we have

E[Y E[X|G]1(A)] = E[E[X|G]1(A ∩B)] = E[X1(A ∩B)] = E[Y X1(A)],

since 1(A ∩B) = 1(A) · 1(B). This implies that Y E[X|G] = E[Y X|G].

By linearity of conditional expectation, the above argument extends to the case where Y is a
simple G-measurable random variable. By the monotone convergence theorem, the conclusion
of the proposition obtains for random variables X ≥ 0 and non-negative G-measurable Y .

Finally, we arrive at the full statement by arguing on the positive and negative parts of X
and Y .

The hypotheses of the proposition can be relaxed: the conclusion holds if X and Y are both
almost surely non-negative and Y is G-measurable, or else if X ∈ Lp and Y ∈ Lq, where
1/p+ 1/q = 1, and Y is G measurable.

This last proposition can be used (provided the appropriate hypotheses are satisfied) in
conjunction with Proposition to write

E[XY ] = E[E[XY |H]] = E[Y E[X|H]];

this representation can be useful in cases where E[X|H] is easy to compute or estimate.

1.3 Integration with respect to product measures and Fubini’s
theorem

When dealing with product spaces and functions of several variables, we will often want to
form products of probability measures. A natural way to define a product measure would
be to prescribe its values on sets that are themselves products: we would like the measure
of such a set to be equal to the product of the measures of the factors.

In order to implement this strategy, we first need to discuss the auxiliary notions of π-systems
and state a uniqueness of extension theorem.
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Definition 1.19. A non-empty collection P of subsets of Ω is said to be a π-system if ∅ ∈ P
and if A ∩B ∈ P for all A,B ∈ P .

It is usually easier to work with π-systems than with full σ-algebras, and this makes the
following theorem very useful.

Theorem 1.20. [Uniqueness of extensions] Let µ1 and µ2 be two measures on a mea-
surable space (E, E), having µ1(E) = µ2(E) < ∞. Suppose P is a π-system that generates
E, and suppose µ1 = µ2 on P.

Then µ1 = µ2 on E.

Some naturally occurring measure spaces do not have finite measure. However, they can
sometimes be divided into countably many pieces, each having finite measure.

Definition 1.21. A measure space (E, E , µ) is said to be σ−finite if there exists a collection
{En}∞n=0 of measureable sets such that E =

⋃∞
n=0En, and µ(En) <∞ for each n.

Example: Lebesgue measure on the real line. (What are some possible choices of En’s?)

Let us consider two σ-finite spaces (Ek, Ek, µk), k = 1, 2, and form the Cartesian product
E = E1 × E2 of the underlying spaces. We next consider the π-system given by

P = {A1 × A2 ∈ E : Ak ∈ Ek, k = 1, 2},

and the σ-algebra it generates,
E1 ⊗ E2 = σ(P).

Theorem 1.22. [Product measures] Suppose (Ek, Ek, µk), k = 1, 2, are σ-finite measure
spaces. There exists a unique measure µ = µ1 ⊗ µ2 defined on E = E1 × E2 such that

µ(A1 × A2) = µ(A1)µ(A2),

for all Ak ∈ Ek, k = 1, 2.

Fubini’s theorem is very useful for computing integrals of functions of several variables.
Roughly speaking, it says that the order of integration does not matter as long as there are
“no infinities involved.”

Theorem 1.23. [Fubini’s theorem] Let (E, E , µ) be given as the product of two σ-finite
measure spaces, as defined above, and let f be a E-measurable function.

If f is non-negative, or if
∫
E
|f |dµ <∞, then∫

E

f(x1, x2)dµ(x1, x2) =

∫
E1

(∫
E2

f(x1, x2)dµ2(x2)

)
dµ1(x1) (1.3)

=

∫
E1

(∫
E2

f(x1, x2)dµ1(x1)

)
dµ2(x2). (1.4)
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We caution that the conclusion of the theorem is false for measures that are not σ-finite.
(Example: consider a product spaces where the first factor is the unit interval with Lebesgue
measure, and the second factor is the unit interval endowed with the discrete σ-algebra and
the counting measure. Then compute the relevant integrals of f = 1(x = y).)

We end this section by working out an example that connects what we have done for general
σ-algebras with more elementary approaches to conditional expectation.

Example 1.24. Suppose X and Y are random variables having a joint density function
fX,Y (x, y) on R2. Then

fY (y) =

∫
R
fX,Y (x, y)dx

is a density function for the random variable Y .

Now let h : R→ R be a Borel function such that

E[h(X)] =

∫
R
h(x)fX(x)dx =

∫
R
h(x)

(∫
R
fX,Y (x, y)dy

)
dx <∞.

Our goal is to find a fairly concrete way of representing E[h(X)|Y ] = E[h(X)|σ(Y )]. To this
end, we suppose g is a bounded Borel function on R, and note that, by Fubini’s theorem,

E[h(X)g(Y )] =

∫
R2

h(x)g(y)fX,Y (x, y)dxdy =

∫
R

(∫
R
h(x)fX,Y (x, y)dx

)
g(y)dy. (1.5)

Our aim is to rewrite this in such a way that we can extract the expression g(y)fY (y)dy on
the right-hand side; the obvious way to accomplish this is to factor out fY from the inner
integral.

For all y ∈ R such that fY (y) > 0, we set

d(y) =

∫
R
h(x)

fX,Y (x, y)

fY (y)
dx,

at points where fY vanishes we take d(y) = 0. We can now rewrite (1.5) as

E[h(X)g(Y )] = E[d(Y )g(Y )];

this holds for all bounded measurable functions g, and hence d(Y ) is a version of E[h(X)|Y ].
In conclusion, introducing the conditional density function

fX|Y (x|y) =

{
fX,Y (x,y)

fY (y)
, fY (y) 6= 0

0, fY (y) = 0
,

we have shown that

E[h(X)|Y ] =

∫
R
h(x)fX|Y (x|Y )dx.
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2 Martingales in discrete time

2.1 Basic definitions

Let (Ω,F ,P) be a probability space. A sequence X = (Xn : n ≥ 0) of random variables
(taking values in R) is called a stochastic process. We say that the process X is integrable if
the random variables Xn are integrable for all n.

Stochastic processes typically arise in applications where random phenomena are observed
over a period of time. The first step in constructing a mathematical framework for the study
of such dynamical phenomena is formalize the fact that we can potentially extract useful
information about the evolution of such a system by continually recording our observations.

Definition 2.1. A filtration (Fn)n is an increasing family of sub-σ-algebras of F , satisfying
Fn ⊂ Fn+1, for all n. Every process induces a natural filtration (FXn )n, given by

FXn = σ(Xk : 0 ≤ k ≤ n).

A process X is said to be adapted to the filtration (Fn)n, if Xn is Fn-measurable for all n.

We say that (Ω,F , (Fn),P) is a filtered probability space. It is clear that every process is
adapted to its natural filtration. We think of the σ-algebra Fn as keeping track of the
information we have collected up to time-step n. Informally speaking, one way in which
processes in discrete time are easier to handle is that this information is only updated at
certain separated times; in the continuous-time setting we will need to worry about possible
lags between “instantaneous” changes, and corresponding updates. We shall address this
problem later through the concept of right-continuous filtrations.

Definition 2.2. Let (Ω,F , (Fn)n≥0,P) be a probability space, endowed with the filtration
(Fn)n and let X = (Xn : n ≥ 0) be an adapted integrable process. We say that

• X is a martingale if E[Xn|Fm] = Xm a.s., for all n ≥ m.

• X is a supermartingale if E[Xn|Fm] ≤ Xm a.s., for all n ≥ m.

• X is a submartingale if E[Xn|Fm] ≥ Xm a.s., for all n ≥ m.

If a process is a martingale (or super/submartingale) with respect to a given filtration, then it
is also a martingale (or super/submartingale) with respect to its own natural filtration. This
follows from the minimality of the natural filtration, and the tower property of conditional
expectation.

At first, it is easy to forget in which directions the inequalities go in this definition; in fact,
as we shall see, supermartingales correspond to unfavorably biased games of chance 1.

We ask the reader to verify that the following processes are examples of martingales.

1As Durrett puts it, there is nothing “super” about a supermartingale.
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Example 2.3. [Random walk] Let (Xk)k≥1 be a sequence of i.i.d. random variables with
E[X1] = 0. Then Sn =

∑n
k=1Xi is a martingale with respect to its natural filtration.

Example 2.4. [Closed martingale] Let (Fn)n be a filtration on (Ω,F ,P) and let X be an
integrable random variable. Then the process

Y = (E[X|Fn])n≥0

is a martingale with respect to the filtration (Fn)n.

The first example contains the origin of martingale theory. Namely, suppose X1 is a random
variable with P(X1 = 1) = 1/2 and P(X1 = −1) = 1/2, and X2, X3, . . . are independent
copies of X1. We could use this setup to model a game involving coin tosses, where Xk = 1 if
the coin comes up heads on the kth toss, and Xk = −1 if it is tails. Then Sn represents our
net gain or losses after n rounds, if we make a 1 currency unit bet every time. It is clearly
in the interest of a gambler to be able to make statements concerning Sn (and perhaps even
devise a system for how to bet with a high success rate2).

We shall see later that closed martingales are, in a certain sense, canonical examples.

2.2 Stopping times and the optional stopping theorem

Definition 2.5. Let (Ω,F , (Fn),P) be a filtered probability space. A random variable
T : Ω→ N is said to be a stopping time if {T ≤ n} ∈ Fn for all n.

In the definition of stopping time, we could equally well require that {T = n} ∈ Fn for all
n. Equivalence follows from the fact that

{T = n} = {T ≤ n} \ {T ≤ n− 1}

and conversely, that

{T ≤ n} =
n⋃
k=0

{T = k}.

Example 2.6. Any constant time is a stopping time.

Example 2.7. If S and T are both stopping times, then S ∧ T = min{S, T} is a stopping
time.

Example 2.8. [First hitting times] Here is a class of concrete example that we shall
encounter frequently later on.

Suppose A ∈ B(R), and set
TA = inf{n ≥ 0: Xn ∈ A};

let us agree that inf(∅) =∞, so that TA =∞ if X never enters A. Now

{TA ≤ n} =
n⋃
k=0

{Xk ∈ A} ∈ Fn

since each {Xk ∈ A} is in Fk, and Fk ⊂ Fn.

2Disclaimer: The lecturer does not, in any way, endorse or recommend real-life gambling.
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Here is an example of a random variable that is not a stopping time in general. Consider
the last exit time

EA = sup{n ≥ 0: Xn ∈ A}
for some A ∈ B(R); then Fn does not tell us whether X comes back to A in the future, and
hence EA is not a stopping time.

Definition 2.9. [Stopped σ-algebras and stopped processes] Let T be a stopping time
on the filtered probability space (Ω,F , (Fn),P).

The stopped σ-algebra is the σ-algebra defined by

FT = {A ∈ F : A ∩ {T ≤ n} ∈ Fn ∀n}.

If X is an adapted process on the same space, we define the random variable XT (ω) by
setting, for T (ω) <∞,

XT (ω) = XT (ω)(ω),

and define the stopped process XT = (XT
n : n ≥ 0) by letting XT

n = XT∧n.

Stopping times are a very powerful tool in the analysis of martingales: if we start out with a
martingale and stop it, we still end up with a martingale. As we have seen, martingales have
expected values that are constant in time, that is, for any fixed n, we have E[Xn] = E[X0].
We will see that stopping times, even though they are random, preserve this property to a
large extent.

In order to make these statements precise, we need a couple of lemmas.

Lemma 2.10. Suppose S ≤ T . Then FS ⊂ FT .

Proof. By assumption, {T ≤ n} ⊂ {S ≤ n} and so {T ≤ n} = {S ≤ n} ∩ {T ≤ n}. Now let
A ∈ FS, and write

A ∩ {T ≤ n} = A ∩ {S ≤ n} ∩ {T ≤ n}.
The latter set is in Fn for all n, and the lemma follows.

Lemma 2.11. Let X be an adapted process, and let T be a stopping time. Then the random
variable XT1(T <∞) is FT -measurable.

Proof. Since X is an adapted process, we have {Xk ∈ A} ∈ Fn for any Borel set A, and any
k ≤ n. Our task is to show that the requirement {XT1(T <∞) ∈ A}∩{T ≤ n} ∈ Fn holds
for all n. To this end, we write

{XT1(T <∞) ∈ A} ∩ {T ≤ n} =
n⋃
k=1

({Xk ∈ A} ∩ {T = k}).

To see that each set in the union is in Fn, we now recall that {T = k} ∈ Fn for k ≤ n
whenever T is a stopping time; cf. the remark after defintion of stopping time.

Proposition 2.12. Let X be an adapted process on a filtered probability space, and let T be
a stopping time on the same space. The the process XT is adapted, and if X is an integrable
process then so is XT .
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Proof. We have already observed that the minimum of two stopping times is a stopping
time. This means that, for any n ∈ N, the random variable T ∧n is a stopping time. By the
preceding lemma, XT∧n is FT∧n-measurable, hence Fn measurable since Fn ⊃ FT∧n. This
shows that XT is adapted.

To establish integrability, we note that

E[|XT∧n|] ≤ max
1≤k≤n

E[|Xk]] ≤
n∑
k=1

E[|Xk|].

The sum in the right-hand side contains finitely many terms, and hence is finite since the
process X was assumed to be integrable.

The next theorem is central in martingale theory and its applications.

Theorem 2.13. [Optional stopping theorem] Let X = (Xn : n ≥ 0) be a martingale on
(Ω,F , (Fn),P), and T a (Fn)-stopping time.

1. The process XT = (XT∧n : n ≥ 0) is a martingale.

2. If S ≤ T are bounded stopping times, then E[XT |FS] = XS almost surely. In particular,
E[XT ] = E[XS].

3. If

• |Xn| ≤ Y for some integrable random variable, and T is almost surely finite,

• or X has bounded incremenents, that is |Xn−Xn−1| ≤M almost surely for some
M <∞, and T satisfies E[T ] <∞,

then E[XT ] = E[X0].

Theorem 2.13 holds true also for sub/supermartingales, provided equalities are replaced by
appropriate inequalities.

Proof. We already know that XT is adapted and integrable. It remains to check that XT

has the martingale property, that is to say, that E[XT∧n|Fn−1] = XT∧n−1 a.s.

We first decompose XT∧n as a sum,

XT∧n =
n−1∑
k=1

Xk1(T = k) +Xn1(T > n− 1);

and by linearity of conditional expectation we have

E[XT∧n|Fn−1] =
n−1∑
k=1

E[Xk1(T = k)|Fn−1] + E[Xn1(T > n− 1)|Fn−1].
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The first sum is equal to
∑n−1

k=1 Xk1(T = k) = XT1(T ≤ n− 1) since the random variables
Xk1(T = k) are all Fn−1-measurable. Moreover, since {T > n− 1} = {T ≤ n− 1}c ∈ Fn−1,
and X is a martingale,

E[Xn1(T > n− 1)|Fn] = 1(T > n− 1)E[Xn|Fn−1] = 1(T > n− 1)Xn−1.

Hence
E[XT∧n|Fn−1] = XT1(T ≤ n− 1) +Xn−11(T > n− 1) = XT∧n−1

almost surely, and thus XT is a martingale.

We turn to the second item in the theorem. Since T is assumed bounded, there exists an
integer n such that T ≤ n. Since S ≤ T , we can write XT using a telescoping sum:

XT =
n−1∑
k=0

(Xk+1 −Xk)1(S ≤ k < T ) +XS;

to see this, we first write XT = XT +XS −XS = XT −XS+1 + (XS+1−XS) +XS. We then
proceed in the same way until we reach XT−1 −XT−1.

Now let A ∈ FS. By the above decomposition,

E[XT1(A)] = E[XS1(A)] +
n−1∑
k=1

E[(Xk+1 −Xk)1(S ≤ k < T )1(A)].

In order to conclude that E[XT |FS] = XS a.s., we need to show that the sum on the far right
is zero. Now since A is an event in the stopped σ-algebra S, we have {S ≤ k < T}∩A ∈ Fk
for k ≤ n, and hence

E[(Xk+1 −Xk)1(S ≤ k < T )1(A)] = 0,

by the martingale property. The almost sure equality E[XT |FS] = XS follows, and to get
E[XT ] = E[XS] we take expectations on both sides.

The last item in the theorem is left to Example Sheet 1.

In particular, if T is a bounded stopping time, then E[XT ] = E[X0]. It is worth emphasizing
the following: while E[XT∧n] = E[X0] for all n without any assumption whatsoever on the
stopping time T , it is in general not true that the expected value at the stopping time is
equal to E[X0] unless we impose a boundedness condition on T . We shall give an example
later.

As usual, non-negativity leads to stronger results.

Corollary 2.14. Suppose X = (Xn : n ≥ 0) is a non-negative supermartingale, and T is an
almost surely finite stopping time. Then E[XT ] ≤ E[X0].
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2.3 The martingale convergence theorem

We are ready to state and prove our first general theorem concerning martingales. The Mar-
tingale Convergence Theorem, due to J.L. Doob, is arguably the central result in martingale
theory.

Theorem 2.15. [Martingale convergence theorem] Let X = (Xn : n ≥ 0) be a super-
martingale that forms a bounded sequence in L1, that is,

sup
n≥0

E[|Xn|] <∞.

Then X∞ = limn→∞Xn exists almost surely, and E[|X∞|] <∞.

A few remarks are in order. It is important to note that the theorem only asserts the
existence of a pointwise limit; convergence in L1 does not hold in general without additional
hypotheses. The proof is not constructive, and does not provide us with a means to obtain
X∞ directly.

The basic ideas of the proof is to count the number of upcrossings completed by the process
X. The intuition is that if the process does not traverse any interval infinitely often, then it
has to converge since the L1-boundedness condition prevents it from escaping to infinity.

Definition 2.16. Let (xk)
∞
k=0 be a real sequence, and a, b ∈ R with a < b be given. Set

N0 = −1, and define, for k = 1, 2, . . .,

N2k−1 = inf{k > N2k−2 : xk ≤ a} N2k = inf{k > N2k−1 : xk ≥ b}.

The number of upcrossings of [a, b] completed by the sequence by n ≥ 1 is defined by

Un[a, b] = Un({xk}, [a, b]) = sup{k ≥ 0: N2k ≤ n}. (2.1)

We shall mostly be interested in the case where the sequence is given by a martingale
X = (Xn : n ≥ 0); in that case, we usually write Un[a, b] or Un(X, [a, b]) to denote the number
of upcrossings completed by the process by time n. It is worth thinking about upcrossings
from the point of view of gambling strategies. We would then try to start betting when a
random walk is about to enter an upcrossing of [a, b], and abstain otherwise; at the end of
the upcrossing we would then have made a profit of at least b − a units. It turns out (see
Example sheet) that this strategy produces another martingale.

We need two lemmas, one from real analysis (which we state without proof), and one that
addresses upcrossings associated with supermartingales, and is of some independent interest.

Lemma 2.17. Let (xk)
∞
k=1 be a real sequence. Then limk→∞ xk exists in R ∪ {±∞} if and

only if Un({xk}, [a, b]) <∞ for all a, b ∈ Q with a < b.

Lemma 2.18. [Doob’s upcrossings lemma] Let X = (Xn : n ≥ 0) be a supermartingale,
and let a, b ∈ R, with a < b. Then

(b− a)E[Un[a, b]] ≤ E[(Xn − a)−]

for all n ≥ 0.
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Proof. We begin by recording the basic observation that

X2k −XN2k−1
≥ b− a, k ≥ 1; (2.2)

this follows directly from the definition of the times N2k−1 and N2k. Next, we check that the
N2k−1 and N2k are stopping times for the natural filtration of X.

Now consider the sum
n∑
k=1

(XN2k∧n −XN2k−1∧n).

By definition, we have N2k ∧ n ≥ N2k−1 ∧ n, and both N2k ∧ n and N2k−1 ∧ n are bounded
stopping times. We now apply the Optional Stopping Theorem 2.13 to the supermartingale
X, and obtain

E[XN2k∧n −XN2k−1∧n] = E[XN2k∧n]− E[XN2k−1∧m] ≤ 0,

and thus

E

[
n∑
k=1

(XN2k∧n −XN2k−1∧n)

]
≤ 0.

