Math 6030 / Problem Set 5 (two pages)

More about the determinant.

Let M be R-free with $] \operatorname{rk}(M) = m$. Recall the basics about $\mathbb{R}^{m \times m}$ and $\operatorname{End}_{\mathbb{R}}(M)$:

- Every *R*-basis $\mathcal{A} = (\alpha_1, \ldots, \alpha_m)$ of *M* gives rise to an isomorphism of *R*-algebras $\Psi_{\mathcal{A}} : \operatorname{End}_R(M) \to R^{m \times m}, \varphi \mapsto A_{\varphi}$, where A_{φ} is uniquely defined by $\varphi(\mathcal{A}) = \mathcal{A} \cdot A_{\varphi}$.
- $\mathcal{L}_{alt}^m(M)$ is a *R*-free module of rank one, and $\operatorname{End}_R(M)$, \circ acts on $\mathcal{L}_{alt}^m(M)$ by $\varphi \cdot f := f \circ \varphi^m$, and there is a unique $a_{\varphi} \in R$ such that $\varphi \cdot f = a_{\varphi} f$ for all $f \in \mathcal{L}_{alt}^m$. Notice that $f = \operatorname{id}_M \cdot f := a_{\operatorname{id}_R} f$ for all f, thus $a_{\operatorname{id}_M} = 1_R$ (WHY).
- The determinant map det : $\operatorname{End}_R(M) \to R$, $\varphi \mapsto \operatorname{det}(\varphi) := a_{\varphi}$ is a morphism of monoids (WHY). And if $A = \Psi_{\mathcal{A}}(\varphi)$, it follows that $\operatorname{det}(A) := \operatorname{det}(\varphi)$ is independent on the *R*-basis \mathcal{A} defining $\Psi_{\mathcal{A}}$ (WHY).
- Notice: If $A \in \mathbb{R}^{m \times m}$ has columns $\mathcal{R}_j \in \mathbb{R}^{m \times 1}$ and rows $\mathcal{R}_i \in \mathbb{R}^{1 \times n} = \mathbb{R}^n$, then $\det(A_{\varphi})$ is the only map $\mathbb{R}^{m \times m} \to \mathbb{R}$ satisfying/being:
- (*) (i) $\det(\mathbf{I}_m) = \mathbf{1}_R$; (ii) $\det(A)$ alternating multilinear in the rows/columns of A (WHY).

Let $A_{kl} \in R^{(m-1)\times(m-1)}$ be obtained by deleting the k^{th} row and l^{th} column of A, $1 \leq k, l \leq m$. Then $\Delta_{kl} = \det(A_{kl})$ is the (k,l)-minor of A, and $(-1)^{k+l}\Delta_{kl}$ is the (k,l) cofactor of A, and recall that the matrix $A^* := ((-1)^{i+j}\Delta_{ji})_{i,j} \in R^{m\times m}$ is the classical adjoint, or adjugate of A.

1) In the above notation, using the properties (*) above of det(A), prove:

- a) The row/column expansion formula. Given (k, l) fixed, and $k \neq l$ in case (ii), one has:
- (i) $\sum_{i}(-1)^{i+l}a_{il}\Delta_{il} = \det(A) = \sum_{j}(-1)^{k+j}a_{kj}\Delta_{kj}$. (ii) $\sum_{i}(-1)^{i+l}a_{il}\Delta_{ik} = 0 = \sum_{j}(-1)^{k+j}a_{lj}\Delta_{kj}$. (b) The inversion formula: $AA^* = \det(A)\mathbf{I}_m = A^*A$.

Hence $A \in \operatorname{GL}_m(R)$ iff $\det(A) \in R^{\times}$, and if so, $A^{-1} = \det(A)^{-1}A^*$.

Characteristic polynomial. For a commutative ring R with 1_R , set $\tilde{R} := R[t]$, hence $R^{m \times m} \hookrightarrow \tilde{R}^{m \times m}$ canonically. Further, for $A \in R^{m \times m}$ we set $\tilde{A} := t \mathbf{I}_m - A$ and say that $p_A(t) := \det(\tilde{A})$ is the characteristic polynomial of A. Further, if \mathcal{A} a basis of a free R-module M and $A_{\varphi} \in R^{m \times m}$ is the matrix of $\varphi \in \operatorname{End}_R(M)$ in the basis \mathcal{A} , then $p_{\varphi}(t) := p_{A_{\varphi}}(t)$ is the characteristic polynomial of φ .

