Math 6030 / Problem Set 9 (two pages)

More about valuation rings

Let R be a UFD and $\mathcal{P} \subset R$ be a set of representatives for the prime elements modulo association, i.e., $\pi \sim \pi^{\prime} \stackrel{\text { def }}{\longleftrightarrow} \pi R^{\times}=\pi^{\prime} R^{\times}$. Recall that every $r \in R$ has a unique presentation of the form $r=\epsilon_{r} \prod_{\pi \in \mathcal{P}} \pi^{n_{r, \pi}}$ with $n_{r, \pi} \in \mathbb{N}$ and $n_{r, \pi}=0$ for almost all (for short, f.a.a.) $\pi \in \mathcal{P}$ (WHY), and every $x=\frac{a}{r} \in K=\operatorname{Quot}(R)$ has a unique presentation of the form $x=\epsilon_{x} \prod_{\pi \in \mathcal{P}} \pi^{n_{x, \pi}}$ with $n_{r, \pi} \in \mathbb{Z}$ and $n_{r, \pi}=0$ f.a.a (for almost all) $\pi \in \mathcal{P}$ (WHY).

1) In the above notation, consider the map $v_{\pi}: K \rightarrow \mathbb{Z} \cup \infty$ defined by $v_{\pi}(x)=n_{x, \pi}$ if $x \neq 0_{K}$ and $v_{\pi}\left(0_{K}\right)=\infty$. Prove/disprove/answer:
a) v_{π} is a discrete valuation, which does not depend on π, but rather on πR^{\times}.
b) What is the valuation ring $R_{v_{\pi}}, \mathfrak{m}_{v_{\pi}}$, its units $R_{v_{\pi}}^{\times}$, and the residue field $\kappa_{v_{\pi}}$?
c) Are all the discrete valuation rings R_{v} with $R \subset R_{v}$ of the form $R_{v}=R_{v_{\pi}}$?

Modules over PIDs

Recall that a torsion R-module M is called π-primary (torsion module), if M is π^{∞}-torsion, i.e., for every $x \in M$ there is $n>0$ such that $\pi^{n} x=0_{M}$.
2) In the notation above, suppose that R is a PID, and M is a finite torsion R-module. Prove/disprove/answer the following:
a) For each $\pi \in \mathcal{P}$ there is a unique π-primary R-submodule $M_{(\pi)} \subset R$ s.t. $R_{(\pi)}=(0)$ f.a.a. $\pi \in \mathcal{P}$ and $M=\oplus_{\pi} M_{(\pi)}$. Terminology. $M_{(\pi)}$ is the π-primary component of M.
b) For every $M_{(\pi)} \neq(0)$ there are unique $0<n_{1} \leqslant \cdots \leqslant n_{r}=n_{r_{\pi}}$ s.t. $M_{(\pi)} \cong \oplus_{i} R /\left(\pi^{n_{i}}\right)$. What can you say about $\pi^{n_{1}}, \ldots, \pi^{n_{r}}$?
3) Given $A=\left(\begin{array}{ll}6 & 3 \\ 2 & 3\end{array}\right) \in \mathbb{Z}^{2 \times 2}, A_{t}:=t I_{2}-A \in \mathbb{Q}[t]^{2 \times 2}$, and $\mathcal{E}=\left(e_{1}, e_{2}\right)$, define morphisms by:

$$
\varphi: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}, \varphi(\mathcal{E}) \mapsto\left(x_{1}, x_{2}\right):=\mathcal{E} A, \quad \varphi_{t}: \mathbb{Q}[t]^{2} \rightarrow \mathbb{Q}[t]^{2}, \varphi_{t}(\mathcal{E}) \mapsto\left(y_{1}, y_{2}\right):=\mathcal{E} A_{t} .
$$

Find bases $\mathcal{B}=\left(\alpha_{1}, \alpha_{2}\right)$ of M and $\delta_{1} \mid \delta_{2}$ s.t. $\mathcal{B}=\left(\delta_{1} \alpha_{1}, \delta_{2} \alpha_{2}\right)$ are basis of $N \subset M$ in the cases:
a) $M:=\mathbb{Z}^{2}$ and $N=\varphi(M) \subset M$.
b) $M:=\mathbb{Q}[t]^{2}$ and $N=\varphi_{t}(M) \subset M$.
4) Find the invariant factors of the matrix $A \in \mathbb{C}^{n \times n}$ in the cases:

$$
\text { a) } A=\left(\begin{array}{ll}
0 & 1 \\
1 & i
\end{array}\right) \quad \text { b) } A=\left(\begin{array}{rrr}
1 & i & 0 \\
0 & 1 & i \\
i & 0 & 1
\end{array}\right) \quad \text { c) } A=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right)
$$