On the other hand, we have

n∑
k=1

(XN2k∧n −XN2k−1∧n) =

Un[a,b]∑
k=1

(XN2k
−XN2k−1

) + (Xn −XN2Un[a,b]+1)1(N2Un+1 ≤ n)

≥ (b− a) · Un[a, b] + (Xn −XN2Un[a,b]+1)1(N2Un+1 ≤ n),

by the estimate (2.2). The second term on the far right can be bounded by below by

(Xn −XN2Un[a,b]−1)1(N2n−1 ≤ n) ≥ −(Xn − a)−;

we are simply maximizing our possible gambling losses during the last interval (we could be
ahead).

Finally, we take expectations,

0 ≥ E

[
n∑
k=1

(XN2k∧n −XN2k−1∧n)

]
≥ (b− a)E[Un[a, b]]− E[(Xn − a)−],

and the theorem follows after rearranging.

We now prove the martingale convergence theorem.

Proof of Theorem 2.15. We continue to use the notation adopted in the proof of the upcross-
ing inequality.

Let us define, for a, b ∈ Q with a < b,

U∞[a, b] = lim
n→∞

Un[a, b].
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We first argue that
P(U∞[a, b] <∞) = 1.

It follows directly from 2.18 that

(b− a)E[Un[a, b]] ≤ |a|+ E[|Xn|],

and by the L1-boundedness assumption,

(b− a)E[Un[a, b]] ≤ |a|+ sup
n

E[|Xn|] <∞.

Now Un[a, b] ↑ U∞[a, b], and hence, by the monotone convergence theorem, E[U∞[a, b]] <∞,
and so the limit is finite almost surely.

The rest of the proof is in essence a consequence of our deterministic lemma concerning
upcrossings. Namely, we write{
ω ∈ Ω: lim

n→∞
Xn(ω) does not exist

}
=

⋃
a,b∈Q, a<b

{
lim inf

n
Xn(ω) < a < b < lim sup

n
Xn(ω)

}
.

Each set in the union is contained in the event {U∞[a, b] =∞}, which we know occurrs with
probability 0. A countable union of sets of sets with probability 0 has probability 0, and so

P
(

lim
n→∞

Xn(ω) does not exist
)

= 0.

Thus Xn → X∞ almost surely. An application of Fatou’s lemma yields

E[|X∞|] ≤ lim inf
n

E[|Xn|] ≤ sup
n

E[|Xn|],

and so X∞ ∈ L1, as claimed.

2.4 Doob’s inequalities

In applications where martingales feature, it is often of interest to control the maximum of
a martingale over a time interval. This maximum will be denoted by

X∗n = sup
0≤k≤n

|Xk|.

For instance, if we wish to establish convergence results for a family of stochastic processes
indexed by a parameter α, one strategy is to extract a martingale from the process, and then
use bounds of the type presented here to reduce the problem to controlling the asymptotics
of the single random variable |Xn| in Lp, in terms of α.

Theorem 2.19. [Doob’s maximal inequality] Let X = (Xn : n ≥ 0) be a non-negative
submartingale. Then, for λ ∈ R,

λP(X∗n ≥ λ) ≤ E[Xn1(X∗n ≥ λ)] ≤ E[Xn].
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Proof. Let λ ∈ R be given, and consider the (not necessarily bounded) stopping time T =
inf{k ≥ 0: Xk ≥ λ}. Then

{T ≤ n} = {X∗n ≥ λ}. (2.3)

Now with n given as in the theorem, we consider the bounded stopping time T ∧ n, and
apply the Optional Stopping Theorem 2.13 to get

E[Xn] ≥ E[XT∧n].

We next write
E[XT∧n] = E[XT1(T ≤ n)] + E[Xn1(T > n)],

and note that on {T ≤ n}, we have XT ≥ λ, so that

E[XT∧n] ≥ λP(T ≤ n) + E[Xn1(T > n)]. (2.4)

Rearranging (2.4), we find that

λP(T ≤ n) ≤ E[Xn]− E[Xn1(T > n)] = E[Xn1(T ≤ n)].

Reinterpreting everything using (2.3), we arrive at the first inequality of the theorem.

The second inequality follows directly.

Theorem 2.20. [Doob’s Lp-inequality] Let X be a martingale, or a non-negative sub-
martingale. Then, for all p > 1,

‖X∗n‖p ≤
p

p− 1
‖Xn‖p.

Proof. It is enough to prove the statement for a non-negative submartingale. For if X is a
martingale, then |X| is a non-negative submartingale by Jensen’s inequality.

Let M < ∞ be fixed, and consider the random variable X∗n ∧M . By Fubini’s theorem, we
have

E[(X∗n ∧M)p] = E
[∫ M

0

pxp−11(X∗n ≥ x)dx

]
=

∫ M

0

pxp−1P(X∗n ≥ x)dx.

By Doob’s maximal inequality,∫ M

0

pxp−1P(X∗n ≥ x)dx ≤
∫ M

0

pxp−2E[Xn1(X∗n ≥ x)]dx,

and using Fubini’s theorem again, we obtain that∫ M

0

pxp−2E[Xn1(X∗n ≥ x)]dx =
p

p− 1
E[Xn · (X∗n ∧M)p−1].

An application of Hölder’s inequality (note that 1/q = (p− 1)/p) yields

p

p− 1
E[Xn · (X∗n ∧M)p−1] ≤ p

p− 1
‖Xn‖p · (‖(X∗n ∧M)‖p)p−1 ,
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and we conclude that

E[(X∗n ∧M)p] ≤ p

p− 1
‖Xn‖p · ‖(X∗n ∧M)‖p−1

p .

Dividing by the second factor on the right, we obtain

‖X∗n ∧M‖p ≤
p

p− 1
‖Xn‖p

Since X∗n ∧M ↑ X∗n as M → ∞, and all the random variables are non-negative, an appeal
to the monotone convergence theorem completes the proof.

Exponential bounds are often useful. Here is a very simple example: applying Doob’s max-
imal inequality to the submartingale Yn = exp(θXn), we obtain

P(X∗n ≥ λ) ≤ e−θλE[eθXn ],

and we can now optimize over θ ∈ R to make the bound as effective as possible. Another
result in this vein is the Azuma-Hoeffding inequality, which states that if |Xn+1 −Xn| ≤ cn
for all n ≥ 1, then

P (X∗n > λ) ≤ 2 exp

(
− λ2

2
∑n

k=1 c
2
k

)
.

See Example Sheet 2 for a proof.

2.5 Lp-convergence for martingales

We return to the question of convergence of martingales. We already know that an L1-
bounded martingale converges almost surely. However, as is often the case of L1, we need
to impose additional assumptions in order to deduce convergence in the space.

Pleasantly, the situation is better when p > 1; in that case boundedness in Lp, that is

sup
n≥0
‖Xn‖p <∞,

is sufficient for convergence in Lp, essentially because of Doob’s inequality. Moreover, Lp-
bounded martingales can be described in terms of closed martingales.

Theorem 2.21. Let p > 1, and let X = (Xn : n ≥ 0) be a martingale. Then the following
are equivalent:

1. X is bounded in Lp.

2. X converges almost surely and in Lp.

3. There exists a random variable X such that Xn = E[X|Fn].
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Proof. We begin by showing that (1 ) implies (2 ).

On a probability, Lp-boundedness implies boundedness in L1. Hence X∞ = limn n→∞Xn

exists almost surely, and is an integrable random variable. In fact, X∞ ∈ Lp since, by Fatou’s
lemma,

‖X∞‖p ≤ (lim inf
n
‖Xn‖p)1/p,

and lim infn ‖Xn‖p ≤ supn ‖Xn‖p.
Now consider the random variables Yn = Xn−X∞; we shall show that there exists a random
variable in Lp that dominates Yn, n ≥ 1. Doob’s Lp-inequality tells us that

‖X∗n‖p ≤
p

p− 1
‖Xn‖p ≤

p

p− 1
sup
n
‖Xn‖p <∞,

and then, since X∗n is a non-decreasing sequence, we can apply the monotone convergence
theorem to X∗∞ = limnX

∗
n and obtain

‖X∗∞‖p <∞.

Now |Xn −X∞| ≤ 2|X∗∞|, and thus Yn → 0 in Lp.

Next, we show that (2 ) implies (3 ). By assumption, X∞ ∈ Lp; what we shall show is that
E[X∞|Fn] = Xn almost surely, for each n.

Fixing an n ≥ 1, we have E[Xk|Fn] = Xn for k ≥ n, by the martingale property. Thus

E[|Xn − E[X∞|Fn]|p] = E[|E[Xk −X∞|Fn]|p].

By the contractivity of conditional expectation then,

‖Xn − E[X∞|Fn]‖p ≤ ‖Xk −X∞‖p;

but the right-hand side can be made arbitrarily small by picking k ≥ n large enough, since
Xn → X∞ in Lp. Hence Xn = E[X∞|Fn] almost surely.

That (3 ) implies (1 ) follows from the contractivity of conditional expectation on Lp.

We finally address the case when p = 1. To do this, we need to introduce another concept.

Definition 2.22. A collection (Xj)j∈J of random variables is uniformly integrable (in brief,
UI) if

sup
j∈J

E[|Xj|1(|Xj| > M)→ 0 as M →∞.

A martingale X = (Xn : n ≥ 0) is said to be a uniformly integrable (UI) martingale if the
(Xn) form a uniformly integrable collection of random variables.

A uniformly integrable family is bounded in L1 but the converse is false. However, if a col-
lection of random variables is bounded in Lp, for some p > 1, then it is uniformly integrable.

We are not imposing any assumptions about countability in the definition of uniform inte-
grability.
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Theorem 2.23. Let X be an integrable random variable on (Ω,F ,P). Then the family of
random variables given by

{E[X|G] : G is a sub σ-algebra of F}

is uniformly integrable.

The relevance of uniform integrability in the context of convergence of martingales follows
from the next lemma. We omit the proof.

Lemma 2.24. Let (Xn)∞n=1 and X be integrable random variables, and suppose Xn → X

almost surely as n→∞. Then Xn
L1

→ X if and only if (Xn)∞n=1 is UI.

Armed with this lemma, we can adapt the proof in the Lp setting to obtain the following
definitive theorem.

Theorem 2.25. Let X = (Xn : n ≥ 0) be a submartingale. Then the following are equivalent:

1. X is uniformly integrable.

2. X converges almost surely and in L1.

3. There exists an integrable random variable X such that Xn = E[X|Fn].

UI martingales have nice optional stopping properties. Suppose X is a UI martingale, and T
is a stopping time, not necessarily bounded. We can then unambiguously define the stopped
random variable

XT =
∞∑
k=1

Xk1(T = k),

and the corresponding stopped process XT as before.

Theorem 2.26. Let X = (Xn : n ≥ 0) be a UI martingale, and let S ≤ T be stopping times.

E[XT |FS] = FS

holds almost surely.

2.6 Some applications of martingale techniques

Random walks arise frequently in applications, and they are in many ways the perfect ex-
amples of martingales in discrete time: simple enough that many associated quantities can
be computed exactly, while at the same time exhibiting interesting and non-trivial behavior.

We define S = (Sn : n ≥ 0) by setting S0 = 0 and taking Sn =
∑n

k=1 for n = 1, 2, . . ..
The process S is known as the simple symmetric random walk on the integers, and we have
already seen that it is a martingale with respect to the natural filtration Fn = σ(Xk : k ≥ 1).
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For c ∈ Z, we define the hitting time

Tc = inf{n ≥ 0: Sn = c};

as we have seen previously, this is stopping time. Now suppose a, b ∈ Z+. We wish to
compute the probability that simple symmetric random walk hits −a before b; this is the
quantity P(T−a < Tb). (Imagine two gamblers, A and B, with initial capital a and b,
respectively, playing a fair coin-tossing game with unit stakes. What is the probability that
gambler A loses all his money first?)

Let T = T−a∧Tb. We will argue that E[T ] <∞. If we observe a+b occurrences of +1’s, then
T has definitely been triggered, and such a string of +1’s will arise with probability 2−(a+b).
If one of the first X1, . . . , Xa+b was −1 we discard this block, and consider the next block.
The occurrence of a + b consecutive +1’s independent of the first block, and we see that T
is bounded by a geometric random variable of finite mean times a + b. Thus E[T ] < ∞, as
claimed.

We are therefore in the setting of a martingale S with bounded increments, and a stopping
time with finite expectation. By the optional stopping theorem then,

E[ST ] = E[S0] = 0.

By definition, ST can take one of two values, and so

E[ST ] = −a · P(T−a < Tb) + b · P(Tb < T−a) = 0. (2.5)

Since −a 6= b, we have

P(Ω) = P(T−a < Tb) + P (T−a > Tb) = 1. (2.6)

Using (2.5) and (2.6), we can solve for P(T−a < Tb), and we obtain the so-called gambler’s
ruin estimate

P(T−a < Tb) =
b

a+ b
. (2.7)

(If a = b we get P(T−a < Ta) = 1/2, which agrees with our intuition.)

It is important to be careful when applying the optional stopping theorem; when deriving
(2.7) we put some effort into showing that E[T−a ∧ Tb] < ∞ for all a, b 6= 0. Here is an
example of how things can go wrong. Since T1 is a stopping time, E[ST1∧n] = E[S0] for all
n. However, ST1 = 1, and

1 = E[ST1 ] 6= E[S0] = 0.

(The walk can spend an arbitrarily long period in Z− before coming up to x = 1, and we
are preventing this when considering T1 ∧ n.)

Here is another example of when stopping times with finite expectation behave much like
constant times. Consider an i.i.d. sequence of random variables (Xk)

∞
k=1 having E[X1] = µ <

∞. (The statement that will follow is valid for simple symmetric random walk, but it is not
as striking then.) We again form Sn =

∑n
k=1Xk. By linearity, we clearly have, for any fixed

n,
E[Sn] = n · E[X1].
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It can be shown that if T is a stopping time with E[T ] <∞, then in fact

E[ST ] = E[T ]E[X1].

This last identity is called Wald’s equation; you will be asked to provide a proof in Example
Sheet 2.

Definition 2.27. Let (Gn)n≤0 be a sequence of σ-algebras with

· · · ⊂ G−2 ⊂ G−1 ⊂ G0 ⊂ F .

A stochastic process X = (Xn : n ≤ 0) is said to be a backwards martingale if X is adapted
to (Gn), the random variable X0 is integrable, and

E[Xn+1|Gn] = Xn almost surely.

We note that the tower property of conditional expectation implies that

E[X0|Gn] = Xn a.s.

for all n < 0. It is a pleasant feature of backwards martingales that they are automatically
uniformly integrable: this follows from the above equality and Theorem 2.23, and ultimately
from the assumption that X0 ∈ L1. This means that, unlike in the case of martingales, we
do not need to distinguish between p > 1 and p = 1 in the statement of the martingale
convergence theorem.

Theorem 2.28. [Martingale convergence theorem for backwards martingales] Let
X = (Xn : n ≤ 0) be a backwards martingale with respect to the filtration (Gn)n≤0. Suppose
X0 ∈ Lp, for some 1 ≤ p <∞, and set G−∞ =

⋂
n≤0 Gn.

Then Xn converge almost surely, and in Lp, to the random variable X−∞ = E[X0|G−∞] as
n→ −∞.

The proof is similar to the proofs in the preceding sections (it uses upcrossings, Jensen’s
inequality in its conditional form, etc.).

In several of our applications, we will need the notion of tail σ-algebra.

Definition 2.29. Let (Xn)n≥1 be a sequence of random variables. Set Fn = σ(Xn, Xn+1, . . .).
The tail σ-algebra or remote future is defined as

F∞ =
∞⋂
n=1

Fn.

In words, the tail σ-algebra contains those events whose occurrence is unaffected by changing
a finite number of Xk’s. Tail σ-algebras have a very surprising feature.

Theorem 2.30. [Kolmogorov’s 01-law] Let (Xk)k≥1 be a sequence of i.i.d. random vari-
ables, and set Fn = σ(Xk, k ≥ n). Then F∞ is trivial:

P(A) ∈ {0, 1} for every A ∈ F∞.
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Proof. Let Gn = σ(Xk, k ≤ n) and A ∈ F∞. Since Gn is independent of Fn+1, we have that

E[1(A)|Gn] = P(A) a.s.

Theorem 2.25 gives that E[1(A)|Gn] converges to E[1(A)|G∞] a.s. as n → ∞, where G∞ =
σ(Gn, n ≥ 0). Hence we deduce that

E[1(A)|G∞] = 1(A) = P(A) a.s.,

since F∞ ⊆ G∞, and the theorem follows.

Kolmogorov’s 01-law has ramifications for random infinite series.

Example 2.31. Let X1, X2, . . . be a sequence of independent random variables, and let Sn =
X1+· · ·+Xn. Then the event {limn→∞ Sn exists} belongs to F∞, but {limn→∞ Sn ≥ 0} /∈ F∞.

Thus, Kolmogorov’s 0-1 law implies that a random series either converges almost surely,
or with probability zero. It turns out that the former occurs provided a simple variance
condition is satisfied.

Theorem 2.32. [Kolmogorov’s inequality] Suppose (Xk)k≥1 are independent random
variables with E[Xk] = 0 and var(Xn) = σ2

k <∞, and set Sn = X1 + · · ·+Xn. Then

P
(

sup
k≤n
|Sk| > λ

)
≤ var(Sn)

λ2
=

1

λ2

n∑
k=1

σ2
k.

Proof. See Example Sheet 2.

Theorem 2.33. Suppose X1, X2, . . . are independent with E[Xn] = 0 and var(Xk) = σ2
k <∞.

If
∑∞

n=1 σ
2
k <∞ then

∞∑
k=1

Xk(ω) = lim
N→∞

N∑
k=1

Xk(ω)

exists for almost every ω.

Proof. Set SN =
∑N

k=1Xk. Then, by the previous theorem,

P
(

sup
N≤k≤M

|Sk − SN | > ε

)
≤ 1

ε2

M∑
k=N+1

σ2
k.

We now let M →∞ in this inequality, and so obtain

P
(

sup
N≤k
|Sk − SN | > ε

)
≤ 1

ε2

∞∑
k=N+1

σ2
k → 0, N →∞,

since the full series
∑

k σ
2
k converges. But then

P
(

sup
k,l≥N

|Sk − Sl| > 2ε

)
≤ P

(
sup
k≥N
|Sk − SN | > ε

)
→ 0, N →∞.

This means Sn(ω) is a Cauchy sequence for almost all ω ∈ Ω, and hence the series converges
almost surely.
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Example 2.34. [Random harmonic series] Let X1, X2, . . . be independent random vari-
ables with P(Xk = 1) = 1/2 and P(Xk = −1) = 1/2. Then the series

∑∞
k=1Xk/k converges

almost surely.
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3 Stochastic processes in continuous time

3.1 Basic definitions

Let (Ω,F ,P) be a probability space. In the first half of the course, we restricted ourselves
to the study of real-valued (or integer-valued) stochastic processes in discrete time, and our
main focus was on martingales. These are sequences of random variables indexed by N
(or Z in the case of backwards martingales), satisfying the key requirement that they be
measurable with respect to a filtration of the underlying space, an increasing sequence of
σ-algebras contained in F , and possess a certain conditional expectation property.

We now wish to extend the theory to stochastic processes indexed by a continuous parameter
t ∈ I, where I ⊆ R+ is a possibly infinite interval. It seems clear how we should attempt to
proceed. We define a filtration (Ft)t to be an increasing collection of sub σ-algebras of F :

Fs ⊂ Ft ⊂ F , s ≤ t.

Definition 3.1. A stochastic process in continuous time is a collection (Xt : t ∈ I) of random
variables on Ω. A process X is adapted to a filtration (Ft) if Xt is Ft-measurable for all t ∈ I.

Definition 3.2. Let (Ω,F , (Ft),P) be a filtered probability space. An adapted process
X = (Xt : t ∈ I) is a martingale with respect to (Ft)t if E[|Xt|] <∞ and, for s ≤ t,

E[Xt|Fs] = Xs almost surely.

Submartingales and supermartingales are defined in the same fashion, with the appropriate
choice of inequalities.

Definition 3.3. A stopping time T on (Ω,F , (Ft),P) is a random variable T : Ω → [0,∞]
such that {T ≤ t} ∈ Ft, for all t ∈ I.

