Math 6030 / Problem Set 9 (two pages)

More about valuation rings

Let R be a UFD and $\mathcal{P} \subset R$ be a set of representatives for the prime elements modulo association, i.e., $\pi \sim \pi' \iff \pi R^{\times} = \pi' R^{\times}$. Recall that every $r \in R$ has a unique presentation of the form $r = \epsilon_r \prod_{\pi \in \mathcal{P}} \pi^{n_{r,\pi}}$ with $n_{r,\pi} \in \mathbb{N}$ and $n_{r,\pi} = 0$ for almost all (for short, f.a.a.) $\pi \in \mathcal{P}$ (WHY), and every $x = \frac{a}{r} \in K = \text{Quot}(R)$ has a unique presentation of the form $x = \epsilon_x \prod_{\pi \in \mathcal{P}} \pi^{n_{x,\pi}}$ with $n_{r,\pi} \in \mathbb{Z}$ and $n_{r,\pi} = 0$ f.a.a (for almost all) $\pi \in \mathcal{P}$ (WHY).

- 1) In the above notation, consider the map $v_{\pi}: K \to \mathbb{Z} \cup \infty$ defined by $v_{\pi}(x) = n_{x,\pi}$ if $x \neq 0_K$ and $v_{\pi}(0_K) = \infty$. Prove/disprove/answer:
 - a) v_{π} is a discrete valuation, which does not depend on π , but rather on πR^{\times} .
 - b) What is the valuation ring $R_{v_{\pi}}, \mathfrak{m}_{v_{\pi}}$, its units $R_{v_{\pi}}^{\times}$, and the residue field $\kappa_{v_{\pi}}$?
 - c) Are all the discrete valuation rings R_v with $R \subset R_v$ of the form $R_v = R_{v_{\pi}}$?

Modules over PIDs

Recall that a torsion *R*-module *M* is called π -primary (torsion module), if *M* is π^{∞} -torsion, i.e., for every $x \in M$ there is n > 0 such that $\pi^n x = 0_M$.

- 2) In the notation above, suppose that R is a PID, and M is a finite torsion R-module. Prove/disprove/answer the following:
 - a) For each $\pi \in \mathcal{P}$ there is a unique π -primary R-submodule $M_{(\pi)} \subset R$ s.t. $R_{(\pi)} = (0)$ f.a.a. $\pi \in \mathcal{P}$ and $M = \bigoplus_{\pi} M_{(\pi)}$. Terminology. $M_{(\pi)}$ is the π -primary component of M.
 - b) For every $M_{(\pi)} \neq (0)$ there are unique $0 < n_1 \leqslant \cdots \leqslant n_r = n_{r_{\pi}}$ s.t. $M_{(\pi)} \cong \bigoplus_i R/(\pi^{n_i})$. What can you say about $\pi^{n_1}, \ldots, \pi^{n_r}$?
- **3)** Given $A = \begin{pmatrix} 6 & 3 \\ 2 & 3 \end{pmatrix} \in \mathbb{Z}^{2 \times 2}$, $A_t := tI_2 A \in \mathbb{Q}[t]^{2 \times 2}$, and $\mathcal{E} = (e_1, e_2)$, define morphisms by: $\varphi : \mathbb{Z}^2 \to \mathbb{Z}^2$, $\varphi(\mathcal{E}) \mapsto (x_1, x_2) := \mathcal{E}A$, $\varphi_t : \mathbb{Q}[t]^2 \to \mathbb{Q}[t]^2$, $\varphi_t(\mathcal{E}) \mapsto (y_1, y_2) := \mathcal{E}A_t$.

Find bases $\mathcal{B} = (\alpha_1, \alpha_2)$ of M and $\delta_1 | \delta_2$ s.t. $\mathcal{B} = (\delta_1 \alpha_1, \delta_2 \alpha_2)$ are basis of $N \subset M$ in the cases:

- a) $M := \mathbb{Z}^2$ and $N = \varphi(M) \subset M$.
- b) $M := \mathbb{Q}[t]^2$ and $N = \varphi_t(M) \subset M$.
- 4) Find the invariant factors of the matrix $A \in \mathbb{C}^{n \times n}$ in the cases:

a)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & i \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & i & 0 \\ 0 & 1 & i \\ i & 0 & 1 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$

[Hint: Using elementary matrices over $\mathbb{C}[t]$, transform A_t in the diagonal form with $\delta_1 | \dots | \delta_n$ on diagonal, etc...]