2) In the above notation, prove the following:

- a) $p_{\varphi}(t)$ is independent of the concrete basis \mathcal{A} used to define it.
- b) The famous **Cayley–Hamilton Theorem**: $p_A(A) = 0_{R^{m \times m}}$ and $p_{\varphi}(\varphi) = 0_{\text{End}_R(M)}$.

[Hint to b): M is a left $\operatorname{End}_R(M)$ -module via $f \cdot x = f(x)$ for $f \in \operatorname{End}_R(M)$ (WHY), hence M becomes a left \tilde{R} -module via the outer multiplication $f(t) \cdot x := \phi_f \cdot x$, where $\phi_f := f(\varphi) \in \operatorname{End}_R(M)$ (WHY), e.g. one has: $1_{R[t]} \cdot x = x$, $t \cdot x = \varphi(x)$, etc., for all $x \in M$ (WHY). Hence if $\mathcal{A} = (\alpha_1, \ldots, \alpha_m)$ is an R-basis of M, $t \cdot \mathcal{A} = \varphi(\mathcal{A}) = \mathcal{A} \cdot \mathcal{A}_{\varphi}$ (WHY), i.e., $\mathcal{A} \cdot \tilde{\mathcal{A}}_{\varphi} = t \cdot \mathcal{A} - \mathcal{A} \cdot \mathcal{A}_{\varphi} = \mathbf{0}_M$, where $\mathbf{0}_M = (\mathbf{0}_M, \ldots, \mathbf{0}_m)$. Hence have: $\mathbf{0}_M = \mathbf{0}_M \tilde{\mathcal{A}}_{\varphi}^* = (\mathcal{A} \cdot \tilde{\mathcal{A}}_{\varphi}) \tilde{\mathcal{A}}_{\varphi}^* = \mathcal{A} (\tilde{\mathcal{A}}_{\varphi} \tilde{\mathcal{A}}_{\varphi}^*) = \mathcal{A} \det(\tilde{\mathcal{A}}_{\varphi}) \mathbf{I}_m = p_{\varphi}(t) \mathcal{A}$. Conclude that setting $\varphi_0 := p_{\varphi}(\varphi)$, one has: $\mathbf{0}_M = \varphi_0(\mathcal{A})$ (WHY), hence $\varphi_0(\alpha_i) = \mathbf{0}_M$ for all α_i , thus $\varphi_0 = \mathbf{0}_{\operatorname{End}_R(M)}$ (WHY), etc.]

More about \otimes_R and Exactness.

- **3)** Prove/disprove the following:
 - a) \otimes_R in *R*-Mod is compatible with finite/arbitrary products, respectively coproducts.
 - b) \otimes_R in *R*-Mod is compatible with inductive, respectively projective limits.

- 4) Prove/disprove the following:
 - a) An arbitrary coproduct $\bigoplus_i M_i$ of *R*-modules is flat iff M_i is flat for each *i*. Does the same hold correspondingly for finite/arbitrary products?
 - b) If M_1, \ldots, M_n are flat, so is $M_1 \otimes_R \cdots \otimes_R M_n$. Does the converse hold?
 - c) If $(M_i, f_{jk})_{i,j \leq k}$ is an inductive system of flat *R*-modules, so is $M = \lim_{i \neq j} M_i$. Does the same hold correspondingly for projective limits?
- 5) Let S be a commutative R-algebra. Prove/disprove:
 - a) Being flat is invariant under base change R-Mod $\rightsquigarrow S$ -Mod, $M \mapsto M_S := B^+ \otimes_R M$, i.e., if M is a flat R-module, so is M_S as S-module.
 - b) If S^+ is a flat *R*-module, being flat is invariant under the "restriction of scalars" S-Mod $\rightsquigarrow R$ -Mod, i.e., if *M* is a flat *S*-module, so is *M* when viewed as *R*-module.

6) Flatness and Localization. For M in R-Mod, prove/disprove/answer the following:

- a) If $\Sigma \subset R$ is a multiplicative system, $R_{\Sigma} \otimes_R M \cong_R M_{\Sigma}$ canonically (How).
- b) TFAE: (i) M is flat; (ii) $M_{\mathfrak{p}}$ is flat $\forall \mathfrak{p} \in \operatorname{Spec}(R)$; (iii) $M_{\mathfrak{m}}$ is flat $\forall \mathfrak{m} \in \operatorname{Max}(R)$.