These definitions all feel natural, but as soon as we start trying to prove theorems in this
framework, we realize that we will run into difficulties. The main problems we encounter
are related to measurability. Recall that the definition of a σ-algebra only requires countable
unions of sets in the algebra to belong to the σ-algebra. When we work with processes
indexed by a continuous parameter, we need to form uncountable unions, intersections, and
so on, and it turns out that such sets often fail to be measurable.

Let us illustrate these problems by considering an archetypal stopping time: the hitting time
of a Borel set A ⊂ R:

TA = inf{t : Xt ∈ A}.
In discrete time, we proved this was indeed a stopping time by decomposing the event
{TA ≤ n} as

{TA ≤ n} =
⋃

0≤k≤n

{Xk ∈ A},

and using that this was then a countable union of measurable sets. In this setting, the
analogous approach leads to an uncountable union, and there is nothing to guarantee that
this union remains measurable–indeed, in general, it does not.
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Example 3.4. Let X ′ be a random variable with P(X ′ = 1) = P(X ′ = −1) = 1/2. We
introduce the process

Xt =

{
t, if t ∈ [0, 1]
1 + (t− 1)X ′, if t > 1

.

Let (FX), FXt = σ(Xs, s ≤ t), denote the natural filtration associated with the process
X. The set A = (1, 2) is open and hence a Borel set, and the associated hitting time is
TA = inf{t ≥ 0 : Xt ∈ A}. In view of how the process is defined, {TA ≤ 1} /∈ F1, and so TA
is not a stopping time.

In this example, the information contained in F1 is simply not sufficient for us to be able to
tell what X will do “immediately after” t = 1, and whether X will go on to enter A or not.
This suggests that imposing some kind of continuity requirement on (Ft)t might be helpful.

Before we address this issue we should think about different ways to view stochastic processes.
In discrete time, we can equip the index set N with the σ-algebra P(N) that contains all
subsets of N. Then the mapping

(n, ω) 7→ Xn(ω)

is measurable with respect to the product σ-algebra F ⊗ P(N) due to countability. By
contrast, if we fix t ∈ I, and turn to a process in continuous time, then ω 7→ Xt(ω) is again
a random variable, but we cannot argue in the same way and assert that

(t, ω) 7→ Xt(ω)

is automatically measurable with respect to F ⊗B(R). In fact, we would like the following,
stronger, type of measurability property to hold.

Definition 3.5. A stochastic process (Xt : t ∈ I) is said to be progressively measurable if,
for any A ∈ B(R) and t ≥ 0,

{(s, ω) ∈ [0, t]× Ω : Xs(ω) ∈ A} ∈ B([0, t])⊗Ft.

In order to proceed, let us require more of our processes. We say that a process X = (Xt : t ∈
I) is continuous if

t 7→ Xt(ω), ω ∈ Ω fixed,

is a continuous function of the real variable t. As ω ∈ Ω varies, these functions of t are called
the sample paths of the process. Intuitively, a sample path is what we see when we track
one particular outcome or realization of a random phenomenon, such as physical Brownian
motion, over a period of time, and we often think of processes we observe in nature as being
(at least) continuous. The key point is that a continuous function on I ⊆ R+ is determined by
its values on a countable dense subset, for instance Q or the dyadic rationals, and this allows
us to bypass the problems associated with uncountable unions and intersections by restricting
ourselves to countable operations, and then extending the results we get by continuity. This
is a very appealing strategy, as it suggests that our results on martingales in discrete time
should be readily extendable, provided we work in the continuous setting.

There are, however, many natural processes, such as the Poisson process we shall encounter
at the end of this chapter, that exhibit a weaker type of continuity. We will work in a
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slightly more general framework in order to be able to accommodate such jump processes.
We will be concerned with functions t 7→ f(t) that are right-continuous and admit left limits,
and processes whose sample paths possess these properties. Such processes are frequently
called cadlag from the French “continu à droite limité à gauche”. The abbrevation RCLL,
or right-continuous with left limits, also appears in the literature. It should be pointed out
that cadlag functions can only have jump discontinuities; such discontinuities occur when

∆f(t) = f(t)− lim
s↑t

f(s) 6= 0 for some t ∈ R+.

We now set down notation for spaces of continuous functions. We let C(R+, E) be the space
of continuous functions f : R+ → E; here, it is understood that E is a topological space.
The space D(R+, E) consists of all cadlag functions. For the time being, we take E = R, but
we shall also consider E = Rd in this course. The spaces C(R+, E) and D(R+, E) can be
endowed with topologies that turn them into Polish spaces. (We shall return to this shortly.)

The following lemma shows that real-valued cadlag functions are reasonably well-behaved,
and that we can argue “countably” when dealing with cadlag processes.

Lemma 3.6. For each cadlag function f : [a, b] → R, and each ε > 0, there exists a finite
partition P = {a = t0 ≤ t1 ≤ · · · ≤ tn = b} such that

sup{|f(x)− f(y)| : x, y ∈ [tj−1, tj), j = 1, . . . , n} < ε.

In particular, the set ∆f = {t ∈ [a, b] : ∆f(t) 6= 0} is at most countable.

Proof. Let ε > 0 be given. Since f is right-continuous at a and has limits from the left at any
t > a, there exists an interval [a, T0), with T0 ≤ b, that admits such a partition. Let T ∗0 denote
the maximal such T0, and suppose T ∗0 < b. Now f is again right-continuous at the point T ∗0 ,
and so there must exist some T ∗0 < T1 ≤ b such that sup{|f(x)− f(y)| : x, y ∈ [T ∗0 , T1)} < ε,
and so the previous partition can be extended. This contradicts the maximality of T ∗0 , and
thus we must have T0 = b, and the first statement follows.

To establish the second assertion, note that ∆f =
⋃∞
k=1{t : ∆f(t) > 1/k}.

Let us return to processes to see how our cadlag assumptions pay off. Suppose X = (Xt : t ∈
I) is cadlag and adapted; we return to the mapping

(ω, t) 7→ Xt(ω)

and the question of progressive measurability. By right-continuity of X at s ∈ [0, t], we can
write

Xs(ω) = lim
n→∞

X(n)
s (ω).

using the dyadic construction

X(n)
s (ω) = X(k+1)t/2n(ω), for

kt

2n
< s ≤ (k + 1)t

2n
.

Note the use of the right-hand endpoint on each dyadic interval. Each X(n) is F ⊗B((0, t])-
measurable, and hence Xt(ω) is F ⊗B((0, t])-measurable as a limit of measurable functions.
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Lemma 3.7. Suppose X is a cadlag process adapted to (Ft)t. Then X is progressively
measurable.

We return to stopping times. For a cadlag process X and a finite stopping time, we set
XT (ω) = XT (ω)(ω). We obtain a stopped process XT = (XT

t : t ∈ I) by setting XT
t = XT∧t.

The stopped σ-algebra is defined as before,

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft ∀t ∈ I}

We now show that a continuous-time analog of Proposition 2.8 holds, provided we agree to
work with cadlag processes.

Proposition 3.8. Let X = (Xt : t ∈ I) be a cadlag adapted process, and let S and T be
stopping times with respect to (Ft). Then the following holds.

1. S ∧ T is a stopping time,

2. if S ≤ T , then FS ⊆ FT ,

3. XT1(T <∞) is an FT -measurable random variable,

4. XT is adapted.

Proof. The first two items are straight-forward.

We prove that the third assertion holds. We first note that a random variable Y is FT -
measurable precisely when Y 1(T ≤ t) is Ft-measurable for every t ≥ 0. Namely, if A is a
Borel set, then

{Y ∈ A} ∩ {T ≤ t} = {Y 1(T ≤ t) ∈ A} ∩ {T ≤ t},
and since T is a stopping time, the latter intersection is in Ft if Y 1(T ≤ t) is Ft-measurable.

Next, we approximate the stopping time T by the dyadic random variable Tn = 2−nd2nT e.
As n → ∞, we note that Tn ↓ T and Tn = ∞ whenever T = ∞. Since {Tn ≤ t} = {T ≤
2−nb2ntc}, we have {Tn ≤ t} ∈ Ft, and so (Tn) forms a sequence of stopping times.

We denote by Dn = {k/2n : k ∈ N} the set of dyadic rationals of level n. From the
representation

XTn∧t = Xt1(Tn > t) +
∑

{d∈Dn : d≤t}

Xd1(Tn = d),

it follows that XTn∧t is Ft-measurable for each n. Since X is a cadlag process, and Tn
converges from above,

XT1(T < t) = lim
n→∞

XTn∧t1(T < t),

and it follows that XT1(T < t) is Ft-measurable. Finally, we note that

XT1(T ≤ t)1(T <∞) = Xt1(T = t) +XT1(T < t),

which is a sum of Ft measurable random variables, and so (3.) follows.

To deduce the last item from the third, we consider the stopping time T ∧ t. Then XT∧t
is FT∧t-measurable, and by (2.), FT∧t ⊂ Ft. It follows that XT is adapted with respect to
(Ft).
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We are now in a position to deal with hitting times. We restrict ourselves to continuous
processes, and begin with the case of closed sets.

Proposition 3.9. Suppose A is a closed set and X = (Xt : t ∈ I) is a continuous process,
adapted to the filtration (Ft)t. Then the hitting time of A,

TA = inf{t ∈ I : Xt ∈ A}
is an (Ft)t-stopping time.

Proof. Let d(x,A) = infy∈A |x− y| denote the distance from a point x ∈ R to the closed set
A.

Suppose that, for some sequence (qn) ⊂ Q ∩ [0, t] ∩ I, the distance d(Xqn(ω), A) tends to 0
as n → ∞. Then by boundedness there exists a subsequence (qnk) such that qnk → s ≤ t,
and since X is continuous, d(Xqnk

, A)→ 0. Since A is a closed set, we deduce that Xs ∈ A.

Conversely, if Xs ∈ A for some s ∈ [0, t] ∩ I, then Xqn → Xs for any sequence of rational
numbers in [0, t] ∩ I that converges to s, and hence also d(Xqn , A)→ 0 for such a sequence.

Thus, the event {TA ≤ t} can be represented using an enumeration of the rationals in [0, t]∩I,

{TA ≤ t} =
∞⋂
k=1

⋃
s∈Q∩[0,t]∩I

{d(Xs, A) ≤ 1/k} ∈ Ft,

and this shows that TA is a stopping time.

Before we proceed to deal with hitting times for open sets, we make the notion of “continuity”
of a filtration precise.

Definition 3.10. Let (Ft)t∈R+ be a filtration. For each t we define

Ft+ =
⋂
ε>0

Ft+ε.

If Ft+ = Ft for all t, the filtration (Ft) is said to be right-continuous.3

In other words, if a filtration is right-continuous, then “infinitesimal sneak previews” of
future events make no difference.

One proves that for open sets U ⊂ R, hitting times are stopping times with respect to the
(potentially bigger) σ-algebras (Ft+)

Proposition 3.11. Suppose U is an open set in R and (Xt : t ∈ I) is a continuous process,
adapted to the filtration (Ft). Then

TU = inf{t ∈ I : Xt ∈ U}

is an (Ft+)-stopping time.

3Thus, right-continuity is used in two contexts: to describe a property of sample paths, and to describe
a property of σ-algebras.
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Proof. Since X is adapted and U is open, {Xs ∈ U} ∈ Fs. By continuity,

{TU < t} =
⋃

s∈Q∩[0,t]∩I

{Xs ∈ U},

and since this is a countable union for each t, we have {TU < t} ∈ Ft. Next, we may write
{TU ≤ t} =

⋂
k{TU < t+ 1/k}, and this intersection belongs to Ft+ by definition.

In general, it is not true that TU is a stopping time with respect to (Ft).

3.2 Canonical processes and sample paths

We return to our previous discussion concerning the definition of a stochastic processes in
continuous time. We have realized that it is desirable to ensure our stochastic processes,
or more precisely, their sample paths ω 7→ Xt(ω), enjoy certain regularity properties. The
question still remains whether any reasonable such processes exist, and if so, how to describe
them. So far, we have primarily been viewing a stochastic process as a collection of random
variables indexed by t ∈ I ⊆ R, and it is not clear that prescribing the distribution of each
random variable is consistent with requiring continuity properties of sample paths.

It is useful to change perspective at this point. Consider a space of functions, contained in
the collection of all mappings

RI = {f : I → R},
distinguished by some desirable property. Two natural such spaces are C(I,R), the space of
continuous functions, or D(I,R), the space of cadlag functions. As was mentioned earlier,
these spaces can be endowed with reasonable topologies. In the case of C(I,R), the topology
induced by

‖f‖∞ = sup{|f(x)| : x ∈ I}
will do; it can be shown that it turns C(I,R) into a complete and separable space with
metric induced by the norm. (If I is unbounded, some modifications involving cutoffs need
to be made, but we will not dwell on that here.) For the sake of definiteness, let us focus
on this case for now. Once we have a topology, it makes sense to speak of open sets and
Borel sets in C(I,R), and the Borel σ-algebra generated by the open sets. We can then
introduce random variables taking values in a function space. By this we simply mean a
measurable mapping X : Ω → C(I,R) from some probability space (Ω,F ,P) into C(I,R),
and a stochastic process can be viewed as a single random variable. The law of the process
X is the measure µX on C(I,R) that is obtained as the push-forward of P,

µX(A) = P(X ∈ A), A ∈ B(C(I,R)).

To connect the abstract viewpoint with our previous definition of a stochastic process, we
introduce the coordinate processes (Xt, t ∈ I), where Xt : C(I,R)→ R, by setting

ω ∈ C(I,R) 7→ Xt(ω) = ω(t).

The coordinate mapping is measurable with respect to the Borel σ-algebra of C(I,R) (see
Example Sheet 3 for a proof), and so induces a real-valued stochastic process on I. While
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the abstract setup is elegant, it is not so easy to construct measures on spaces of functions,
or measurable mappings into them.

Since the full law µX of a stochastic process is a rather unwieldy object to work with in
practice, it is convenient to find simpler objects that still carry sufficient information about
X.

Definition 3.12. Let J = (t1, . . . , tn) ⊂ I be a finite set. The finite-dimensional distribution
of a stochastic process (Xt : t ∈ I) with index set (t1, . . . , tn) is defined as the law µJ of the
RJ -valued random variable (Xt1 , . . . , Xtn).

This suggests a strategy for constructing stochastic processes. First, we specify what proper-
ties we would like the finite-dimensional distributions of the process to have. This is relatively
easy. Then, provided the finite-dimensional distributions satisfy certain consistency criteria,
a result of Kolmogorov asserts the existence of a measure on the space RI having precisely
these finite-dimensional distributions, and so the existence of our stochastic process. It is
not clear, however, that this measure is supported on the spaces C(I,R) or D(I,R), that
is, that the sample paths of a process constructed in this way are continuous or cadlag–this
requires additional work.

Definition 3.13. Let X and X ′ be two processes defined on the same probability space
(Ω,F ,P). We say that X ′ is a version of X if

P(Xt = X ′t) = 1 for every t.

We say that X and X ′ are indistinguishable if

P(Xt = X ′t ∀t ∈ I) = 1.

Note carefully where the quantifiers are placed in these definitions.

The sample paths of indistinguishable processes have the same properties almost surely. Two
versions of the same process have the same finite-dimensional distributions,

P((Xt1 , . . . , Xtn) ∈ A) = P((X ′t1 , . . . , X
′
tn) ∈ A), A ⊂ B(RJ),

but they do not necessarily enjoy the same sample path properties. Here is an example of
two different processes whose finite-dimensional distributions are the same, but whose path
properties are different.

Example 3.14. Define X = (Xt : t ∈ [0, 1]) to be identically 0. Next, let T be any random
variable on [0, 1] with continuous distribution. (For instance, the uniform distribution will
do.) Now define a second process by setting X ′t = 1(T = t). Then X ′ is a version of
X, since for every t, P(Xt = X ′t) = P(T 6= t) = 1. Moreover, X and X ′ have the same
finite-dimensional distributions: they are point masses at the origin.

However,
P(X ′t = Xt ∀t ∈ [0, 1]) = P(X ′t = 0 ∀t ∈ [0, 1]) = 0.

and so X ′ is not indisinguishable from X, and moreover X ′ is not continuous.
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We end this section by introducing another technical concept. Let (Ω,F , (Ft),P) be a filtered
probability space, and let N denote the collection of sets in Ω that are contained in some
set of measure 0 with respect to P.

Definition 3.15. We say that a filtration (Ft) satisfies the usual hypotheses4 if it is right-
continuous, that is Ft = Ft+ for all t, and Ft contains N .

The requirement of right-continuity is more substantial than the other condition. Namely,
we can always define an augmented filtration (F̄t)t by setting

F̄t = σ(Ft,N ),

and one proves that a Ft-adapted process remains F̄t-adapted, and satisfies E[Xt|Fs] =
E[Xt|F̄s] a.s.

3.3 Martingale regularization theorem

We have discussed cadlag processes at some length, but has not clear to what extent this
hypothesis imposes restrictions on the main class of stochastic processes we are interested in
at the moment, namely martingales in continuous time. Fortunately, the answer turns out
to be rather encouraging.

Theorem 3.16. [Martingale regularization theorem] Suppose (Xt : t ∈ I) is a martin-
gale with respect to a given filtration (Ft)t. Then there exists a process X ′ with the following
properties:

• the sample paths of X ′ are cadlag almost surely

• X ′ is a martingale with respect to the filtration (F∗t ) given by F∗t = σ(Ft+,N ), and
satisfies

Xt = E[X ′t|Ft] almost surely,

for all t ∈ I.

If the filtration (Ft) satisfies the usual hypotheses, then X ′ is a cadlag version of X.

Proof. As a first step, we show that we have good control over certain discrete-time martin-
gales that we can extract from X.

Let P ⊂ Q ∩ I be bounded, and consider a finite subset Q = {q1, . . . , qn} ⊂ P , ordered in
increasing order. The process XQ = (XQ

k : 1 ≤ k ≤ n) defined by setting XQ
k = Xqk is a

martingale with respect to (Fqk). Since |XQ| is a submartingale, Doob’s maximal inequality
applies and yields

λP
(

sup
1≤k≤n

|XQ
k | > λ

)
≤ E[|Xqn|].

4This terminology is not very exciting, but it is by now standard.
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Since P was assumed bounded , we have, with a suitable choice of T , a uniform bound

λP
(

sup
qk∈Q
|Xqk | > λ

)
≤ E[|XT |] (3.1)

for any finite subset Q ⊂ P . By monotonicity then, after exhausting P by finite subsets Q,
dividing by λ, and letting λ → ∞, we deduce that P(supt∈P |Xt| < ∞) = 1 and so X is
almost surely bounded when restricted to bounded subsets of the rationals.

Now that we have shown that X does not get too big on bounded subsets of rationals, we
count upcrossings to rule out that X fluctuates to much to have a limit. Let J ⊂ I ∩Q be
a bounded time-interval, and pick a, b ∈ Q with a < b. We compute the upcrossings of X
over J using finite Q ⊂ J ,

N([a, b], J) = sup
Q⊂J

N([a, b], Q),

and associate, as before, a martingale XQ with each such subset. Applying Doob’s upcross-
ings theorem, Theorem 2.16, we find that, for some suitable T ,

(b− a)E[Nqn([a, b], Q)] ≤ E[(Xqn − a)−] ≤ E[(XT − a)−];

the last inequality holds due to the fact that (X−a)− is a submartingale. The bound on the
right-hand side is independent of Q, meaning that E[N([a, b], J)] < C follows upon taking
the supremum over all finite Q ⊂ J . Hence N([a, b], J) is almost surely finite for any pair of
rationals a < b, whenever J is bounded.

Still keeping the bounded set J ⊂ I ∩Q fixed, we observe that

P

( ⋂
a,b∈Q,a<b

{N([a, b], J) <∞}

)
= 1, (3.2)

since we are taking a countable intersection of events of probability 1.

We now exhaust I ∩ Q (which may be unbounded) by a sequence of increasing bounded
sets (Jn) consisting of rational numbers. Running the above argument for each one of these
rational intervals, we obtain bounds in terms of E[|XTn|], as in (3.1). Using (3.2) on each Jn
and finally intersecting over n, we obtain a set Ω0 ⊂ Ω with P(Ω0) = 1, and such that X has
the finite-upcrossing property on each Jn for any rationals a < b, and has supJn |Xt| < ∞,
on Ω0.

