Math 6030 / Problem Set 5 (two pages)

More about the determinant.

Let M be R-free with $] \operatorname{rk}(M)=m$. Recall the basics about $R^{m \times m}$ and $\operatorname{End}_{R}(M)$:

- Every R-basis $\mathcal{A}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ of M gives rise to an isomorphism of R-algebras $\Psi_{\mathcal{A}}: \operatorname{End}_{R}(M) \rightarrow R^{m \times m}, \varphi \mapsto A_{\varphi}$, where A_{φ} is uniquely defined by $\varphi(\mathcal{A})=\mathcal{A} \cdot A_{\varphi}$.
- $\mathcal{L}_{\text {alt }}^{m}(M)$ is a R-free module of rank one, and $\operatorname{End}_{R}(M)$, o acts on $\mathcal{L}_{\text {alt }}^{m}(M)$ by $\varphi \cdot f:=f \circ \varphi^{m}$, and there is a unique $a_{\varphi} \in R$ such that $\varphi \cdot f=a_{\varphi} f$ for all $f \in \mathcal{L}_{\text {alt }}^{m}$. Notice that $f=\operatorname{id}_{M} \cdot f:=a_{\mathrm{id}_{R}} f$ for all f, thus $a_{\mathrm{id}_{M}}=1_{R}(\mathrm{WHY})$.
- The determinant map det $: \operatorname{End}_{R}(M) \rightarrow R, \varphi \mapsto \operatorname{det}(\varphi):=a_{\varphi}$ is a morphism of monoids (WHY). And if $A=\Psi_{\mathcal{A}}(\varphi)$, it follows that $\operatorname{det}(A):=\operatorname{det}(\varphi)$ is independent on the R-basis \mathcal{A} defining $\Psi_{\mathcal{A}}$ (WHY).
- Notice: If $A \in R^{m \times m}$ has columns $\mathcal{R}_{j} \in R^{m \times 1}$ and rows $\mathcal{R}_{i} \in R^{1 \times n}=R^{n}$, then $\operatorname{det}\left(A_{\varphi}\right)$ is the only map $R^{m \times m} \rightarrow R$ satisfying/being:
(*) (i) $\operatorname{det}\left(\boldsymbol{I}_{m}\right)=1_{R}$; (ii) $\operatorname{det}(A)$ alternating multilinear in the rows / columns of A (wHy). Let $A_{k l} \in R^{(m-1) \times(m-1)}$ be obtained by deleting the $k^{\text {th }}$ row and $l^{\text {th }}$ column of $A, 1 \leqslant k, l \leqslant m$. Then $\Delta_{k l}=\operatorname{det}\left(A_{k l}\right)$ is the (k, l)-minor of A, and $(-1)^{k+l} \Delta_{k l}$ is the (k, l) cofactor of A, and recall that the matrix $A^{*}:=\left((-1)^{i+j} \Delta_{j i}\right)_{i, j} \in R^{m \times m}$ is the classical adjoint, or adjugate of A.

1) In the above notation, using the properties $(*)$ above of $\operatorname{det}(A)$, prove:
a) The row / column expansion formula. Given (k, l) fixed, and $k \neq l$ in case (ii), one has:
(i) $\sum_{i}(-1)^{i+l} a_{i l} \Delta_{i l}=\operatorname{det}(A)=\sum_{j}(-1)^{k+j} a_{k j} \Delta_{k j}$. (ii) $\sum_{i}(-1)^{i+l} a_{i l} \Delta_{i k}=0=\sum_{j}(-1)^{k+j} a_{l j} \Delta_{k j}$.
b) The inversion formula: $A A^{*}=\operatorname{det}(A) \boldsymbol{I}_{m}=A^{*} A$.