Faithful Flatness. A flat *R*-module *M* is faithfully flat, for short (f.f.), if for every sequence of *R*-modules (\mathcal{E}): $0 \to M' \to M \to M'' \to 0$ one has: (\mathcal{E}) is exact iff $M \otimes_R (\mathcal{E})$ is exact. A commutative flat *R*-algebra *S* is called faithfully flat (f.f.), if S^+ is a faithfully flat *R*-module. In Problems 7, 8 below, *N*, *P* denote arbitrary *R*-modules, and $\mathfrak{a} \in \mathfrak{Id}(R)$ arbitrary ideals.

7) (Characterization of f.f. *R*-modules). For a flat *R*-module *M*, TFAE:

- (i) M is faithfully flat. (ii) $N \otimes_R M = (0)$ iff N = (0). (iii) $\mathfrak{a}M \neq M$ if $\mathfrak{a} \neq (0), R$.
- (iii)' $\forall \mathfrak{m} \in \operatorname{Max}(R), \mathfrak{m}M \neq M \text{ if } \mathfrak{m} \neq (0).$ (iv) $f \in \operatorname{Hom}_R(N, P)$ is injective iff $f \otimes \operatorname{id}_M$ is so.

8) (Characterization of f.f. *R*-algebras).

For a commutative flat *R*-algebra *S*, TFAE (compare with HW 3, Problem 3): (i) *S* is f.f. (ii) $\mathfrak{a}^{ec} = \mathfrak{a} \ \forall \mathfrak{a} \in \mathfrak{Id}(R)$. (iii) $f^*(\operatorname{Spec}(S)) = \operatorname{Spec}(R)$. (iv) $\mathfrak{m}^e \neq (1_S) \ \forall \mathfrak{m} \in \operatorname{Max}(R)$.

More about Hom_R and Exactness

Recall that for an exact sequence $(\mathcal{E}): 0 \to M' \xrightarrow{\imath} M \xrightarrow{p} M'' \to 0$ TFAE (WHY):

(i) $\exists j \in \operatorname{Hom}_R(M, M')$ such that $j \circ i = \operatorname{id}_{M'}$. (ii) $\exists s \in \operatorname{Hom}_R(M'', M)$ such that $p \circ s = \operatorname{id}_{M''}$. If so, j is a retract of i and $M = \operatorname{Im}(i) \oplus \operatorname{Ker}(j)$ in case (i), respectively s is a section of p and $M = \operatorname{Im}(s) \oplus \operatorname{Ker}(p)$ in case (ii). And if (i), (ii) are satisfied, (\mathcal{E}) is called split. Further, a (long) sequence $\cdots \to M_{i-1} \xrightarrow{\phi_i} M_i \xrightarrow{\phi_{i+1}} M_{i+1} \to \ldots$ of R-modules is exact at M_i iff $0 \to \operatorname{Im}(\phi_i) \to M_i \to \operatorname{Im}(\phi_{i+1}) \to 0$ is exact (WHY), and similarly for split at M_i (How).

Finally, recall that an *R*-module *P* is called **projective**, if *P* has the *lifting property*, i.e., if for any surjective morphism $f: M \to M''$ of *R*-modules, $\operatorname{Hom}_R(P, M) \to \operatorname{Hom}_R(P, M'')$ is surjective. Make sure that you know/checked the characterizations of *P* being projective, e.g. *P* projective iff $\mathcal{H}_P = \operatorname{Hom}_R(P, \bullet)$ is exact iff *P* is direct summand in an *R*-free module...

9) Let M, M_i be R-modules, S be a commutative f.f. R-algebra. Prove/disprove/answer:

- a) M is projective iff $M_{\mathfrak{p}}$ is projective $\forall \mathfrak{p} \in \operatorname{Spec}(R)$ iff $M_{\mathfrak{m}}$ is projective $\forall \mathfrak{m} \in \operatorname{Max}(R)$.
- b) $M = \bigoplus_i M_i$ is projective iff all M_i are projective. Does the same hold for $M = \prod_i M_i$?
- c) If M is a projective, then M is flat. Does the converse hold/if M is finite R-module?
- d) M is projective iff M_S is so. Further, M_1, M_2 are projective iff $M_1 \otimes_R M_2$ is projective.