A lemma from real analysis states that a real-valued function that is bounded on bounded
subsets of the rationals, and has a finite number of (a, b)-upcrossings on every such set, for
any a, b ∈ Q, admits left and right limits at every point. Hence, by our previous reasoning,
the right-hand limit

X ′t+(ω) = lim
s↓t, s∈Q

Xs(ω), ω ∈ Ω0, (3.3)

exists for t ∈ I, as does the corresponding left-hand limit. By setting X ′t(ω) = 0 for every
t ∈ I whenever ω ∈ Ωc

0, and using (3.3) on Ω0, we define a process (X ′t : t ∈ I) that is
adapted to F∗t (since the augmented filtration contains the null sets). The prescription for
X ′ in 3.3 also ensures that X ′ is cadlag since any Xt(ω), ω ∈ Ω0 is right-continuous and has
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left limits. If this were not the case, so that |X ′sn −X
′
t| > ε for some sequence sn ↓ t, then

by considering a rational sequence qn ↓ t having qn > sn and |X ′sn −Xqn| < ε/2, we would
obtain |Xqn −X ′t| ≥ ε/2.

We prove that X ′ is a martingale with respect to (F∗t ), and satisfies E[X ′t|Ft] = Xt for each
t ∈ I. To achieve this, we use results on backwards martingales. Let (qn) ∈ Q be a decreasing
sequence, with qn ↓ t. By definition then, and since X is a martingale, for r > q0,

X ′t = lim
n→∞

Xqn = lim
n→∞

E[Xr|Fqn ] almost surely.

The process (XB
n : n ≤ 0) defined by XB

n = E[Xr|Fq−n ] is a backwards martingale with
respect to the filtration (Fq−k) and so converges, by Theorem 2.31, almost surely and in L1,

lim
n→∞

E[Xr|Fq−n ] = E[Xr|Ft+].

Therefore, the equality
X ′t = E[Xr|Ft+]

follows. We note that Ft ⊂ Ft+, as well as t < r, and so, using the tower property of
conditional expectation and the martingale property of X, we finally arrive at E[X ′t|Ft] =
Xt, almost surely. A similar argument involving backwards martingales establishes that
E[X ′t|F∗s ] = X ′s, almost surely.

When working with martingales in continuous time, we shall typically assume that filtrations
do satisfy the usual hypotheses, and consider cadlag versions of the processes. The previous
theorem shows that this assumption is justifiable.

3.4 Convergence and Doob’s inequalities in continuous time

We are now ready to state the continuous-time analogues of Doob’s inequalities, and the
convergence theorems for martingales. For t > 0, we define, as in the discrete-time setting,

X∗t = sup
s≤t
|Xs|.

The arguments that establish the validity of these results are similar to the ones used in the
proof of the martingale regularization theorem: having the cadlag property at hand allows
us to restrict to countable times, where Doob’s upcrossings theorem, and the other results
in Chapter 2 are available.

Theorem 3.17. [Martingale convergence theorem] Suppose (Xt : t ∈ I) is a cadlag
martingale, bounded in L1. Then there exists a random variable X ∈ L1 such that Xt → X∞
almost surely, as t→∞.

Theorem 3.18. [Doob’s maximal inequality] Let (Xt : t ≥ 0) be a cadlag martingale.
Then, for all λ ≥ 0,

λP(X∗t ≥ λ) ≤ E[|Xt|], t > 0.
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Proof. Let us consider the usual dyadic discretization, with t > 0 given: that is, for n =
1, 2, . . ., we set

Dn = {kt2−n : k = 0, 1, . . . , 2n}.
We then define martingales X(n) and filtrations F (n) by setting

X
(n)
k = X kt

2n
, k = 0, . . . , 2n,

and, similarly,
F (n)
k = F kt

2n
.

Applying Doob’s maximal inequality in discrete time to these martingales, we find that, for
λ > 0,

λP
(

max
k≤2n
|X(n)

k | > λ

)
≤ E[|X(n)

2n |] = E[|Xt|].

We note that the expectation in the right-hand side is independent of n. We next consider
the events

An =

{
sup
s∈Dn
|Xs| > λ

}
, n = 1, 2 . . . .

These events are increasing in n, that is An ⊂ An+1, and since X is cadlag by assumption,{
sup
s≤t
|Xs| > λ

}
=
∞⋃
n=1

An.

Hence,

P
(

sup
s≤t
|Xs| > λ

)
= lim

n→∞
P(An) ≤ 1

λ
E[|Xt|].

To get from strict inequality to inequality, we repeat the argument using a sequence with
λn ↑ λ.

Theorem 3.19. [Doob’s Lp-inequality] Let (Xt : t ≥ 0) be a cadlag martingale. For all
p > 1,

‖X∗t ‖p ≤
p

p− 1
‖Xt‖p, t > 0.

Theorem 3.20. [Lp martingale convergence theorem, p > 1] Let X be a cadlag mar-
tingale and p > 1, then the following statements are equivalent:

1. X is bounded in Lp(Ω,F ,P) : supt≥0 ‖Xt‖p <∞

2. X converges a.s. and in Lp to a random variable X∞

3. There exists a random variable Z ∈ Lp(Ω,F ,P) such that

Xt = E[Z|Ft] a.s.

In the case p = 1, we again need to impose the condition of uniform integrability to have
convergence in L1.

The following continuous-time version of the optional stopping theorem will frequently be of
use to us.
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Theorem 3.21. Let X = (Xt : t ≥ 0) be a cadlag uniformly integrable martingale, and let
S ≤ T be stopping times. Then

E[XT |FS] = XS almost surely.

3.5 Kolmogorov’s continuity criterion

Suppose a stochastic process has been constructed, for instance via finite-dimensional dis-
tributions and extension. Kolomogorov’s continuity criterion provides us with a sufficient
condition for a stochastic process in continuous time to admit a version whose sample paths
have additional regularity properties.

Kolmogorov’s criterion complements the martingale regularization theorem since we are not
assuming that the process X be a martingale.

Theorem 3.22. [Kolmogorov’s continuity criterion] Let X = (Xt : t ∈ [0, T ]) be a
stochastic process. Suppose there exist α > 0, β > 0 such that the condition

E[|Xt −Xs|α] ≤ C|t− s|1+β, s, t ∈ [0, T ],

is satisfied with some constant C <∞.

Then, for every γ ∈ (0, β/α), there exists a verion of X that is (locally) Hölder continuous
with exponent γ. That is, P(Xt = X̃t) = 1 for all t ∈ [0, T ], and, for some almost surely
positive random variable h,

P

(
ω ∈ Ω: sup

s,t∈[0,T ], 0<t−s<h(ω)

|X̃t(ω)− X̃s(ω)|
|t− s|γ

≤ K

)
= 1.

Our proof follows [5].

Proof. We take T = 1 for notational simplicity; our arguments will rely on dyadic partitions
of the unit interval.

Let ε > 0 be given. We begin by invoking Chebyshev’s inequality to obtain

P(|Xt −Xs| > ε) ≤ 1

εα
E[|Xt −Xs|α] ≤ C

|t− s|1+β

εα
. (3.4)

This preliminary estimate shows that Xs → Xt in probability as s→ t.

As a first step towards a stronger statement, we consider dyadic partitions of [0, 1]:

Dn = {k2−n : k = 0, . . . , 2n}, for n = 1, 2, . . . .

The union D =
⋃∞
n=1Dn forms a countable dense subset in the unit interval. We pick

ε = 2−γn, with γ < β/α. Then, for two adjacent dyadic rationals, we deduce from (3.4) that

P(|Xk2−n −X(k−1)2−n| > ε) ≤ C2−n(1+β−αγ) (3.5)
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Summing up over 2n such pairs, we obtain the bound

P
(

max
1≤k≤2n

|Xk2−n −X(k−1)2−n| > ε

)
≤ C2−n(β−αγ).

Since γ < β/α, the infinite series
∑

n 2−n(β−αγ) converges. By the Borel-Cantelli lemma then,
there exists an event Ω0 of probability 1, such that for ω ∈ Ω0,

sup
1≤k≤2n

|Xk2−n(ω)−X(k−1)2−n(ω)| ≤ 2−nγ, n > N(ω), (3.6)

for some integer N(ω), and thus Hölder continuity holds on level n.

The estimate (3.6) is key; what remains is to match things across dyadic partitions of different
levels, and then to define a version of X using the density of the dyadic rationals in the unit
interval.

Set m = n + 1 for n > N(ω). If s, t ∈ Dm and t− s < 1/2n, then s, t must be neighbors in
Dm. Since each interval determined by Dn contains two intervals determined by Dn+1, we
have, by (3.6)

|Xt(ω)−Xs(ω)| < 2 · 2−γ(n+1).

Using an inductive argument then, we deduce that for any m > n,

|Xt(ω)−Xs(ω)| ≤ 2
m∑

k=n+1

2−γk, for s, t ∈ Dm with 0 < t− s < 2−n. (3.7)

Namely, suppose (3.7) holds for m = n + 1, . . . ,M − 1 and 0 < t− s < 2−n. Let s, t ∈ DM

and consider

t∗ = inf{q ∈ DM−1 : q ≥ s} and t∗ = sup{q ∈ DM−1 : q ≤ t}.

Then s ≤ t∗ ≤ t∗ ≤ t, and moreover, t∗ − s ≤ 2−M , and t− t∗ ≤ 2−M . Applying (3.6) to the
pairs s, t∗ and t∗, t, exploiting the inductive hypothesis for the pair t∗, t

∗, and adding up, we
arrive at the desired conclusion.

These estimates in fact show that (Xt(ω) : t ∈ D) is uniformly continuous on the event
Ω0. Namely, let s, t ∈ D satisfy 0 < t − s < 2−N(ω). We then find n > N(ω) with
1/2n+1 ≤ t− s ≤ 1/2n, and obtain

|Xt(ω)−Xs(ω)| ≤ 2
∞∑

k=n+1

2−γk = 2−γ(n+1)

∞∑
k=1

(2−γ)k ≤ K2−γ(n+1),

for K > 2/(1− 2−γ). It now follows that |Xt(ω)−Xs(ω)| ≤ K|t− s|γ for such s, t ∈ D.

We are now in a position to define the desired process X̃. For ω ∈ Ωc
0, we set X̃t(ω) = 0 for

0 < t < 1, and we let
X̃t(ω) = Xt(ω), for ω ∈ Ω0, t ∈ D.

For non-dyadic times, we pick a sequence (dn)∞n=1, with dn ∈ D, such that dn → t. Then, by
uniform continuity on D, the sequence of numbers (Xdn(ω))∞n=1 converges to a limit, and we
may define

X̃t(ω) = lim
dn→t

Xdn(ω) for ω ∈ Ω0, t /∈ D.
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The process X̃ then inherits the Hölder continuity of X on D.

For t ∈ D, we have X̃t = Xt almost surely. Suppose then that t /∈ D, 0 < t < 1. By (3.4),
we know that Xdn → Xt in probability when dn → t and (dn) is a dyadic sequence. Since
also X̃t = limnXdn almost surely for such a sequence, it then follows that

P(X̃t = Xt) = 1

for any t ∈ [0, 1]. Hence X̃ is a version of X, and the proof is complete.

3.6 The Poisson process

In this course, we shall focus on two stochastic processes in continuous time that are in
some sense canonical: Brownian motion, to be constructed later, and the Poisson process,
which we describe here. Unlike Brownian motion, the Poisson process can be constructed in
a rather straight-forward way.

Let (Tk)
∞
k=1 be a sequence of iid. random variables on some probability space Ω, having

exponential distribution with parameter λ > 0. That is, we let

P(T1 > t) = e−λt, t ≥ 0, (3.8)

so that T1 has a probability density function given by

fλ(t) = λe−λt1(t ≥ 0), t ∈ R.

We often refer to the sequence (Tk) as the waiting times of the process we are about to define.
Next, we set S0 = 0, and introduce the jump times

Sn =
n∑
k=1

Tk, n ≥ 1.

We define a Poisson process of intensity λ > 0 by taking

Nt = sup{n ≥ 0: Sn ≤ t}, t ≥ 0.

Clearly, the resulting continuous-time process N = (Nt : t ≥ 0) is integer-valued. Moreover,
its sample paths are cadlag by definition, with jump discontinuities of size 1 occurring at
random times Sn.

We endow the space (Ω,F ,P) upon which N is defined with the natural filtration (FNt )
generated by the process. By induction one proves that the jump times Sn are Gamma(n, λ)-
distributed:

fSn(s) =
λnsn−1

(n− 1)!
e−λs, s ≥ 0.

This, together with (3.8) allows us to compute that, for t > 0,

P(Nt = n) = P(Sn ≤ t < Sn+1) = P({Sn ≤ t} ∩ {Sn + Tn+1 > t})

=

∫ t

0

fSn(s)P(Tn+1 > t− s)ds

=
(λt)n

n!
e−λt.
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Thus, the random variables Nt have Poisson distributions, and

E[Nt] =
∞∑
k=0

kP(Nt = k) = e−λt
∞∑
k=1

(λt)k

(k − 1)!
= λt. (3.9)

The lack-of-memory property of the exponential distribution used in the definition of the
waiting times,

P(T > t+ s|T > t) = P(T > s), s, t > 0,

allows us to deduce that the Poisson process enjoys the following property.

Proposition 3.23. Let N = (Nt : t ≥ 0) be a Poisson process with intensity λ > 0. Then for
0 ≤ s < t, Nt−Ns is a random variable, independent of FNs , and having Poisson distribution
with parameter λ(t− s).

The proposition (or rather, its extension to finite tuples t1 < . . . < tn) describes the finite-
dimensional distributions of the Poisson process. In particular, the process has independent
and stationary increments.

It follows from the Proposition and from (3.9) that

E[Nt −Ns] = λ(t− s), s < t,

and similarily,
E[(Nt −Ns)

2] = λ(t− s) + λ2(t− s)2.

Thus E[Nt − Ns] → 0 as s → t, but Kolmogorov’s criterion 3.22 cannot be immediately
applied. Fortunately, in this instance, the construction of the process already guarantees
that it is cadlag.

Proposition 3.24. [Compensated Poisson process] Let N be a Poisson process of in-
tensity λ > 0. Then the process (Mt : t ≥ 0) defined by

Mt = Nt − λt, t ≥ 0,

is a martingale with respect to (FNt ).

Proof. That N is adapted and integrable follows immediately.

For s < t, the independence guaranteed by Proposition 3.23, together with (3.9), yields that

E[Nt − λt|Fs] = E[Nt −Ns − λ(t− s) +Ns − λs|Fs] = Ns − λs,

and thus M is a martingale.

A similar computation shows that N is a submartingale. Representing the Poisson process
N using the compensated process,

Nt = λt+Mt,

we recover a special instance of the Doob-Meyer decomposition (cf. Example Sheet 2) of a
submartingale: t 7→ λt is an increasing previsible process, and M is a martingale. Compen-
sated Poisson processes will play a prominent role in our analysis of Lévy processes and their
jumps.
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4 Weak convergence

4.1 Basic definitions

We have dealt with two different modes of convergence for random objects so far:almost sure
convergence, and convergence in probability. These concepts are defined for random variables
supported on a common probability space (Ω,F ,P). In some cases, however, it is natural to
consider sequences of random variables that map into the same space, for instance R or Rn,
but whose underlying probability spaces need not coincide. In this chapter, we introduce a
convergence concept that applies in this latter setting, and is defined in terms of the laws of
such random variables. At the same time, we take the opportunity to extend some of our
formalism to the framework of general metric spaces.

We shall discuss the concept of tightness. This is a notion that aims at preventing the
phenomenon of “escape of mass to infinity.” Finally, we review the notion of characteristic
function (or Fourier transform) of a random variable, or rather, its law, and we show how
weak convergence is related to pointwise convergence of characteristic functions.

In what follows, (M,d) denotes a metric space. Given a metric, we can make sense of
the notion of open sets in M , and we can endow M with its Borel σ-algebra B(M), the
smallest σ-algebra containing the open sets. Unless otherwise stated, all measures under
consideration in this chapter will be defined on this type of measurable space. We begin
with some topological considerations. Let A0 denote the interior of a Borel set A ⊂M , and
Ā its closure with respect to d. The boundary of a set is

∂A = Ā \ A0.

The distance between a point p ∈M and A ⊂M is defined as

d(p,A) = inf{d(p, q) : q ∈ A}.

We will be concerned with continuous functions f : M → R, and the space Cb(M) consisting
of bounded continuous functions will play a central role. In this context, continuity prop-
erties of a function depend on the choice of metric d. There is a natural pairing between
a probability measure µ on (M,d,B) and a function f ∈ Cb(M) that produces a mapping
µ : Cb(M)→ R. This pairing is obtained through the operation of integration,

µ(f) =

∫
M

fdµ.

The concept of weak convergence is defined in terms of this duality.

Definition 4.1. Let (µn) = (µn : n ≥ 0) be a sequence of probability measures defined on a
metric space (M,d) endowed with its Borel σ-algebra B. We say that (µn) converges weakly
to a Borel measure µ as n→∞, and we write

µn ⇒ µ,

if
µn(f)→ µ(f) for all f ∈ Cb(M).
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Any weak limit measure µ is a probability measure since µ(1) = limn→∞ µn(1) = 1.

Here are some simple examples and non-examples of weakly convergent sequences of mea-
sures.

Example 4.2. Consider a sequence of points (pn)∞n=0 in M with d(pn, p) → 0, for some
p ∈ M . Letting δp denote a point mass at a point p ∈ M , we consider the sequence of
probability measures (µn) = (δpn).

Then (µn) is weakly convergent, with limit δp, since f(pn) → f(p) as n → ∞ for any
continuous function f .

Example 4.3. Let M = R, and consider point masses (µn : ≥ 1) = (δn) charging the natural
numbers in increasing order. The sequence of measures (µn) is not weakly convergent.

Remark 4.4. From the point of view of functional analysis, the concept we are discussing
here is essentially that of weak-∗ convergence: by the Riesz representation theorem, the space
of (signed) measures with bounded total variation can be identified with the dual space of
(compactly supported) continuous functions.

However, the terminology “weak convergence” remains standard in probability theory (de-
spite some attempts to introduce a different name), and we shall stick to that convention in
these notes.

In the next definitions, we specialize to M = Rd, equipped with the Euclidean metric induced
by the inner product 5

〈x, y〉 = x1y1 + · · ·+ xdyd, x, y ∈ Rd.

Thus, for x ∈ Rd, we have ‖x‖ = 〈x, x〉1/2.

Definition 4.5. Let X be a random variable taking values in Rd, and let µ = µX denote
the law of X. The characteristic function ϕ = ϕX of X is defined as

ϕX(t) = E[ei〈t,X〉] =

∫
Rd
ei〈t,x〉dµX(x), t ∈ Rd. (4.1)

Since |eiξ| = 1, the characteristic function is well defined as a function on Rd. Moreover, ϕ
is continuous, and ϕ(0) = 1. We shall make use of the following fact without proof: if two
characteristic functions satisfy

ϕX(t) = ϕY (t), for all t ∈ Rd,

then X = Y in law.

Remark 4.6. This is another example of how probability theory and harmonic analysis
differ in terminology. An analyst would probably refer to what we have dubbed characteristic
function as the Fourier-Stieltjes transform of the measure µX , and would most likely include
a minus sign, and possibly a normalizing constant, in the exponent.6

5We use d for dimension here, and reserve n for indices of sequences.
6This may be mildly annoying when comparing formulas coming from different references.
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Example 4.7. The characteristic function of a standardN (0, 1)-distributed random variable
on R is

ϕX(t) = e−
t2

2 .

The characteristic function of a random variable having uniform distribution in [−a, a] is

ϕX(t) =
sin at

at
.

These examples illustrate the fact that if ϕX is real, then X and −X have the same distri-
bution.

We will be able to reformulate weak convergence in terms of distribution functions, a con-
cept that should be familiar from basic probability theory. The distribution function of a
probability measure on the real line is defined as

Fµ(x) = µ((−∞, x]), x ∈ R.

