Math 6030 / Problem Set 7 (one page)

Special classes of commutative rings

1) Let R be a commutative ring, $\Sigma \subset R$ be a multiplicative system, $R_{\Sigma} = \Sigma^{-1}R$. Prove/disprove:

- a) If R is a PID or a UFD, then R_{Σ} is a PID, respectively a UFD.
- b) If R is Noetherian/Artin ring, then R_{Σ} is Noetherian/Artin ring.
- c) If R is Euclidean, then R_{Σ} is Euclidean.
- 2) Let $R = \mathbb{Z}[\alpha]$ and $p \in \mathbb{N}$ be prime numbers. Prove/disprove/answer the following:
 - a) R is Euclidean in each of the cases (i) $\alpha^2 = -1$; (ii) $\alpha^2 = \pm 2$; (iii) $\alpha^2 = \pm 3$.
 - c) Which $p \in \mathbb{N}$ are prime elements of R in each of the cases (i), (ii), (iii)?
- **3)** Let $f : R \to S$ be a surjective morphism of commutative rings. Prove/disprove: a) R is a PID, then S is a PID. b) If R is a UFD, then S is a UFD.
- 4) Which of the following is a PID/UFD/Noetherian/Artin/valuation ring?
 - a) $R = F[t_1, \ldots, t_d]_{\mathfrak{p}}$, where F is a field and $\mathfrak{p} = (t_1, \ldots, t_r)$ for some $r \leq d$.
 - b) $R = \mathbb{Z}[t]_{\mathfrak{p}}$, where $\mathfrak{p} = (t-1)$, respectively $\mathfrak{p} = (p)$ with p a prime number.
 - c) $R = \mathbb{Z}[t_1, t_2]/(t_1^2 t_2^3 3, t_1^2 t_2^4).$

• Recall that a domain R is called integrally closed, if for every $x \in K = \text{Quot}(R)$ one has: If there are $n \ge 1$ and $a_0, \ldots, a_{n-1} \in R$ s.t. $x^n + a_{n-1}x^{n-1} + \cdots + a_0 = 0_K$, then $x \in R$.

5) Let R be domain, K = Quot(R) be its field of fractions. Prove/disprove:

- a) If R is a UFD, e.g. a PID, then R is integrally closed.
- b) Every valuation ring R is integrally closed.

c) Let R be domain, K = Quot(R), and $\text{Val}_R(K) := \{R_v \in \text{Val}(K) \mid R \subset R_v\}$. Prove:

Theorem (Charact. of integrally closed). R is integrally closed iff $R = \bigcap_{v} R_v$, $R_v \in \operatorname{Val}_R(K)$.

6) Prove the assertions from the class:

- a) Every nontrivial valuation of \mathbb{Q} is equivalent to a unique *p*-adic valuation of \mathbb{Q} .
- b) Every valuation ring of F(t) is of the form $F[t]_{\mathfrak{p}}$ with $\mathfrak{p} \in \operatorname{Spec}(F[t])$ of $F[\frac{1}{t}]_{(\frac{1}{t})}$.

7) Let R be a commutative ring with 1_R . Prove/disprove the following:

- a) Let R be Noetherian and $f = \sum_{n} a_n t^n \in R[[t]]$. Then f is nilpotent iff all a_n are so.
- b) If $R[t_1, \ldots, t_n]$ is Noetherian, then R is Noetherian.
- 8) Let K be a field, $R \subset K$ be a valuation ring, $\mathfrak{p} \in \operatorname{Spec}(R)$, $\operatorname{pr}_R : R \to K_0 := R/\mathfrak{m}$, and $R_0 \subset K_0$ be a valuation ring with valuation ideal \mathfrak{m}_0 . Prove/disprove:
 - a) Spec(R) $\rightarrow \{ R' \mid R \subset R' \subset K \text{ subring} \}, \mathfrak{p} \mapsto R_{\mathfrak{p}} \text{ is bijective } \& R_{\mathfrak{p}} \text{ is val ring with } \mathfrak{m}_{R_{\mathfrak{p}}} = \mathfrak{p}.$
 - b) $R_1 := \operatorname{pr}^{-1}(R_0) \subset R$ is a valuation ring of K with $\mathfrak{m}_{R_1} = \operatorname{pr}^{-1}(\mathfrak{m}_0)$ s.t. $R_0/\mathfrak{m}_0 = R_1/\mathfrak{m}_1$ and $0 \to \Gamma_{R_0} \to \Gamma_{R_1} \to \Gamma_R \to 0$ is an exact sequence of totally ordered abelian groups.