5) Let R be a Euclidean domain w.r.t. $\varphi : R \to \mathbb{N}$, and $N \subset M = R^n$ be generated by $\mathcal{X} = (x_i)_i, x_i = (a_{i1}, \ldots, a_{in}) \in R^n$ for $i = 1, \ldots, m$. Evaluate the number of necessary multiplications in terms of $\|\mathcal{X}\| := \max_{i,j} \varphi(a_{ij})$ in order to find a basis $\mathcal{A} = (\alpha_1, \ldots, \alpha_n)$ of M and $\delta_1 | \ldots | \delta_n$ in R s.t. N is generated by $\mathcal{B} = (\delta_1 \alpha_1, \ldots, \delta_n \alpha_n)$.

ACC/DCC. In the sequel, R is a (not necessarily commutative) ring with 1_R , and recall the notation/convention form the class: • denotes I(left), r(right), bi(left&right), and we speak about the set \mathcal{M}_{\bullet} of \bullet -R-submodules of an \bullet -R-module M, e.g. the set of \bullet -ideals $\mathcal{I}d_{\bullet}(R)$ of R. Recall that an increasing/decreasing (w.r.t. \subset) sequence $(N_i)_i$ in \mathcal{M}_{\bullet} satisfies ACC/DCC if the sequence is stationary, i.e., $\exists i_0$ such that $N_i = N_{i_0}$ for $N_{i_0} \subset N_i$, resp. $N_i \subset N_{i_0}$, and Msatisfies ACC/DCC is all increasing/decreasing sequences in \mathcal{M}_{\bullet} satisfy ACC/DCC. Finally, M is \bullet -Noetherian if \mathcal{M}_{\bullet} satisfies ACC, respectively \bullet -Artinian if \mathcal{M}_{\bullet} satisfies DCC.

- 6) Prove the assertions for the class:
 - a) *M* satisfies ACC/DCC iff all subsets $\phi \neq \mathcal{X} \subset \mathcal{M}_{\bullet}$ have maximal/minimal elements.
 - b) M satisfies ACC iff every $N \in \mathcal{M}_{\bullet}$ is finitely generated.
 - c) Let $\mathfrak{a} \in \mathcal{I}d_{\bullet}(R)$ be given. If M satisfies ACC/DCC, then one has: (1) $M/\mathfrak{a}M$; (r) $M/\mathfrak{M}\mathfrak{a}$; (bi) $M/\mathfrak{a}M \& M/\mathfrak{M}\mathfrak{a}$ satisfy ACC/DCC.

7) Prove the assertions for the class/answer:

- a) Let R be commutative, $\Sigma \subset R$ is a multiplicative system, and M satisfies ACC/DCC. Then the R_{Σ} -module M_{Σ} satisfies ACC/DCC.
- b) If R is a skew field and V is an \bullet -R-vector space, TFAE:

(i) V satisfies ACC; (ii) V satisfies DCC; (iii) V is finite dimensional.

8) Let $0 \to M_0 \to \cdots \to M_n \to 0$ be an exact sequence of \bullet -*R*-modules. Prove that all the modules $(M_{2k})_{k\geq 0}$ satisfy ACC/DCC iff all the modules $(M_{2k+1})_{k\geq 0}$ satisfy ACC/DCC.

Composition series

Recall that an \bullet -*R*-module *M* has a composition series iff *M* satisfies both ACC and DCC. Further, by the Jodan-Hölder Thm, all non-redundant \bullet -composition series have the same length, denoted $\ell(M) \in \mathbb{N}$, and the simple factors are isomorphic up to a permutation (WHY). [Make sure that you review/know the proof(!)]

9) Let $R_{\text{DCC}}^{\text{ACC}}$ -Mod be the category of \bullet -R-modules satisfying ACC & ADD. Prove/disprove/answer:

- a) $R_{\text{DCC}}^{\text{ACC}}$ -Mod is closed w.r.t. taking •-R factor and submodules, finite products/coproducts.
- b) $\ell : R_{\text{DCC}}^{\text{ACC}} \mathbf{Mod} \to \mathbb{N}$ is additive, i.e., $0 \to M' \to M \to M'' \to 0$ exact, then $\ell(M) = \ell(M') + \ell(M'')$.
- c) If $0 \to M_1 \to \ldots \to M_n \to 0$ is an exact sequence in $R_{\text{DCC}}^{\text{ACC}}$ -Mod, then $\sum_i (-1)^i \ell(M_i) = 0$.