Recall that if X is a real-valued random variable, then

FX(x) = P(X ≤ x),

and that if X has probability density function fX , then

FX(x) =

∫ x

−∞
fX(y)dy,

and F ′X(x) = fX(x) at continuity points of f . Distribution functions are non-decreasing in
x and right-continuous, and

lim
x→−∞

Fµ(x) = 0 and lim
n→∞

Fµ(x) = 1.

We hinted at the usefulness of weak convergence when dealing with random variables defined
on different probability spaces. Let us make this more precise; in this definition we return
to the full generality of metric spaces.

Definition 4.8. Let (Xn) = (Xn : n ≥ 0) be a sequence of random variables, defined on some
collection of probability spaces (Ωn,Fn,Pn), and taking values in a metric space (M,d). We
say that (Xn) converges in distribution to a random variable X, defined on some probability
space (Ω,F ,P), if the sequence of associated laws (µXn) converges weakly to the law of X
as n→∞.

Phrased differently, the random variables Xn converge in distribution to X if, for all f ∈
Cb(M),

EPn [f(Xn)]→ EP[f(X)].

Here, EQ[·] =
∫

Ω
(·)dQ denotes expectation with respect to the probability measure Q.

We shall sometimes use Xn ⇒ X as shorthand notation for convergence in distribution of a
sequence of random variables; to be precise, what is meant by this is µXn ⇒ µX .
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4.2 Characterizations of weak convergence

We might ask whether weak convergence of (µn) to µ is equivalent to having µn(A)→ µ(A)
for all Borel sets A, but in general, this is not the case. Consider the sequence of point
masses (δ1/n): we verify that δ1/n ⇒ δ0, but δ1/n((0, 1)) = 1 for all n, and δ0((0, 1)) = 0.

However, the following is true.

Theorem 4.9. Suppose (µn) is a sequence of probability measures on a metric space (M,d)
endowed with its Borel σ-algebra. The following statements are equivalent:

1. µn ⇒ µ as n→∞

2. lim infn→∞ µn(U) ≥ µ(U), for all open sets U

3. lim supn→∞ µn(V ) ≤ µ(V ), for all closed sets V

4. limn→∞ µn(A) = µ(A) for all sets with µ(∂A) = 0

Proof. We begin with the implication (1.) =⇒ (2.). For U = Ω, the inequality is trivial.
Suppose U 6= Ω, and consider the functions

fm(x) = 1 ∧md(x, U c), x ∈M, m = 1, 2, . . . .

Note that fm is continuous and bounded, and that fm(x) ≤ 1(x ∈ U) for all m. As U
is open, the set U c is closed, and so fm(x) → 1(U) as m → ∞. In view of this, and the
assumption of weak convergence,

lim inf
n→∞

µn(U) ≥ lim inf
n→∞

µn(fm) = µ(fm),

and an application of the monotone convergence theorem to (fm) leads

lim inf
n→∞

µn(U) ≥ µ(U),

the desired inequality.

The equivalence of the second and third items follows from the fact that U is open if and
only if V = U c is closed, and P(U) + P(U c) = 1.

Next, we show that (2.) and (3.) imply (4.). Suppose the Borel set A satisfies µ(∂A) = 0.
Then

µ(∂A) = µ(Ā \ A0) = 0,

and µ(A0) = µ(Ā), both numbers being equal to µ(A). Finally,

lim sup
n→∞

µn(Ā) ≤ µ(Ā) = µ(A),

and
lim inf
n→∞

µn(A0) ≥ µ(A0) = µ(A),

and the assertion follows since A0 ⊂ Ā.
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We finish by proving that (4.) implies (1.). Suppose f ∈ Cb(M) is non-negative with
‖f‖∞ < C. Then, by Fubini’s theorem,∫

M

f(x)dµn(x) =

∫
M

(∫ ∞
0

1(f(x) ≥ λ)dλ

)
dµn(x) =

∫ C

0

µn({f ≥ λ})dλ. (4.2)

Now, by the continuity of f , the set {f ≥ λ} is closed, and {f > λ} is open and contained
in its interior. Thus ∂{f ≥ λ} is contained in {f = λ}. Since µ is a probability measure,
we can only have µ({f = λ}) > 0 for a countable set of λ ∈ Λ ⊂ R. In particular, it follows
that ∫

Λ

µ({f = λ})dλ = 0,

and thus, in the integral on the right-hand side in (4.2), it suffices to restrict our attention to
λ ∈ [0, C] such that µ(∂{f ≥ λ}) = 0. Using (3.) and applying the dominated convergence
theorem to the resulting integrals, we deduce

µn(f)→ µ(f) as n→∞.

To obtain the result for general f ∈ Cb(M), we perform the usual approximation and splitting
into positive and negative parts.

We next connect weak convergence with distribution functions.

Theorem 4.10. For a sequence (µn) of probability measures on R, the following are equiv-
alent.

As n→∞,

1. (µn) converges weakly to µ

2. the distribution functions Fµn(x) converge to Fµ(x) at every point of continuity of Fµ

Proof. We begin by proving that (1.) implies (2.).

Let x ∈ R be a point of continuity of Fµ. By Theorem 4.9, we can deduce

Fµn(x) = µn((−∞, x])→ µ((−∞, x]) = Fµ(x),

provided µ(∂(−∞, x]) = µ({x}) = 0. But this follows upon writing

µ({x}) = µ((−∞, x])− lim
n→∞

µ

((
−∞, x− 1

n

])
,

expressing things in terms of the distribution function, and exploiting the continuity of Fµ
at x.

Next is the implication (2.) =⇒ (1.). Let U be an arbitrary open set in R. The open
intervals form a (countable) base for the topology of R, and so we may write

U =
∞⋃
k=1

(ak, bk),
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using a countable collection of disjoint intervals (ak, bk). Since distribution functions are
right-continuous and non-decreasing, their points of discontinuity form countable sets. This
means that the continuity points of Fµn are dense in (ak, bk), and so there are plenty of such
points a′k, b

′
k ∈ (ak, bk) with a′k < b′k. On each interval then,

µn((ak, bk)) = Fµn(bk−)− Fµn(ak) ≥ Fµn(b′k)− Fµn(a′k) = µn((a′k, b
′
k)),

and so
lim inf
n→∞

µn((a, b)) ≥ µ((a′k, b
′
k)),

and then lim infn→∞ µn((a, b)) ≥ µ((a, b)) persists in the limit as a′k ↓ a b′k ↑ bk.
Now lim infn µn(U) = lim infn

∑
k µn((ak, bk)), and after applying Fatou’s lemma and the

previously established inequality,

lim inf
n→∞

∞∑
k=1

µn((ak, bk)) ≥
∞∑
k=1

lim inf
n→∞

µn((ak, bk)) ≥
∞∑
k=1

µ((ak, bk)).

The last expression is equal to µ(U), and we are done.

The relation between different modes of convergence is addressed in the following proposition.

Proposition 4.11. Let (Xn) be a sequence of random variables, and let X be another random
variable defined on the same space. If (Xn) converges to X in probability, then (Xn) converges
to X in distribution.

Suppose (Xn) converges in distribution to the constant c ∈ R. Then (Xn) converges in
probability to the degenerate random variable c.

Proof. See Example Sheet 3.

Let Cc(M) denote the space of continuous functions on M having compact support. It
is immediate that Cc(M) ⊂ Cb(M). For completeness, we mention the following mode of
convergence which is sometimes more convenient.

Definition 4.12. Let (µn) be a sequence of bounded measures on (M,d,B). We say that
(µn) converges vaguely to a measure µ as n→∞ if

µn(f)→ µ(f) for all f ∈ Cc(M).

4.3 Tightness

We return to the problem of sequences of probability measures where mass escapes to in-
finity. At first glance, the following theorem seems to imply that distributions functions
automatically enjoy certain compactness properties. We do not give a proof here.

Theorem 4.13. [Helly’s selection theorem] For every sequence (Fn) of distribution func-
tions, there exists a subsequence (Fnk) and a right-continuous and non-decreasing function
F such that limk→∞ Fnk(x) = F (x) at every point of continuity of F .
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Sometimes, this result is good enough. The problem in general is that the limit function in
the theorem need not be a distribution function.

Example 4.14. Let a, b, c > 0 be real constants, with a + b + c = 1, and set G be any
distribution function. For n = 1, 2, . . ., consider the distribution functions

Fn(x) = a1(x ≥ n) + b1(x ≥ −n) + cG(x), x ∈ R.

As n→∞, we have Fn(x)→ b+ cG(x), and

lim
x→−∞

F (x) = b and lim
x→∞

F (x) = 1− a.

Having seen what can go wrong, we define a notion that counteracts the escape of mass to
infinity.

Definition 4.15. A sequence (µn) of probability measures on a metric space (M,d) is said
to be tight if, for every ε > 0, there exists a compact set K ⊂M such that

sup
n
µn(M \K) ≤ ε.

If the metric space under consideration is itself compact, then every sequence of probability
measures is tight.

The fundamental result concerning tightness is the following.

Theorem 4.16. [Prokhorov’s theorem] Let (µn) be a tight sequence of probability mea-
sures on a metric space (M,d). Then there exists a subsequence (nk) such that

µnk ⇒ µ,

where µ is a probability measure on (M,d).

Proof. We give the proof in the easiest case: M = R, equipped with the Euclidean metric.

We argue on the distribution functions Fµn , and the values they take on Q. Considering
successive subsequences of (Fµn), and using a diagonal argument on these subsequences, we
extract a non-decreasing limit function F : Q → [0, 1] with Fµnk (r) → F (r) as k → ∞, for
every r ∈ Q. This is achieved by considering an enumeration the rationals {qj}, and then
noting that for qj fixed, the sequence (Fµnk (qj)) is contained in the unit interval. Since this
is a compact set, the Bolzano-Weierstrass theorem guarantees the existence of a convergent
subsequence.

We may then extend F to a cadlag function on all of R in the usual manner, by setting
F (x) =↓r∈Q F (r). Then, by monotonicity, limk→∞ Fµnk (x) = F (x) at all points of continuity
of F .

We claim that the function F thus constructed is the distribution function of some prob-
ability measure µ on R. Since (µn) is a tight collection, there exists a K > 0 such that
µn([−K,K]) ≥ 1− ε for all n. In terms of distribution functions, we then have, for all n,

Fµn(−K) ≤ ε and Fµn(K) ≥ 1− ε.
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By making sure to choose K so that K and −K are points of continuity of F , we obtain
F (−K) ≤ ε and F (K) ≥ 1− ε in the limit as K →∞. As continuity points are dense in R,
we may conclude that

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

It is now a straight-forward matter to associate a probability measure with F . We define a
set function µ on intervals of the form (a, b], with a < b, by assigning

µ((a, b]) = F (b)− F (a).

Since the collection of such intervals generate the Borel σ-algebra B(R), we can extend µ to a
Borel measure that inherits µ(R) = 1 from the corresponding property of F . This completes
the proof.

In practice, when dealing with convergence in distribution of random variables or stochastic
processes, tightness is often the first property one checks. Prokhorov’s theorem then guar-
antees the existence of subsequential limits at least. Proving that a common limit actually
exists can be more challenging.

4.4 Characteristic functions and Lévy’s theorem

Characteristic functions often provide a convenient tool for establishing convergence in dis-
tribution of random variables. Before stating and proving a result in this direction, due to P.
Lévy, we establish a lemma that relates the decay of measures at infinity to the smoothness
at 0 of the associated characteristic functions.

Lemma 4.17. Let X be a random variable in Rd. Then, there exists a constant C = C(d) >
0 such that, for all K > 0,

P(‖X‖ > K) ≤ CKd

∫
[−1/K,1/K]d

(1− ReϕX(t))dt.

Proof. We give a proof in the case d = 1; the general case can be dealt with in an analogous
manner, but the notation becomes more cumbersome.

As a first step, one verifies using calculus that f(x) = sinx/x has∣∣∣∣sinxx
∣∣∣∣ ≤ sin 1, x > 1,

so that
1(|u| ≥ 1) ≤ C(1− f(u))

with a suitable constant (say C = 1/(1 − sin 1)). Taking expectations on both sides of the
previous estimate, we obtain

P(|X| ≥ K) = P
(∣∣∣∣XK

∣∣∣∣ ≥ 1

)
≤ CE

[
1− sin(X/K)

(X/K)

]
= C

∫
R

(
1− sin(x/K)

(x/K)

)
dµ(x).
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The rest of the proof reduces to computations using Fubini’s theorem. Namely, we have∫
R

sin(λx)

λx
dµ(x) =

∫
R

(
eiλx − e−iλx

2iλx

)
dµ(x)

=
1

2λ
Re

∫
R

(∫ λ

−λ
eixudu

)
dµ(x)

=
1

2λ

∫ λ

−λ

(
Re

∫
R
eiuxdµ(x)

)
du =

1

2λ

∫ λ

−λ
ReϕX(u)du.

Setting λ = 1/K, the desired statement now follows from the previous estimate.

Theorem 4.18. [Lévy’s convergence theorem] Suppose µXn ⇒ µX as n→∞.

Then ϕXn(t)→ ϕX(t) as n→∞, for all t ∈ Rd.

On the other hand, suppose that for a sequence (Xn) of random variables, it holds that
ϕXn(t)→ ψ(t) for every t ∈ Rd for some function ψ : Rd → C, continuous at the origin.

Then ψ is the characteristic function of some random variable X, and moreover µXn ⇒ µX
as n→∞.

Proof. The first implication is the easier one. If Xn converges in distribution to X as n→∞,
then for every f continuous and bounded,

µn(f)→ µ(f) as n→∞.

For t ∈ Rd fixed, pick ft(x) = ei〈t,x〉 = cos〈t, x〉+ i sin〈t, x〉. The real and imaginary parts of
the complex function ft are continuous and bounded, and hence, by linearity,

ϕXn(t) = µn(ei〈t,·〉)→ µ(ei〈t,·〉) = ϕX(t).

As t ∈ Rd was arbitrary, the result follows.

We turn to the second part of the theorem, and begin by showing that (µXn) form a tight
sequence. Lemma 4.17 yields that that, for K > 0 and all n,

P(‖Xn‖ > K) ≤ CKd

∫
[−1/K,1/K]d

(1− ReϕXn(t))dt.

Noting that |1 − ReϕXn(t)| ≤ 2 for all n, we invoke the dominated convergence theorem to
obtain

lim
n→∞

∫
[−1/K,1/K]d

(1− ReϕXn(t))dt =

∫
[−1/K,1/K]

(1− Reψ(t))dt.

We recall that ψ was assumed to be continuous at 0, and hence, given ε > 0, we may pick
K so large that

Kd

∫
[−1/K,1/K]d

(1− Reψ(t))dt ≤ ε

2C
,
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meaning that there exists an N > 0 with

P(‖Xm‖ > K) ≤ ε, for m ≥ N.

After possibly increasingK to accomodate for a finite number of variablesXm havingm ≤ N ,
we can make this inequality valid all n, thus establishing the tightness of (µXn).

Then, by Prokhorov’s theorem, there exists a subsequence (Xnk) that converges in distribu-
tion to a probability measure on Rd, which we identify with the law of a random variable. But
since (ϕXn) converges pointwise to ϕX , we obtain ψ = ϕX , showing that ψ is a characteristic
function.

The proof will be complete once we have shown that (Xn) converges in distribution to X.
Suppose this fails. Then there exists a function f ∈ Cb, and a subsequence (mk), such that

|E[f(Xmk)]− E[f(X)]| > ε

for some positive ε. Since the laws (µXmk ) form a tight sequence, we may extract another
subsequence that converges in distribution. But since ψ = ϕY for any such limiting random
variable Y , this leads to a contradiction.

In particular, Lévy’s theorem implies the following equivalence for a sequence of random
variables on Rd:

µXn ⇒ µX if and only if ϕXn(t)→ ϕX(t), for all t ∈ Rd. (4.3)

55



5 Brownian motion

5.1 Basic definitions

In Chapter 3, we discussed stochastic processes in continuous time, and at the end of that
chapter, we encountered our first concrete examples of such processes, namely, Poisson
processes of intensity λ > 0. These are stochastic processes in continuous time that take
values in N, and have cadlag sample paths. Poisson processes are in many ways canonical,
and are important in many applications we cannot discuss here. We shall, however, encounter
variants of Poisson processes in the last chapter of these notes.

Our construction of Poisson processes was based on independent, exponentially distributed
waiting times, and derived jump times, but we were later able to verify that a Poisson process
N defined on some probability space (Ω,F ,P) enjoys the following key properties:

• N(0) = 0,

• for any sequence of times 0 < t1 < t2 < · · · < tn, the random variables

Ntk −Ntk−1
, 1 ≤ k ≤ n,

are independent,

• and Nt −Ns, for t > s, has Po(λ(t− s))-distribution.

In terms of formulas, the latter property reads

P(Nt −Ns = k) =
λk(t− s)ke−λ

k!
, k = 1, 2, . . . .

The pleasant features of the Poisson process ultimately follow from the properties of the
exponential distribution, a distribution distinguished by its memorylessness.

The Central Limit Theorem features another canonical distribution on R: the normal or
Gaussian distribution. In view of this, and the other remarkable features of this distribution,
it seems natural from the mathematical perspective to study stochastic processes related to
normal random variables, as natural models of ”random fluctuations.”

Moreover, Gaussian processes can be used to model phenomena in nature that exhibit ran-
domness such as the physical Brownian motion observed by R. Brown and later analyzed
by A. Einstein. Finally, in his pioneering work ”Théorie de la Spéculation”, L. Bachelier
indicated how such processes appear in the analysis of financial markets.

We set down some notation. In what follows, we shall frequently work on the Euclidean
space Rd; we let Id denote the d-dimensional identity matrix having 1’s on the diagonal,
and 0 in all other entries. The set of all orthogonal matrices will be denoted by O(d); this
consists of the d× d matrices having transpose equal to the inverse:

MTM = Id.
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Multiplication of a vector in Rd by a d × d matrix will be indicated by juxtaposition. As
before, we let N (µ, σ) be the normal distribution on Rd with mean µ ∈ Rd, and d × d
covariance matrix

σ = (σjk)1≤j,k≤d.

In the case d = 1, its probability density function is given by the classical Gauss kernel

fµ,σ(x) =
1√
2πσ

e−
1
2

(x−µ)2

σ . (5.1)

In the general case, we have

f0,σId(x) =
1

(2π)d/2
e−
‖x‖2
2σ

We are now ready to define the process we propose to study in this chapter.

Definition 5.1. Let B = (Bt : t ≥ 0) be a continuous Rd-valued stochastic process defined
on some probability space. We say that B is a standard Brownian motion or Wiener process
on Rd if

• B0 = 0,

• for any sequence of times 0 < t1 < t2 < · · · < tn, the random variables

Btk −Btk−1
, 1 ≤ k ≤ n,

are independent,

• and Bt −Bs, for t > s, is N (0, (t− s)Id)-distributed.

We shall also work with Brownian motions started at a point x ∈ Rd, that is, with B0 = x
(sometimes almost surely). One way to obtain such a process is to take Bt = x+Wt, where
W is a standard Brownian motion. We shall frequently write Px for the law of a Brownian
motion started at x ∈ Rd, and we let Ex[·] denote the corresponding expectated values. The
subscript will typically be omitted when B is a standard Brownian motion.

We recognize two properties of the Poisson process in the above definition: Brownian motion
has independent and stationary increments. Note that we are including continuity of the
process in its definition. The second and third items above specify the finite-dimensional
distributions of the process, and so the law of a Brownian motion is uniquely determined.

It is not at all clear a priori that an object satisfying these (natural) requirements actually
exists. Fortunately, N. Wiener was able to present a rigorous construction of Brownian
motion in the 1920’s–hence its alternative name. We shall return to the construction of
Brownian motion in the next section.

For the time being, we assume existence, and begin by listing some useful properties that
follow immediately from its definition in terms of the normal distribution.
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Proposition 5.2. [Rotational invariance, scaling, and time inversion]
Let B = (Bt : t ≥ 0) be a standard Brownian motion.

For any orthogonal matrix M ∈ O(d), the process MB = (MBt : t ≥ 0) is a standard
Brownian motion.

Moreover, for any c > 0, the process W = (c−1/2Bct : t ≥ 0) is a standard Brownian motion.

Finally, the process Z = (Zt : t ≥ 0) defined by Z0 = 0 and

Zt = tB1/t, t > 0,

is a standard Brownian motion.