[Hint: Using elementary matrices over $\mathbb{C}[t]$, transform A_{t} in the diagonal form with $\delta_{1}|\ldots| \delta_{n}$ on diagonal, etc...]
5) Let R be a Euclidean domain w.r.t. $\varphi: R \rightarrow \mathbb{N}$, and $N \subset M=R^{n}$ be generated by $\mathcal{X}=\left(x_{i}\right)_{i}, x_{i}=\left(a_{i 1}, \ldots, a_{i n}\right) \in R^{n}$ for $i=1, \ldots, m$. Evaluate the number of necessary multiplications in terms of $\|\mathcal{X}\|:=\max _{i, j} \varphi\left(a_{i j}\right)$ in order to find a basis $\mathcal{A}=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of M and $\delta_{1}|\ldots| \delta_{n}$ in R s.t. N is generated by $\mathcal{B}=\left(\delta_{1} \alpha_{1}, \ldots, \delta_{n} \alpha_{n}\right)$.
$\mathrm{ACC} / \mathrm{DCC}$. In the sequel, R is a (not necessarily commutative) ring with 1_{R}, and recall the notation/convention form the class: - denotes I(left), r(right), bi(left\&right), and we speak about the set $\mathcal{M} \bullet$ of \bullet - R-submodules of an \bullet - R-module M, e.g. the set of \bullet-ideals $\mathcal{I} d \bullet(R)$ of R. Recall that an increasing/decreasing (w.r.t. \subset) sequence $\left(N_{i}\right)_{i}$ in \mathcal{M} • satisfies ACC/DCC if the sequence is stationary, i.e., $\exists i_{0}$ such that $N_{i}=N_{i_{0}}$ for $N_{i_{0}} \subset N_{i}$, resp. $N_{i} \subset N_{i_{0}}$, and M satisfies ACC/DCC is all increasing/decreasing sequences in \mathcal{M} • satisfy ACC/DCC. Finally, M is \bullet-Noetherian if $\mathcal{M} \bullet$ satisfies ACC, respectively \bullet-Artinian if $\mathcal{M} \bullet$ satisfies DCC.
6) Prove the assertions for the class:
a) M satisfies $\mathrm{ACC} / \mathrm{DCC}$ iff all subsets $\varnothing \neq \mathcal{X} \subset \mathcal{M}$ • have maximal/minimal elements.
b) M satisfies ACC iff every $N \in \mathcal{M}_{\mathbf{0}}$ is finitely generated.
c) Let $\mathfrak{a} \in \mathcal{I} d_{\bullet}(R)$ be given. If M satisfies ACC/DCC, then one has:
(I) $M / \mathfrak{a} M ;(\mathrm{r}) M / M \mathfrak{a} ;$ (bi) $M / \mathfrak{a} M \& M / M \mathfrak{a}$ satisfy ACC/DCC.
7) Prove the assertions for the class/answer:
a) Let R be commutative, $\Sigma \subset R$ is a multiplicative system, and M satisfies ACC/DCC. Then the R_{Σ}-module M_{Σ} satisfies ACC/DCC.
b) If R is a skew field and V is an $\bullet-R$-vector space, TFAE:
(i) V satisfies ACC; (ii) V satisfies DCC; (iii) V is finite dimensional.
8) Let $0 \rightarrow M_{0} \rightarrow \cdots \rightarrow M_{n} \rightarrow 0$ be an exact sequence of \bullet - R-modules. Prove that all the modules $\left(M_{2 k}\right)_{k \geqslant 0}$ satisfy ACC/DCC iff all the modules $\left(M_{2 k+1}\right)_{k \geqslant 0}$ satisfy ACC/DCC.

Composition series

Recall that an $\bullet-R$-module M has a composition series iff M satisfies both ACC and DCC. Further, by the Jodan-Hölder Thm, all non-redundant •-composition series have the same length, denoted $\ell(M) \in \mathbb{N}$, and the simple factors are isomorphic up to a permutation (WHY). [Make sure that you review/know the proof(!)]
9) Let $R_{\mathrm{DCC}}^{\text {acc }}$-Mod be the category of \bullet-R-modules satisfying ACC \& ADD. Prove/disprove/answer:
a) $R_{\mathrm{DCC}}^{\mathrm{Acc}}-\operatorname{Mod}$ is closed w.r.t. taking $\bullet-R$ factor and submodules, finite products/coproducts.
b) $\ell: R_{\mathrm{DCC}}^{\text {ACC }}-\operatorname{Mod} \rightarrow \mathbb{N}$ is additive, i.e., $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ exact, then $\ell(M)=\ell\left(M^{\prime}\right)+\ell\left(M^{\prime \prime}\right)$.
c) If $0 \rightarrow M_{1} \rightarrow \ldots \rightarrow M_{n} \rightarrow 0$ is an exact sequence in $R_{\mathrm{DCC}}^{\mathrm{ACC}}-\operatorname{Mod}$, then $\sum_{i}(-1)^{i} \ell\left(M_{i}\right)=0$.