In particular, the process −B is a Brownian motion. In two dimensions, this result can be
generalized to say that Brownian motion is conformally invariant, that is, the image of a
Brownian motion under a conformal map f : U ⊂ C→ C (which can be viewed infinitesimally
as a dilation and rotation) is again a Brownian motion, after a suitable time-change.

Proof. The first two assertions can be established by appealing directly to the multidimen-
sional normal distribution. Computations show that the finite-dimensional distributions of
the processes MB and W agree with those of B, and since continuity is satisfied as well, the
assertions follow by an appeal to the monotone class theorem.

We now establish the third claim. We know (see Example Sheet 3) that Gaussian processes
are determined by their means and their covariances. We begin by verifying that the process
Z has the same covariance structure as B; it is immediate from the definition that E[Zt] = 0
for all t. Now, for s < t, we have

cov(Zs, Zt) = cov(sB1/s, tB1/t) = st cov(B1/s, B1/t) = st
1

t
= s,

and so the claim regarding covariances follows. This means that the finite-dimensional
distributions of B and Z agree.

Almost sure pathwise continuity of Z follows from that of B for any t > 0, since Zt(ω) is
obtained as the composition of continuous functions. At 0, continuity follows once we exploit
the continuity of Zt for t > 0 to represent the event {limt→0 Zt = 0} as⋂

n

⋃
m

⋂
q∈Q∩(0,1/m]

{
|Zq| ≤

1

n

}
,

and use that Zt and Bt have the same distribution for t > 0 to deduce that this countably
written event has probability 1.

An consequence of the last item is a law of large numbers for Brownian motion:

lim
t→∞

Bt

t
= lim

t→∞
X1/t = 0 almost surely.

We shall later obtain much more precise statements concerning the asymptotics of B.

The following result also follows from the definition of Brownian motion, in particular, from
independence of increments.
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Proposition 5.3. [Markov property]
For any s ≥ 0, the process (Bt+s − Bs : t ≥ 0) is a standard Brownian motion, independent
of FBs .

Roughly speaking, the Markov property, which is enjoyed by Brownian motion and many
other important stochastic processes. Roughly speaking, says that ”the future and past of
the process are independent, given the present.”

Finally, we introduce a number of filtrations of (Ω,F ,P) we shall need in our study of
Brownian motion. As usual, we let (FBt ) denote the natural filtration associated with B,
that is

FBt = σ(Bs : s ≤ t), t > 0.

The right-continuous filtration (FB+
t ) is defined by

FB+
t =

⋂
u>t

FBu .

Sometimes it is convenient to work with bigger filtration. We say that B is an (Ft)-Brownian
motion provided FBt ⊂ Ft, so that B is adapted to (Ft), and σ(Xt −Xs : t ≥ s) and Fs are
independent, for all s ≥ 0.

Finally, we let B((Rd)[0,∞)) denote the smallest σ-algebra on the space of all functions
f : [0,∞)→ Rd that contains cylinder sets. These are sets of the form

B = {ω ∈ (Rd)[0,∞) : (ω(t1), . . . , ω(tn)) ∈ A},

where t̄ = (t1, . . . , tn) is an arbitrary finite tuple with tk ∈ [0,∞), and A ∈ B(Rnd).

5.2 Construction of Brownian motion

We now address the question of existence of Brownian motion on some probability space.
This problem was first solved by N. Wiener in 1923.

Several different constructions of Brownian are possible, and one option is to use some of
the techniques developed in Chapter 3. To ease notation, we indicate this construction in
the case d = 1. We begin by stating a result alluded to in that chapter. Suppose that, for
any sequence of non-negative numbers

t̄ = (t1, t2, . . . , tn) ∈ Rn,

we are given a Borel probability measure Pt̄. Then the family of finite-dimensional distribu-
tions {Pt̄}t̄∈T , where the index t̄ runs over all finite sequences of the above type, is said to
be consistent provided the following two conditions holds. Firstly,

Pt̄(A1 × A2 × · · · × An) = Pσ(t̄)(Aσ(t1) × Aσ(t2) × · · · × Aσ(tn))

for any Borel sets A1, A2, . . . , An in R, and for any permutation σ of t̄ = (t1, . . . , tn), and
secondly, letting t̄∗ = (t1, . . . , tn−1),

Pt̄(A× R) = Pt̄∗(A), A ∈ B(Rn−1).
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It can be shown that if µ is a measure on the space (R[0,∞),B(R[0,∞))) of all real-valued
functions on the right half-line, then its finite dimensional distribution, as defined in Chapter
3, satisfy these consistency criteria. It is the converse that allows us to construct Brownian
motion.

Theorem 5.4. [Daniell-Kolmogorov consistency theorem] Suppose {Pt̄} is a consis-
tent family of finite-dimensional distributions. Then there exists a probability measure P on
(R[0,∞),B(R[0,∞)) such that

Pt̄(A) = P
(
ω ∈ R[0,∞) : (ω(t1), . . . , ω(tn)) ∈ A

)
, A ∈ B(Rn)

holds for any finite set of indices t̄.

We omit the proof, which is given in [5].

Recall the definition of the Gauss kernel (5.1). With a view towards invoking the Daniell-
Kolmogorov theorem, we consider a collection of distribution functions on Rn

Ft̄(x1, . . . , xn) =

∫ x1

−∞

∫ x2

−∞
. . .

∫ xn

−∞
f0,t1(u1)fu1,t2−t1(u2) · · · fun−1,tn−tn−1(un)du1 · · · dun,

defined for any tuple t̄ with 0 < t1 < · · · < tn. Computing with the Gauss kernel, we verify
that if (Bt1 , . . . , Btn) has distribution Ft̄, then Btk −Btk−1

is itself normally distributed, and
moreover these increments are independent.

Next, fairly straight-forward computations confirm that these distribution functions induce
a consistent family of finite-dimensional distributions via

Pt̄(A) = PFt̄((Bt1 , . . . , Bt2) ∈ A)), A ∈ B(Rn),

where (Bt1 , . . . , Btn) has distribution function Ft̄. We deduce the following result, which
proves existence of a version (in the sense of Chapter 3) of Brownian motion.

Proposition 5.5. There exists a probability measure P on (R[0,∞),B(R[0,∞))) under which
the coordinate process

Xt(ω) = ω(t), ω ∈ R[0,∞),

has independent increments, and Xt −Xs, t > s, is distributed according to N (0, t− s).

This means that there exists at least a (non-continuous) version of Brownian motion. To
finish our construction, we wish to appeal to Kolmogorov’s continuity criterion to deduce
the existence of the desired continuous process.

Lemma 5.6. Let B be a standard Brownian motion. Then, for each n ∈ N, there exists a
constant cn > 0 such that

E[|Bt −Bs|2n] = cn|t− s|n.

Proof. By stationarity and the scaling relation for Brownian motion, Bt − Bs coincides in
law with (t− s)1/2B1. Hence

E[|Bt −Bs|2n] = |t− s|nE[|B1|2n].

The random variable B1 has the normal distribution with variance 1, and in particular has
moments of all orders. Hence the desired inequality holds with cn = E[|B1|2n].
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Note that the proof does not use continuity, only stationarity and normality of increments
of a process. Hence, for t > s, and n = 2, we can apply the same reasoning to the coordinate
process obtained from the Daniell-Kolmogorov construction to arrive at our desired result.

Theorem 5.7. [Wiener’s theorem] There exists a probability measure P on the space
(R[0,∞),B(R[0,∞))) and a stochastic process B on this space, such that under P, the process
B is a Brownian motion.

Proof. By Proposition 5.5, the previous lemma, and 3.22, for any fixed N ∈ N, there exists
a continuous process (BN

t : t ∈ [0, N ]) satisfying all the requirements on a Brownian motion
up to time N . We consider the subsets

ΩN = {ω ∈ R[0,∞) : Bt(ω) = BN
t (ω), t ∈ Q}

and observe that P(∩∞N=1ΩN) = 1. On this intersection, all the processes BN are continuous
and agree on the rationals, and hence are continuous on all of [0,∞). On the complement,
we set Bt(ω) = 0, and then t 7→ Bt(ω) are continuous functions.

Our construction has produced a probability measure on the (very large) space R[0,∞). Later,
in connection with Donsker’s invariance principle, we shall place such a probability measure
on the nicer space C[0,∞).

Finally, we can construct Brownian motion on Rd by taking d independent Brownian motions
W1, . . . ,Wd on R, and set B = (W1, . . . ,Wd). One then verifies that the process B satisfies
all the requirements on a higher-dimensional Brownian motion.

5.3 Regularity and roughness of Brownian paths

The arguments in our construction can be used to show that the sample paths of Brownian
motion are not only continuous, but actually almost surely Hölder continuous for small
enough exponents.

Theorem 5.8. Brownian motion is almost surely locally γ-Hölder continuous for any expo-
nent γ ∈ (0, 1/2).

Proof. From the work in Lemma 5.6, and Kolmogorov’s theorem 3.22, it follows that since

E[|Bt −Bs|2n] ≤ C|t− s|1+(n−1),

Brownian motion is (n− 1)/2n-Hölder for every n ≥ 1.

On the other hand, the sample paths of Brownian motion look rather rough, and it is natural
to ask whether they are differentiable. The answer turns out to be negative in a rather strong
way.

Theorem 5.9. For any t ≥ 0, Brownian motion is almost surely not differentiable at t.
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Proof. To prove this, we may take t = 0; the general case then follows by considering
translations B̃s = Bt+s −Bt, s ≥ 0.

By scaling invariance, the process

W n
t =

1

n2
Bn4t, t ≥ 0,

is a Brownian motion for every n = 1, 2, . . .. We introduce the events

An =

{
|Bt|
t

> n for some t ∈
[
0,

1

n4

]}
,

and our goal is to show that these events occur with high probability. We have

P(An) ≥ P
(
|B1/n4|
1/n4

> n

)
= P

(
n2|B1/n4| > 1

n

)
= P

(
|W n

1 | >
1

n

)
,

and since W n
1 has normal distribution with mean 0 and variance 1, the latter probability

tends to 1 as n→∞.

The events (An)∞n=1 form a contracting sequence, and hence

P

(
∞⋂
n=1

An

)
= lim

n→∞
P(An) = 1.

Finally, the lower bound |Bt(ω)|/t > n, for some t ∈ [0, 1/n4] for each integer n = 1, 2, . . .
implies that Bt(ω) is not differentiable at t = 0, and we are done.

More refined arguments show that Brownian paths are in fact almost surely nowhere dif-
ferentiable. The hard part is to show that the event of probability 1 does not change with
different times t–note that we cannot immediately argue by countability here.

Theorem 5.10. Almost surely, the sample paths of Brownian motion are not Lipschitz
continuous at any point. In particular, the sample paths of Brownian motion are almost
surely not differentiable at any point.

For a proof of this result, which was discovered by R.E.A.C. Paley, N. Wiener, and A.
Zygmund, see for instance [3, Chapter 7] or [5, Chapter 2].

5.4 Blumenthal’s 01-law and martingales for Brownian motion

We have already noted thatBt+s−Bs is independent of FBs . We now generalize this statement
to the larger filtration (FB+

t ). We recall that this right-continuous filtration admits more
stopping time than the natural filtration; hitting times of open sets furnish examples of this.
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Proposition 5.11. For any s ≥ 0, the process (Bt+s −Bs : t ≥ 0) is independent of FB+
s .

Proof. Let s ≥ 0 be given, and consider a sequence (sk) with sk ↓ s. By continuity then,

lim
k→∞

(Bt+sk −Bsk) = Bt+s −Bs almost surely.

Now for any tuple t1 < . . . < tn, and any k, the collection (Bt1+sk −Bsk , . . . , Btn+sk −Bsk) is
independent of FBsk and hence of FB+

s , and then so is the limit process by a monotone class
argument.

Theorem 5.12. [Blumenthal’s 01-law] The germ σ-algebra FB+
0 is trivial, that is, any

A ∈ FB+
0 has P(A) ∈ {0, 1}.

Proof. We apply Proposition 5.11 with s = 0: any A ∈ FBt , for t ≥ 0, is independent of
FB+

0 . Hence, in particular, A ∈ FB+
0 =

⋂
FBt is independent of itself. This means that

[P(A)]2 = P(A ∩ A) = P(A),

and the assertion of the theorem follows.

Blumenthal’s 01-law is very useful in the study of almost sure path properties of Brownian
motion.

Theorem 5.13. Let B be a standard Brownian motion on R. Set

τ ∗ = inf{t > 0: Bt > 0} and τ∗ = inf{t > 0: Bt = 0}.

Then
P(τ ∗ = 0) = P(τ∗ = 0) = 1.

Proof. The first step is to observe that {τ ∗ = 0} ∈ FB1/n, for all n ≥ 1. This follows once we
represent this event as

{τ ∗ = 0} =
⋂

1/k≤1/n

{Bε > 0 for some ε ∈ (0, 1/k)},

and recall that FB+
0 =

⋂
t>0FBt .

By Blumenthal’s 01-law then, the event {τ ∗ = 0} occurs with probability 0 or 1. The
assertion of the theorem will follow if we can establish that the probability is in fact positive.
Now, for any t > 0,

P(τ ∗ ≤ t) ≥ P(Bt > 0) =
1

2
;

the last equality follows from the symmetry of the normal distribution. Thus, letting t tend
to zero, we obtain P(τ ∗ = 0) ≥ 1/2, and P(τ ∗ = 0) = 1 follows.

Next, we note that, by symmetry,

P(inf{t > 0: Bt < 0} = 0) = 1.

Continuity of the sample paths of B and the intermediate value theorem now yield τ∗ = 0
almost surely.

63



The set of zeros Z of a one-dimensional Brownian motion B has expected Lebesgue measure
0; this follows from Fubini’s theorem since

E(|Z(ω) ∩ [0, t]|) =

∫ t

0

P(Bs = 0)ds = 0.

The truth is that the zeros of Brownian motion is almost surely an uncountable set and in
fact, forms a fractal set.

In higher dimensions, the natural analog of the previous result involved hitting times of cones
of the form

C = {λy : λ > 0, y ∈ U ⊂ Sd}. (5.2)

Here, U 6= ∅ is an open subset of Sd = {x ∈ Rd : ‖x‖ = 1}, the unit sphere in Rd.

Proposition 5.14. Let B be a standard Brownian motion on Rd, and let C be as in (5.2).
Then

τC = inf{t > 0: Bt ∈ C}

has P(τC = 0) = 1.

Proof. By definition, the sets in (5.2) are invariant under multiplication by positive scalars.
Hence, for any t > 0,

P(Bt ∈ C) = P(t1/2B1 ∈ C) = P(B1 ∈ C).

By assumption, C has non-empty interior, and since B1 has d-dimensional normal distribu-
tion, P(B1 ∈ C) > 0. Arguing as in the proof of the previous Theorem, we deduce from
Blumenthal’s 01-law that P(τC = 0) = 1.

There exist a number of martingales associated with Brownian motion and its filtrations in
a natural way. The simplest two are the following two processes.

Proposition 5.15. Let B = (Bt : t ≥ 0) be a Brownian motion. Then the processes

B = (Bt : t ≥ 0) and B̃ = (B2
t − t : t ≥ 0),

are martingales with respect to the filtration (FB+
t ).

Proof. In both cases, adaptedness and integrability are immediate. For Brownian motion
itself, the martingale property follows from independence of increments. To establish the
martingale property of B̃, we complete the square and write, for s < t,

E[B2
t − t|FB+

s ] = E[(Bt −Bs)
2|FB+

s ] + 2E[BtBs|FB+
s ]− E[B2

s |FB+
s ]− t.

The first term on the right-hand side is equal to t− s by independence. In the second term,
we take out the FB+

s -measurable factor Bs and use the martingale property of B. Combining
this, we obtain

E[B2
t − t|FB+

s ] = t− s+ 2B2
s −B2

s − t = B2
s − s,

which shows that the process (B2
t − t) is indeed a martingale.
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Using these martingales, one can show gambler’s ruin estimates for one-dimensional Brow-
nian motion. For x ∈ R, we define the stopping times

Tx = inf{t > 0: Bt = x}.

and we find that (see Example sheet 3), for x, y > 0,

P(T−y < Tx) =
x

x+ y
and E[Tx ∧ T−y] = xy.

We next turn to a martingale which actually characterizes Brownian motion.

Proposition 5.16. Let B be a Brownian motion taking values in Rd, and define

Zu = exp

(
i〈u,Bt〉+

t‖u‖2

2

)
, u ∈ Rd. (5.3)

Then Zu is an (FB+
t )-martingale for all u ∈ Rd.

One can show that a continuous process for which Zu is a martingale is an (Ft)-Brownian
motion.

Proof. This amounts to a computation. We first recall that ϕX(u) = exp(−u2/2) for X
distributed according to N (0, 1); in d dimensions and with variance t, we obtain

E[ei〈u,X〉] = e−t
‖u‖2

2 , u ∈ Rd.

Conditioning and using translation invariance plus independence, we find that

E[Zu
t |Fs] = E

[
ei〈u,Bs〉+s

‖u‖2
2 ei〈u,Bt−Bs〉+(t−s) ‖u‖

2

2

∣∣∣ FB+
s

]
= Zu

sE
[
ei〈u,Bt−s〉+(t−s) ‖u‖

2

2

]
= Zu

s .

We close this section by describing a general procedure for generating martingales in contin-
uous time starting from a Brownian motion.

In what follows, we work on R+ ×Rd, and we write (t, x) = (t, x1, . . . , xd) for a point in the
space. We shall think of t ≥ 0 as being time. The linear partial differential operator

∂t −
1

2
∆ = ∂t −

1

2

d∑
k=1

∂2
xj

(5.4)

acts in a well-defined way on any real-valued function f = f(t, x) that is continuously
differentiable in the first variable, and is twice continuously differentiable with respect to
each xk, k = 1, . . . , n. Let us write C1,2

b = C1,2
b (R+ × Rd) for the set of all functions
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that satisfy these requirements, are bounded and have bounded partials up to orders (1, 2).
Associated with this operator is the heat equation

∂tu(t, x) =
1

2
∆u(t, x);

this equation describes diffusion of heat, and is the fundamental example of a parabolic partial
differential equation.

We change notation, and set

pt(x, y) =
1

(2πt)d/2
e−
‖x−y‖2

2t , (t, x) ∈ (R+ \ {0})× Rd.

It amounts to a computation to verify that the transition density pt solves the heat equation,(
∂t −

1

2
∆

)
pt(x, y) = 0, for t > 0, x, y ∈ Rd.

Since also limt→0[pt ∗g](x) = g(x), in a suitable sense, the kernel pt is actually a fundamental
solution to the Cauchy problem for the heat equation (see [4] for a discussion). These facts,
in conjunction with the Markov property of Brownian motion, lead to the following result.

Theorem 5.17. Let B = (Bt : t ≥ 0) be a d-dimensional Brownian motion, started at
x ∈ Rd, and let f ∈ C1,2

b .

Then the process M = (Mt : t ≥ 0) given by

Mt = f(t, Bt)− f(0, B0)−
∫ t

0

(
∂t +

1

2
∆

)
f(s, Bs)ds

is a martingale with respect to the filtration (FB+
t ).

Proof. In view of our boundedness and continuity assumptions, integrability and adaptedness
follow.

In order to establish that Mt is a martingale, we therefore need to show that

E[Mt+s −Ms|F+
s ] = 0, t > s,

holds almost surely. To accomplish this, we shall use the fact that, for any s ≥ 0, the process
Wt = Bt+s −Bs is a Brownian motion, and is independent of F+

s .

From the definition of Mt, we obtain

Mt+s −Ms = f(t+ s, Bt+s)− f(s, Bs)−
∫ t+s

s

(
∂r +

1

2
∆

)
f(r, Br)dr

= f(t+ s, Bt+s)− f(s, Bs)−
∫ t

0

(
∂r +

1

2
∆

)
f(r + s, Bs +Wt)dr

= I1 + I2.
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We begin by considering I1 = f(t+ s, Bt+s)− f(s, Bs). In view of the Markov property, we
find that

E[I1|F+
s ] = E[f(t+ s, Bt+s −Bs +Bs)|F+

s ]− f(s, Bs)

= E[f(t+ s, Bs +Wt)|F+
s ]− f(s, Bs)

=

∫
Rd
f(t+ s, Bs + x)pt(0, x)dx− f(s, Bs);

where the integral in the last line represents expectation with respect to a Brownian motion
started at the (random) point Bs.

We next turn to the integral constituting I2. Applying Fubini’s theorem, and the Markov
property, we obtain

−E[I2|F+
s ] =

∫ t

0

E
[(
∂r +

1

2
∆

)
f(r + s, Br+s)

∣∣∣F+
s

]
dr.

=

∫ t

0

∫
Rd

(
∂r +

1

2
∆

)
f(r + s, Bs + x)pr(0, x)dx dr.

Splitting the latter integral as a sum, and then integrating by parts, we obtain∫ t

0

∫
Rd
∂rf(r + s, Bs + x)pr(0, x)dxdr =

∫
Rd
f(t+ s, Bs + x)pt(0, x)dx− f(s, Bs)

−
∫ t

0

∫
Rd
f(r + s, Bs + x)∂rpr(0, x)dxdr.

Here we have interpreted evaluation of the integrand at 0 as a limit. Making use of the fact
that ∂tpt = (1/2)∆pt, we then apply integration by parts to the remaining integral. Since
the terms involving Laplacian cancel out, we arrive at

−E[I2|F+
s ] =

∫
Rd
f(t+ s, Bs + x)pt(0, x)dx− f(s, Bs).

Thus
E[I1|F+

s ] + E[I2|F+
s ] = 0,

and it follows that Mt is a martingale.

In particular, if f(t, x) = f(x) and f is harmonic, that is ∆f(x) = 0, then the theorem
implies that the process M = (f(Bt) : t ≥ 0) is a martingale. In the case where harmonicity
only holds on a subdomain D ⊂ Rd, we can frequently use stopping times to obtain processes
that are martingales up to the time when B exits D.

5.5 Strong Markov property and reflection principle

We shall now prove that Brownian motion enjoys the strong Markov property: the assertion
of Proposition 5.3 continues to hold when the sure time s is replaced by a stopping time T .
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Theorem 5.18. [Strong Markov property] Let τ be an almost surely finite stopping time.
Then the process

W τ = (Bt+τ −Bτ : t ≥ 0)

is a standard Brownian motion independent of FB+
τ .

Proof. We begin by once again considering the discrete approximations τn = 2−nd2nτe. As in
Section 3, (τn) is a sequence of stopping times, taking dyadic values, with τn ↓ τ as n→∞.
In addition, we already know that, for any k ≥ 0, the process

Bk
t = Bt+k2−n −Bk2−n

is a Brownian motion, and is independent of FBk2−n .

We shall now prove that
B̃n
t = Bt+τn −Bτn

is also a Brownian motion, and that this process is independent of FB+
τn . Since the stopping

times (τn) take values in a countable set, we can decompose them into a countable sum
involving the events {τn = k2−n}, where B̃n is expressible in terms of Bk, use independence
on each such event, and then reassemble everything at the end.

Let us implement this strategy and show that, for an m-tuple t1 < · · · < tm, an event
A ∈ FB+

τ , and f ∈ Cb(Rm), we have

E[f(Bt1+τ −Bτ , . . . , Btm+τ −Bτ )1(A)] = E[f(Bt1 , . . . , Btm)]P(A). (5.5)

We begin by establishing this for our discretized stopping times, in which case we may write

E[f(Bt1+τn −Bτn , . . . , Btm+τn −Bτn)1(A)]

=
∞∑
k=0

E[f(Bt1+k2−n −Bt1 , . . . , Btm+k2−n −Btm)1(A ∩ {τn = k2−n}].

By independence and the (weak) Markov property, and since A ∩ {τn = k2−n} ∈ FB+
k2−n ,

each summand can be factorized as ]E[f(Bt1 , . . . , Btm)]P(A ∩ {τn = k2−n}), and since
E[f(Bt1 , . . . , Btm)] does not depend on n, the right-hand side in the displayed equation
is equal to

E[f(Bt1 , . . . , Btm)]
∞∑
k=0

P(A ∩ {τn = k2−n}) = E[f(Bt1 , . . . , Btm)]P(A);

this last expression does not depend on n.

Since B is a continuous process and f is bounded, the dominated convergence theorem now
yields that

lim
n→∞

E[f(Bt1+τn −Bτn , . . . , Btm+τn −Bτn)1(A)] = E[f(Bt1+τ −Bτ , . . .)1(A),

and by our previous computation, (5.5) follows. Taking A = Ω in (5.5) now shows that
W has the finite-dimensional distributions of a Brownian motion. Since finite-dimensional
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distributions characterize continuous processes, it follows that W has the law of a Brownian
motion, as claimed.

It remains to show that W is independent of FB+
τ . By approximating 1(B) for B ∈ B(Rm)

by continuous functions, we deduce from (5.5) that

P((Bt1+τ −Bτ , . . . , Btm+τ −Bτ) ∈ B) ∩ A) = P((Bt1+τ −Bτ , . . . , Btm+τ −Bτ ) ∈ B)P(A).

This shows that independence holds for cylinder sets. We next check that the sets B ∈
B(C[0,∞)) for which

P({W ∈ B} ∩ A) = P(W ∈ B)P(A)

holds form a monotone class. As we have seen that this monotone class contains the cylinder
sets, independence of W from FB+

τ then follows from the monotone class theorem.

From the strong Markov property, we deduce results concerning reflection of one-dimensional
Brownian motion. As usual, we define the hitting time of level a ∈ R

τa = inf{t > 0: Bt = a};

since B is a continuous process, this is an (FB+
t )-stopping time.

Theorem 5.19. Let B be a one-dimensional Brownian motion. For a ∈ R fixed, the process

B̃t =

{
Bt, t < τa

2a−Bt, t ≥ τa
(5.6)

is a Brownian motion

Proof. Invoking the strong Markov property, we find that W = (Bτa+t − a : t ≥ 0) is a
standard Brownian motion that is independent of (Bt : τ ≥ t ≥ 0), and so is the reflected
process −W .

This means that the pair (B,W ) has the same law as (B,−W ). From the first pair, we
obtain a continuous process via the mapping

Φ: (B,W ) 7→ B1(t ≤ τa) + (a+Wt−τa)1(t > τa),

which has the same law as Φ(B,−W ). By definition, Φ(B,W ) = B while Φ(B,−W ) = B̃,
and since the mapping Φ is measurable, equality in law of B and B̃ follow.

This reflection principle allows us to study the distribution of the running maximum of
Brownian up to time t > 0. This is the process

Mt = sup
0≤s≤t

Bs.

Theorem 5.20. Let B be Brownian motion on R. For a > 0, the process Mt = sup0≤s≤tBs

has
P(Mt > a) = 2P(Bt > a) = P(|Bt| > a).
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Proof. Let a > 0 be given, and consider, as before, the stopping time τa = inf{t > 0: Bt =
a}. Since {Bt > a} ⊂ {Mt > a}, we obtain

{Mt > a} = {Bt > a} ∪ ({Mt > a} ∩ {Bt ≤ a}) .

Note that the event on the right-hand side is given as disjoint union. Since

{Mt > a} ∩ {Bt ≤ a} = {B̃t ≥ a},

where B̃ is defined as in the previous theorem, the statement follows from the reflection
principle 5.19 via

P(Mt ≥ a) = P(Bt > a) + P(B̃t ≥ a).

As an immediate corollary, we obtain the density of the passage time

τa = inf{t > 0: Bt = a}.

Corollary 5.21. For a > 0, the random variable τa has density

fτa(t) =
a√
2πt3

e−
a2

2t , t > 0.

Proof. We note that
P(τa ≤ t) = P(Mt ≥ a),

and then, using Theorem 5.20 and performing a change of variables, we find that

P(τa ≤ t) =

√
2

π

∫ ∞
a√
t

e−
x2

2 dx.

The desired result now follows upon differentiation with respect to the variable t.

5.6 Recurrence, transience, and connections with partial differen-
tial equations

We shall now study the long-time behavior of Brownian motion, making heavy use of mar-
tingales constructed as in Theorem 5.17 and the optional stopping theorem.

Definition 5.22. A process X = (Xt : t ≥ 0) on Rd started at x0 is said to be point-recurrent
or simply recurrent if, for each x ∈ Rd, the set

{t ≥ 0: Xt = x} ⊂ [0,∞)

is unbounded Px0-almost surely.

We say that X is neighborhood-recurrent if, for each x ∈ Rd, the sets

{t ≥ 0: ‖Xt − x‖ ≤ ε}

are unbounded Px0-almost surely for each ε > 0.

The process X is transient if ‖Xt‖ → ∞ holds almost surely as t→∞.
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The recurrence and transience properties of Brownian motion depend on the dimension of
the ambient space. As we shall see, the decay of the Green’s function for the Laplacian plays
an important role.

Theorem 5.23. Brownian motion on R is point recurrent. Planar Brownian motion is
neighborhood-recurrent, but not point-recurrent.

For d ≥ 3, d-dimensional Brownian motion is transient.

Proof. The statement concerning one-dimensional Brownian motion follows from the fact
that

lim sup
t→∞

Bt =∞ and lim inf
t→∞

Bt = −∞;

cf. Proposition 5.14.

We turn to a proof of neighborhood recurrence in R2. We begin by considering the function

G(z) = log ‖z‖, z ∈ R2 \ {0}.

A computation (using polar coordinates for instance) shows that G is harmonic away from
the origin, that is, that

∆G(z) = 0, z 6= 0.

In fact, G is the Green’s function for the Dirichlet problem on the unit disk D = {z ∈
R2 : ‖z‖ < 1}; that is, formally, G solves the problem7{

∆G(z) = δ0, z ∈ D,
G(ζ) = 0, ζ ∈ ∂D.

For ε, R ∈ R with 0 < ε < R <∞, we consider the annular region

A(ε, R) = {z ∈ R2 : ε < ‖z‖ < R},

and a function f ∈ C2
b (R2) that satisfies

f(x) = G(x) = log ‖x‖, x ∈ A(ε, R).

In particular then, ∆f(x) = 0 on A(ε, R). Moreover, by Theorem 5.17, the process M =
(Mt : t ≥ 0) defined by

Mt = f(Bt)−
∫ t

0

∆f(Bs)ds

is a martingale with respect to the filtration (F+
t ) associated with a Brownian motion started

at a point x ∈ A(ε, R).

We define two stopping times through

τε,R = inf{t > 0: ‖Bt‖ = ε, R},
7We are suggestively using z for a point in R2, which can be identified with the complex plane. There are

many fascinating connections between complex analysis, potential theory, and Brownian motion, but they
are sadly outside the scope of this course.
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and introduce the almost surely bounded stopping times

T = τε ∧ τR.

Since the stopped process MT given by MT
t = Mt∧T is a bounded martingale, we can apply

the optional stopping theorem in continuous time, cf. Theorem 3.21. As the integral term
in the initial definition of Mt drops out, this then yields the relation

Ex[MT ] = Ex[log |Bt|] = Ex[log |B0|] = log ‖x‖, (5.7)

or, formulated in terms of the stopping times,

log ε Px(τε < τR) + logR Px(τR < τε).

Solving for Px(τε < τR) using Px(τε < τR) + Px(τR < τε) = 1, we arrive at

Px(τε < τR) =
log
(

R
‖x‖

)
log
(
R
ε

) . (5.8)

We now let R tend to infinity in (5.8) to obtain

Px(τε <∞) = 1;

that TR → ∞ as R → ∞ follows by continuity of Brownian motion. This means that for
x ∈ A(ε,∞),

Px(‖Bt‖ ≤ ε for some t > 0) = 1.

Next, the strong Markov property implies that W = (Bt+n − Bn : t ≥ 0) is a Brownian
motion independent of F+

n . Hence

Px(‖Bt‖ ≤ ε for some t ≥ n) = Px(‖Bt+n −Bn +Bn‖ ≤ ε for some t > 0)

=

∫
R2

P0(‖Wt + y‖ ≤ ε for some t > 0)Px(Bn = y)dy

=

∫
R2

Py(‖Bt‖ ≤ ε for some t > 0)pn(x, y)dy,

but the latter integral is equal to 1 for all n since the integrand is 1. This shows that
{t > 0: ‖Bt‖ ≤ ε} is unbounded, as claimed.

It remains to prove that B is not point-recurrent. Returning to the equation (5.8), we first
send ε→ 0 to get

Px(τ0 < τR) = 0.

This means that, almost surely, Brownian motion hits the outer circle {‖x‖ = R} before it
reaches the origin. Taking the limit R→∞, we conclude that

Px(Bt = 0 for some t > 0) = 0.

Again appealing to the Markov property, we obtain that for a > 0,

72



P0(Bt = 0 for some a > 0) = 0,

and taking the limit a→ 0, we finally arrive at

P0(Bt = 0 for some t > 0) = 0,

thus completing the proof.

In the higher-dimensional case d ≥ 3, one works with the function

G(x) =
1

‖x‖d−2
, x ∈ Rd, ‖x‖ > 0.

Again using optional stopping, one obtains

Px(τε < τR) =
‖x‖2−d −R2−d

ε2−d −R2−d ,

where annular regions are now replaced by spherical shells in the definition of the stopping
times. This shows, after an appeal to the Borel-Cantelli lemma, that only finitely many
events of the form {‖Bt‖ < n for all t ≥ τn3} occur, and transitivity follows.

We leave the details as an exercise (see Example Sheet 4).

Theorem 5.17 and the proof of Theorem 5.23 clearly indicate a connection between Brownian
motion and the Laplacian. The fact that the Dirichlet problem for the Laplacian can be
solved using Brownian motion serves as a further illustration.

The classical Dirichlet problem runs as follows: Given a bounded connected open set D ⊂ Rd,
and a continuous function f ∈ C(∂D), find a function u : D̄ → R such that u ∈ C(D̄) and{

∆u(x) = 0, x ∈ D;
u(ξ) = f(ξ), ξ ∈ ∂D . (5.9)

We shall refer to an open connected set in Rd as a domain. Counterexamples due to S.
Zaremba and H. Lebesgue show that the Dirichlet problem does not admit a solution witout
some additional regularity assumptions on the domain D. A necessary and sufficient condi-
tion was obtained by Wiener; we content ourselves with a stronger sufficient condition, given
in terms of exterior cones.

Definition 5.24. Let D ⊂ Rd be an open connected set. We say that D satisfies the
Zaremba cone condition at a boundary point ξ ∈ ∂D if there exists an open non-empty cone
C with apex at ξ such that, for some r > 0,

C ∩B(ξ, r) ⊂ Dc.

We are now ready to present S. Kakutani’s solution to the Dirichlet problem.
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Theorem 5.25. Suppose D ⊂ Rd is a bounded domain with the property that every boundary
point satisfies the Zaremba cone condition. For B = (Bt : t ≥ 0) a Brownian motion in Rd,
define

τ = τ∂D = inf{t ≥ 0: Bt ∈ ∂D}.

Then the unique solution to the Dirichlet problem (5.9) is given by

u(x) = Ex[f(Bτ )], x ∈ D̄. (5.10)

This theorem generalizes to elliptic second-order partial differential operators (and beyond)
via the theory of diffusion processes and stochastic differential equations. 8 For the Dirichlet
problem, a necessary and sufficient condition has been given by Wiener, but this falls outside
the scope of the present course.

We shall need two classical results concerning harmonic functions in the proof of Theorem
5.25. We refer the reader to [4, Chapter 2.2] for background material and demonstrations.

In what follows, S(B(x, r)) =
∫
∂B(x,r)

ds denotes the surface area of a sphere in Rd with

radius r > 0 and center at x, expressed in terms of the area element ds.

Theorem 5.26. [Mean-value property of harmonic functions] Suppose u is measurable
and bounded, and has the property that, for every x ∈ D, and every r > 0 such that B(x, r) ⊂
D,

u(x) =
1

S(B(x, r))

∫
∂B(x,r)

u(s)ds.

Then u is harmonic in D, that is, ∆u(x) = 0 for all x ∈ D.

Theorem 5.27. [Maximum principle] Suppose u ∈ C2(D) ∩ C(D̄) is harmonic in D.
Then

max
x∈D̄

u(x) = max
ξ∈∂D

u(ξ).

The maximum principle implies, in particular, that the Dirichlet problem can have at most
one solution. Starting with two solutions u1, u2, set u± = ±(u1 − u2): these function u are
harmonic and vanish on the boundary of D, and hence u1 = u2 in D.

Proof. Since D is assumed bounded, the function u is bounded. Moreover, for any x ∈ D
and r > 0,

τr = inf{t > 0: Bt ∈ ∂B(x, r)}

is a finite stopping time Px-almost surely.

We now use the strong Markov property to show that

u(x) = Ex[f(Bτ )]

8More on this in the course in Stochastic Calculus.
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enjoys the mean-value property, and hence is harmonic. Namely, we have

u(x) = Ex[f(Bτ )]

= Ex [Ex[f(Bτ )|Fτr ]]
= Ex

[
EBτr [f(Bτ )]

]
= Ex[u(Bτr).]

Since Brownian motion is invariant with respect to rotations, and since Lebesgue measure
is the unique rotationally invariant measure on the sphere,

Ex[u(Bτr)] =
1

S(B(x, r))

∫
∂B(x,r)

u(s)ds,

and the harmonicity of u follows.

It remains to show that u is continuous in D̄ and attains the correct boundary values. This
we shall prove using the cone condition.

Since D is a bounded domain, we can find, for any given ε > 0, a number δ > 0 such that

|f(η)− f(ξ)| < ε provided |ξ − η| < δ.

For a given ξ ∈ ∂D, we let (xk)
∞
k=1 be a sequence of points in D satisfying

|ξ − xk| <
δ

2k
.

A Brownian motion started at x ∈ D will either hit the boundary ∂D before it exits the ball
B(x, δ), in which case we obtain the desired estimate |f(ξ)−f(Bτ )| < ε, or else τδ = inf{t >
0: Bt ∈ ∂B(ξ, δ)} < τ . With this in mind, and using the triangle inequality, we obtain

|u(xk)− u(ξ)| = |Exk [f(Bτ )]− f(ξ)|
≤ Exk [|f(Bτ )− f(ξ)|]
≤ ε Pxk(τ < τδ) + 2 sup

ξ∈∂D
|f(ξ)| Pxk(τδ < τ)

≤ ε+MPxk(τδ < τ).

The proof will be complete once we show that the probability Pxk(τδ < τ) becomes arbitrarily
small when k becomes large.

By assumption, we can choose δ small enough so that there exists a cone with apex at ξ and
C ∩B(ξ, δ) ∈ Dc. We introduce the stopping time

τC = inf{t > 0: Bt ∈ C},

and use the Markov property to write down the estimate

Px(τδ < τ) ≤ Px(τδ < τC) ≤
k∏
j=1

sup
xj∈B(ξ,2−k+jδ)

Pxj(τ2−k+jδ < τC).

Finally, since Pxj(τ2−kδ < τC) = ε′ < 1 for every k by the invariance of the cone under
multiplication, the right-hand side is bounded by (ε′)k, and tends to 0 as k →∞.
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5.7 Donsker’s invariance principle

Our final topic in this chapter on Brownian motion is M. Donsker’s remarkable invariance
principle. This result can be viewed as a generalization of the Central Limit Theorem to
processes: Brownian motion is the limit of suitable rescaled random walks, embedded in
continuous time through linear interpolation.

While we have already constructed Brownian motion, the invariance principle can also be
used to give a construction of B. The details are carried out in [5]; one advantage of this
approach is that one argues on weakly convergent measures on the metric space C[0,∞),
endowed with its Borel σ-algebra. In this way one obtains a probability measure P on
(C[0,∞),B(C[0,∞))), the Wiener measure, under which the coordinate process

Bt(ω) = ω(t)

is a standard Brownian motion on R.

Throughout this section, we work with stochastic processes on R. We begin by proving
a result, interesting in its own right, that provides an embedding of random walks into
Brownian motion via a non-decreasing sequence of stopping times. We do this in two steps.

Theorem 5.28. [Skorokhod representation, part I]
Suppose X is a random variable with E[X] = 0 and E[X2] = σ2 < ∞. Then there exists a
stopping time for one-dimensional Brownian motion such that BT and X coincide in law,
and

E[T ] = E[X2].

To see how such a statement could possibly be true, we consider the following simple situ-
ation. Suppose X takes values in {−a, b}, where a, b > 0, and has mean 0. By necessity,
then, the law of X is

µX =
b

b+ a
δ−a +

a

b+ a
δb.

We introduce stopping times for standard Brownian motion by taking

τ−a = inf{t > 0: Bt = −a} and τb = inf{t > 0: Bt = b},

and obtain an almost surely finite stopping time by setting

T = τ−a ∧ τb.

We know (see Example sheet 3) that

P(τ−a < τb) =
b

a+ b
and P(τb < τ−a) =

a

a+ b
, (5.11)

and so µBT = µX in this simple example. Moreover, since

E[T ] = E[τ−a ∧ τb] = ab. (5.12)
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and

E[B2
T ] = −a b

a+ b
+ b

a

a+ b
= ab,

the second assertion also holds.

As we shall see in the proof, the basic idea is to reduce the problem to the simple situation
we have just analyzed.

Proof. Since X was assumed to have zero mean, that is,
∫
R udµX(u) = 0, it follows that∫ 0

−∞
(−u)dµX(u) =

∫ ∞
0

vdµX(v) = C

for some constant C > 0. Now, letting f be a bounded Borel function, we can write

C

∫
fdµ =

(∫ ∞
0

f(v)dµX(v)

)∫ 0

−∞
−udµ(u) +

(∫ 0

−∞
f(u)dµX(u)

)∫ ∞
0

vdµ(v)

=

∫ ∞
v=0

∫ 0

u=−∞
(vf(u)− u(f(v))dµ(u)dµ(v)

=

∫ ∫ (
v

v − u
f(u)− u

v − u
f(v)

)
(v − u)dµ(u)dµ(v)

=

∫ ∫ (
v

v − u
f(u)− u

v − u
f(v)

)
dν̃(u, v),

and the expression in parentheses is of the same form as in our example.

Guided by this, we now define, on the same probability space as the Brownian motion and
the random variable X, an independent random vector (U, V ) having a law with

ν(U,V )(A1 × A2) =
1

C

∫
A1

∫
A2

(u+ v)dµ(−u)dµ(v),

for A1 ⊂ (0,∞) and A2 ⊂ (−∞, 0). We let Ft = σ(F0,FBt ), with F0 = σ(U, V ), and we
next define

T = inf{t ≥ 0: Bt = −U or V }. (5.13)

Now B is a Ft-Brownian motion, and T is a stopping time. By (5.11) and (5.12), conditional
on U and V , it holds that

P(BT = V |U, V ) =
U

U + V
and P(BT = −U |U, V ) =

V

U + V
,

as well as E[T |U, V ] = UV . Hence, by our previous computations involving the arbitrary
Borel function f and culminating in the expression defining ν, we conclude that BT coincides
in law with X.

Finally, we compute, again using the definition of C:

E[T ] = E[E[T |U, V ]] =

∫ ∞
0

∫ ∞
0

1

C
uv(u+ v)dµ(−u)dµ(v)

=

∫ 0

−∞
(−u)2dµ(u) +

∫ ∞
0

v2dµ(v) = σ2.

Thus E[T ] = E[X2] and the theorem is proved.
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The next step is to embed an entire random walk into a Brownian motion. For notational
simplicity, we assume that the variance of the underlying random variables is equal to 1; the
general case is treated via rescaling.

Theorem 5.29. [Skorokhod representation, part II]
Let (Xk)

∞
k=1 be a sequence of i.i.d. random variables with zero mean and unit variance, and

set Sn =
∑n

k=1 Xk.

Then there exists a sequences of stopping times (Tn)∞n=1 such that

0 = T0 ≤ T1 ≤ T2 ≤ · · · ,

the random variable Sn coincides with BTn in law, and the increments Tn − Tn−1 are inde-
pendent and identically distributed, with mean 1.

Proof. We generate a sequence of i.i.d. pairs (Uk, Vk) as in the previous theorem, and let B
be an independent Brownian motion.

Letting T0 = 0, we inductively define stopping times

Tn = inf{t ≥ Tn−1 : Bt −BTn−1 /∈ (Un, Vn)}.

Invoking the strong Markov property of Brownian motion, we see that BTn−BTn−1 is indepen-
dent with law µX , the increments have mean 1, and both random variables are independent
of FTn−1 .

In order to state Donsker’s theorem, we introduce the notation [x] for the integer part of a
real number x.

Theorem 5.30. [Donsker’s invariance principle]
Let (Xk)

∞
k=1 be a sequence of i.i.d. random variables with

E[Xk] = 0 and E[X2
k ] = 1.

Set Sn =
∑n

k=1Xk and define a process S = (St : 0 ≤ t ≤ 1) by linear interpolation:

St = S[t] + (t− [t])(S[t]+1 − S[t]). (5.14)

Then the laws of the processes

SN =

(
1√
N
SNt : 0 ≤ t ≤ 1

)
converge weakly to Wiener measure on (C[0, 1],B(C[0, 1])).

Recall that weak convergence means that

E[f(SN)]→ E[f(B)] as N →∞

for every continuous and bounded function F on the metric space we obtain by endowing
C[0, 1] with the uniform norm.
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The mapping fm : C[0, 1]→ R given by

fm : ω 7→ max{ω(t) : 0 ≤ t ≤ 1}

is continuous, and the composition g(fm) with a bounded continuous g : R → R, furnishes
an example of such a function.

This particular choice also illustrates the usefulness of the invariance principle. Assuming
the validity of Donsker’s result, it follows that the law of the random variable

max
0≤l≤n

Sl√
n

converges to that of the running maximum

M1 = sup
0≤t≤1

Bt,

and for Mt we have already obtained the explicit formula

P(M1 ≥ a) = 2P(B1 ≥ a).

We now turn to the proof of Donsker’s invariance principle.

Proof. Let us define, for N = 1, 2, . . ., the processes

BN
t =

√
NBt/N , 0 ≤ t ≤ 1.

By Brownian scaling, each BN is again a standard Brownian motion. We shall use this
rescaling to construct certain auxilliary processes.

We invoke the Skorokhod embedding theorem, but with BN instead of B, to obtain a se-
quence of stopping times

(TNn )∞n=1 for each N = 1, 2, . . .

We then set SNn = BN
TNn

and form a sequence of continuous-time processes SN by linear
interpolation, as in the statement of the theorem. By construction then, for all N ≥ 1,

((SNt ), (TNn )) coincide in law with ((St), (Tn)).

With this in mind, we rescale,

T̃Nn =
1

N
TNn , S̃Nt =

1√
N
SNNt,

so that S̃N has the same law as the target process SN . In view of the definition of BN as a
rescaling of B, we also have

S̃Nn/N =
1√
N
SNn =

1√
N
BN
TNn

= BT̃Nn
for all n.
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Now, since Tn − Tn−1 has mean 1, the strong law of large numbers yields

lim
n→∞

Tn
n

= 1,

and hence
1

N
sup

1≤n≤N
|Tn − n| → 0 as N →∞.

In particular, for any δ > 0,

lim
N→∞

P
(

sup
1≤n≤N

∣∣∣T̃Nn − n

N

∣∣∣ > δ

)
= 0.

Since S̃Nn/N = BT̃Nn
, and Brownian motion is continuous, the intermediate value theorem

applies to guarantee the existence of an s ∈ [T̃Nn , T̃
N
n+1] such that

S̃Nt = Bs

for every t ∈ [n/N, (n+ 1)/N ]. The idea is that this choice of s allows us to write

S̃Nt −Bt = S̃Nt −Bt +Bs −Bs = −(Bt −Bs),

so that showing that S̃Nt − Bt tends to zero reduces to controlling the increments of the
continuous function Bt.

For δ > 0, we now bound the probability of the unfavorable events AN = {|S̃Nt − Bt| >
ε for some t ∈ [0, 1]} as follows:

ΩB,N ⊂ {|Bt −Bs| > ε for some t ∈ [0, 1], and |s− t| < δ + 1/N} ∪ {|T̃Nn − n/N | > δ}.

We know that the probability of the second event tends to 0 as N →∞ for any δ > 0. On
the other hand, Brownian motion is uniformly continuous on the unit interval, and so the
first probability can be made arbitrarily small, for N large enough, by choosing δ sufficiently
small. In view of this

P

(
sup
t∈[0,1]

|S̃Nt −Bt| > ε

)
→ 0 as N →∞,

that is S̃N tends to B in probability in C[0, 1] equipped with the uniform metric.

Since S̃N has the same law as SN , and since convergence in probability implies weak con-
vergence, it follows that the law of SN to Wiener measure. The proof is complete.
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6 Poisson random measures and Lévy processes

6.1 Basic definitions

In these notes, we have focused on two specific examples of stochastic processes in continuous
time: the Poisson process and Brownian motion. Both of these processes have cadlag paths,
and independent and stationary increments. It turns out that they are members of a rather
general class of processes named Lévy processes.

A real-valued stochastic process X = (Xt : t ≥ 0), defined on some process space (Ω,F ,P),
is called a Lévy process if

• X0 = 0

• X has independent and stationary increments

• X is stochastically continuous: for every ε > 0 and t ≥ 0,

lim
s→t

P(|Xt −Xs| > ε) = 0.

It is clear that standard Brownian motion satisfies these requirements, and so does the
Poisson process. One can show (see [1, Chapter 2]) that any Lévy process has a cadlag
modification that is itself a Lévy process.

Processes that enjoy the cadlag property are, in a way, rather well-behaved. For instance, we
saw in Chapter 3 that such processes can only have a countable number of discontinuities.
However, unlike Brownian motion, which has no discontinuities at all, and the Poisson
process, which has jump discontinuities at random times, all of size 1, a “typical” Lévy
process exhibits jump discontinuities whose sizes can vary considerably–from “infinitesimal”
to large. A systematic discussion of Lévy processes is beyond the scope of this course, but
this chapter will be devoted to a concept that is useful in the study of the jump processes,
namely Poisson random measures.

Recall that each Xt, t ≥ 0, is a random variable, and so the characteristic function is well-
defined of X is defined for each t > 0. We end this preliminary discussion by quoting without
proof a basic result in the theory of Lévy processes, namely the Lévy-Khinchin formula: the
characteristic function of a Lévy process is of the form

ϕXt(u) = etη(u), u ∈ R,

where

η(u) = ibu− au
2

2
+

∫
R\{0}

[eiux − 1− iux1(|x| < 1)]dν(x). (6.1)

In this expression, we have b ∈ R and a > 0, and ν is a so-called Lévy measure: a Borel
measure having ∫

R\{0}
(|x|2 ∧ 1)dν(x) <∞.
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In general, it is not the case that Lévy measures are finite, or have finite first moment: it
may well be that

∫
|x|dν(x) =∞.

Looking closer at the formula (6.1), we recognize within the first two terms several proba-
bilistic objects we have already encountered. The expression exp(ibtu) is the characteristic
function of the deterministic process Xt = bt, while ϕBt(u) = exp(−atu2/2) corresponds to
that of a Brownian motion, rescaled by the factor a > 0. Finally, assuming for a moment
that ν does have finite first moment, we can absorb

∫
iuxdν(x) = iu

∫
xdν(x) into the term

ibu, leaving the expression ∫
R\{0}

[eiux − 1]dν(x)

A computation along the lines of (3.9) shows that the Poisson process of intensity λ > 0 has

ϕNt(u) = eλt(e
iu−1); (6.2)

this coincides with the previous integral in the special case ν = λδ1. Conversely, the measure
ν =

∑n
k=1 λkδxk yields precisely the characteristic function we would observe in a process

X given as the sum of n independent Poisson processes of intensities λk and different jump
sizes xk.

This suggests the following, admittedly very heuristic, interpretation of the “unknown” term
in the Lévy-Khinchin formula: it should arise from a superposition of many Poisson processes,
all independent of the Brownian motion that yields −au2/2, and with jump sizes that are
real. (A clear weakness here is that we are assuming finite first moments.) In the next
section, we shall discuss this kind of process.

The celebrated Lévy-Ito decomposition puts these heuristic observation on a rigorous footing,
and provides a precise description of an arbitrary Lévy process as a sum of simpler inde-
pendent processes, featuring several types of objects we have encountered, or are about to
discuss: Brownian motion, Poisson processes, and martingales.

6.2 Poisson random measures

In the Poisson process, the increments Nt −Ns are distributed acording to the Po(λ(t− s))
distribution for t > s. Random variables having the Poisson distribution enjoy the addition
property: if (Nk)

∞
k=1 are independent and Nk has Po(λk)-distribution, then

n∑
k=1

Nk ∼ Po

(
n∑
k=1

λk

)
.

Moreover, the splitting property holds: if N has Po(λ), and (Xn)∞n=1 are independent random
variables with P(Xn = m) = pm, then

Nm =
N∑
k=1

1(Xk = m) ∼ Po(λpm).

This suggests the following general definition.
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Definition 6.1. Let (Ω,F ,P) be a probability space, and let (S,S, µ) be a σ-finite measure
space. An independently scattered random measure on S is a map

M : Ω× S → N ∪ {∞}

that satisfies, for any collection (Ak)
∞
k=1 of disjoint sets in S,

• M(∅) = 0

• M (
⋃∞
k=1 Ak) =

∑∞
k=1 M(Ak)

• the random variables (M(Ak))
n
k=1 are independent

If the random variables M(Ak) have distribution Po(µ(Ak)) we say that M is a Poisson
random measure with intensity µ.

We let S∗ denote the space of measures on (S,S) taking values in the non-negative integers,
or infinity, and define a mapping X : S∗ → N ∪ {∞} indexed by sets A ∈ S:

XA(m) = m(A), m ∈ S∗.

We equip the space S∗ with the σ-algebra S∗ = σ(XA : A ∈ S).

Theorem 6.2. There exists a unique probability measure on (S∗,S∗) such that, under µ∗,
the map X is a Poisson random measure with intensity measure µ.

Proof. Suppose first that λ = µ(S) <∞. We consider a random variable N and a sequence
of random variables (Xn)∞n=1, defined on some common probability space and all independent,
such that N is Po(λ) and Xn has law µ/λ. Then, by the splitting property, the prescription

M(A) =
N∑
n=1

1(Xn ∈ A), A ∈ S, (6.3)

defines a Poisson random measure with the desired intensity µ.

In the general case where µ is merely σ-finite, we let (Sk)
∞
k=1 be disjoint sets with

⋃
k Sk = S

and µ(Sk) < ∞. On each Sk we can construct independent Poisson random measures Mk

with respective intensities µk = µ|Sk . We then define

M(A) =
∞∑
k=1

Mk(A ∩ Sk), A ∈ S,

and verify that this produces a Poisson random measure. The law of M on S∗ then yields
the desired measure µ∗ on S∗.

To establish uniqueness, we consider the π-system A∗ consisting of sets of the form

A∗ = {m ∈ S∗ : m(A1) = n1, . . . ,m(Ak) = nk}
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where (Aj)
k
j=1 are disjoints sets in S∗, and n1, . . . , nk ∈ N. If ν∗ is a measure that turns X

into Poisson random measure, then

µ∗(A∗) =
k∏
j=1

e−µ(Aj)
µ(Aj)

nj

(nj)!
,

and it follows that such a measure must coincide with µ∗ since S∗ is generated by the
π-system A∗.

Theorem 6.3. Suppose M is a Poisson random measure on (S,S) with intensity measure
µ, and let f : S → R be square integrable with respect to µ. Then the random variable

X = M(f) =

∫
S

f(x)dM(x)

is integrable, has characteristic function

E[eiuM(f)] = exp

(∫
S

[eiuf(x) − 1]dµ(x)

)
,

and moreover,

E[M(f)] =

∫
S

f(x)dµ(x) and var(M(f)) =

∫
S

[f(x)]2dµ(x).

Proof. We again start with the case λ = µ(S) < ∞. In this case M(S) is finite. Starting
with the simplest case f = 1(A) for some A ∈ S, we obtain the random variable

X(ω) =

∫
S

1(A)dM(x) = M(A)(ω).

This readily extends to step functions of the form f
∑n

k=1 ck1(Ak), where the Ak’s are disjoint
sets in S, and ck ≥ 0: we set

X =
n∑
k=1

ckM(Ak).

We then extend the definition to non-negative f ∈ L2(µ) by approximating from below by
step functions, and taking limits in L2.

By uniqueness, we may assume that M is written in the form (6.3). Conditioning and using
independence, we find that

E[eiuX |N = n] = (E[eiuf(X1)])n =

(∫
S

eiuf(x)dµ(x)

λ

)n
.

Next, by the law of total expectation,

E[eiuX ] =
∞∑
n=0

E[eiuX |N = n]P(N = n) =
∞∑
n=0

(∫
S

eiuf(x)dµ(x)

λ

)n
e−λ

λn

n!
,

84



and the desired exponential expression follows upon summation, and using the fact that
λ =

∫
S
dµ.

The case where µ is not necessarily finite but f is integrable is dealt with by approximating f
from below by functions having µ(|fn| > 0) <∞, and using monotone convergence. Finally,
we extend to general functions in the usual manner, by considering positive and negative
parts.

The formulas for the expectation and variance are obtained by differentiating with respect
to u and then setting u = 0. (See the Chapter on Weak Convergence.)

6.3 Jumps of a Lévy process

We now introduce a notion of time into our discussion of Poisson random measures. Letting
(S,S, ν) be a σ-finite measure space, we consider the product measure µ on (0,∞) × S
determined by

µ((0, t]× A) = tν(A), t > 0, A ∈ S.
We now take M to be a Poisson random measure with intensity µ, and consider integrals of
the form Yt =

∫
(0,t]×S f(x)dM(x) The process Yt is cadlag, and a jump process–whereas the

Poisson process jumps up by 1 at random times, the distribution of jumps of Yt is governed
by ν, the spatial part of the intensity measure µ.

We also introduce the compensated Poisson random measure

M̃ = M − µ.

The key point is that compensated Poisson random measures are centered, that is, have zero
mean: if A ⊂ S, then

E[M̃((0, t]× A)] = E[M((0, t]× A)]− tν(A) = 0.

Recall that the Poisson process is cadlag, but is not a martingale. However, by subtracting
off the expected value of the process, we obtain the compensated Poisson process

Ñt = Nt − λt, t ≥ 0,

which does satisfy the martingale property. An analogous statement holds for integrals with
respect to compensated Poisson random measures.

For f ∈ L2(ν), we consider the process

Xt =

∫
(0,t]×S

f(x)dM̃(x),

and its natural filtration (Ft)t≥0. We show that X enjoys the martingale property. Integra-
bility and adaptedness is straight-forward, and if s < t, then since Poisson random measures
are independently scattered,

E[Xt|Fs] = E
[∫

(s,t]×S
fdM̃ +

∫
(0,s]×S

fdM̃
∣∣∣Fs] =

∫
(0,s]×S

fdM̃ + E
[∫

(s,t]×S
fdM̃

]
.
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The second term on the right-hand side satisfies

E
[∫

(s,t]×S
fdM̃

]
= E

[∫
(s,t]×S

fdM

]
− (t− s)

∫
S

f(x)dν(x) = 0

by Theorem 6.3, and so
E[Xt|Fs] = Xs

as desired

We summarize our findings in the following theorem.

Theorem 6.4. Let f be a ν-square integrable function on S, and define the process

Xt =

∫
(0,t]×S

f(x)dM̃(s, x).

Then X = (Xt : t ≥ 0) is a cadlag martingale with independent and stationary increments,
and moreover

E[eiuXt ] = exp

(
t

∫
S

[eiuf(x) − 1− iuf(x)]dν(x)

)
and

E[X2
t ] = t

∫
S

[f(x)]2dν(x).

This last theorem identifies the last summand in our heuristic decomposition of a Lévy
process in the case

∫
R\{0} |x|dν(x) < ∞. We see that it arises as an integral, with f(x) =

x, against a compensated Poisson random measure, and is a cadlag L2 martingale. To
summarize our intuititive understanding up to this point, we want to think of a Lévy process
with Lévy measure with finite first moment as

Xt = bt+ aBt + Ct,

where bt is a deterministic drift, Bt is a Brownian motion, and Ct is a cadlag martingale
arising from a Poisson random measure, and all the processes are independent. For a rigorous
discussion, including proofs of the Lévy-Khinchin formula in full generality (which requires
a limiting procedure for the jump terms) and of the Lévy-Ito decomposition, we refer the
reader to [1].
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