Hence $A \in \mathrm{GL}_{m}(R)$ iff $\operatorname{det}(A) \in R^{\times}$, and if so, $A^{-1}=\operatorname{det}(A)^{-1} A^{*}$.
Characteristic polynomial. For a commutative ring R with 1_{R}, set $\tilde{R}:=R[t]$, hence $R^{m \times m} \hookrightarrow \tilde{R}^{m \times m}$ canonically. Further, for $A \in R^{m \times m}$ we set $\tilde{A}:=t \boldsymbol{I}_{m}-A$ and say that $p_{A}(t):=\operatorname{det}(\tilde{A})$ is the characteristic polynomial of A. Further, if \mathcal{A} a basis of a free R-module M and $A_{\varphi} \in R^{m \times m}$ is the matrix of $\varphi \in \operatorname{End}_{R}(M)$ in the basis \mathcal{A}, then $p_{\varphi}(t):=p_{A_{\varphi}}(t)$ is the characteristic polynomial of φ.
2) In the above notation, prove the following:
a) $p_{\varphi}(t)$ is independent of the concrete basis \mathcal{A} used to define it.
b) The famous Cayley-Hamilton Theorem: $p_{A}(A)=0_{R^{m \times m}}$ and $p_{\varphi}(\varphi)=0_{\operatorname{End}_{R}(M)}$.
[Hint to b): M is a left $\operatorname{End}_{R}(M)$-module via $f \cdot x=f(x)$ for $f \in \operatorname{End}_{R}(M)$ (WHY), hence M becomes a left \tilde{R}-module via the outer multiplication $f(t) \cdot x:=\phi_{f} \cdot x$, where $\phi_{f}:=f(\varphi) \in \operatorname{End}_{R}(M)($ WHY $)$, e.g. one has: $1_{R[t]} \cdot x=x, t \cdot x=\varphi(x)$, etc., for all $x \in M(\mathrm{WHY})$. Hence if $\mathcal{A}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$ is an R-basis of $M, t \cdot \mathcal{A}=\varphi(\mathcal{A})=\mathcal{A} \cdot A_{\varphi}(\mathrm{WHY})$, i.e., $\mathcal{A} \cdot \tilde{A}_{\varphi}=t \cdot \mathcal{A}-\mathcal{A} \cdot A_{\varphi}=\mathbf{0}_{M}$, where $\mathbf{0}_{M}=\left(0_{M}, \ldots, 0_{m}\right)$. Hence have: $\mathbf{0}_{M}=\mathbf{0}_{M} \tilde{A}_{\varphi}^{*}=\left(\mathcal{A} \cdot \tilde{A}_{\varphi}\right) \tilde{A}_{\varphi}^{*}=\mathcal{A}\left(\tilde{A}_{\varphi} \tilde{A}_{\varphi}^{*}\right)=\mathcal{A} \operatorname{det}\left(\tilde{A}_{\varphi}\right) \boldsymbol{I}_{m}=p_{\varphi}(t) \mathcal{A}$. Conclude that setting $\varphi_{0}:=p_{\varphi}(\varphi)$, one has: $\mathbf{0}_{M}=\varphi_{0}(\mathcal{A})$ (WHY), hence $\varphi_{0}\left(\alpha_{i}\right)=0_{M}$ for all α_{i}, thus $\varphi_{0}=0_{\operatorname{End}_{R}(M)}$ (WHY), etc.]

More about \otimes_{R} and Exactness.

3) Prove/disprove the following:
a) \otimes_{R} in R-Mod is compatible with finite/arbitrary products, respectively coproducts.
b) \otimes_{R} in R-Mod is compatible with inductive, respectively projective limits.
4) Prove/disprove the following:
a) An arbitrary coproduct $\oplus_{i} M_{i}$ of R-modules is flat iff M_{i} is flat for each i. Does the same hold correspondingly for finite/arbitrary products?
b) If M_{1}, \ldots, M_{n} are flat, so is $M_{1} \otimes_{R} \cdots \otimes_{R} M_{n}$. Does the converse hold?
c) If $\left(M_{i}, f_{j k}\right)_{i, j \leqslant k}$ is an inductive system of flat R-modules, so is $M=\underset{\vec{i}}{\lim } M_{i}$. Does the same hold correspondingly for projective limits?
5) Let S be a commutative R-algebra. Prove/disprove:
a) Being flat is invariant under base change R - $\operatorname{Mod} \rightsquigarrow S$-Mod, $M \rightsquigarrow M_{S}:=B^{+} \otimes_{R} M$, i.e., if M is a flat R-module, so is M_{S} as S-module.
b) If S^{+}is a flat R-module, being flat is invariant under the "restriction of scalars"
S-Mod $\rightsquigarrow R$-Mod, i.e., if M is a flat S-module, so is M when viewed as R-module.
6) Flatness and Localization. For M in R-Mod, prove/disprove/answer the following:
a) If $\Sigma \subset R$ is a multiplicative system, $R_{\Sigma} \otimes_{R} M \cong{ }_{R} M_{\Sigma}$ canonically (How).
b) TFAE: (i) M is flat; (ii) $M_{\mathfrak{p}}$ is flat $\forall \mathfrak{p} \in \operatorname{Spec}(R)$; (iii) $M_{\mathfrak{m}}$ is flat $\forall \mathfrak{m} \in \operatorname{Max}(R)$.

Faithful Flatness. A flat R-module M is faithfully flat, for short (f.f.), if for every sequence of R-modules $(\mathcal{E}): 0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ one has: (\mathcal{E}) is exact iff $M \otimes_{R}(\mathcal{E})$ is exact. A commutative flat R-algebra S is called faithfully flat (f.f.), if S^{+}is a faithfully flat R-module.

In Problems 7, 8 below, N, P denote arbitrary R-modules, and $\mathfrak{a} \in \operatorname{Id}(R)$ arbitrary ideals.
7) (Characterization of f.f. R-modules). For a flat R-module M, TFAE:
(i) M is faithfully flat. (ii) $N \otimes_{R} M=(0)$ iff $N=(0)$. (iii) $\mathfrak{a} M \neq M$ if $\mathfrak{a} \neq(0), R$.
(iii) $\forall \mathfrak{m} \in \operatorname{Max}(R), \mathfrak{m} M \neq M$ if $\mathfrak{m} \neq(0)$. (iv) $f \in \operatorname{Hom}_{R}(N, P)$ is injective iff $f \otimes \operatorname{id}_{M}$ is so.
8) (Characterization of f.f. R-algebras).

For a commutative flat R-algebra S, TFAE (compare with HW 3, Problem 3):
(i) S is f.f. (ii) $\mathfrak{a}^{e c}=\mathfrak{a} \forall \mathfrak{a} \in \mathfrak{I d}(R)$. (iii) $f^{*}(\operatorname{Spec}(S))=\operatorname{Spec}(R)$. (iv) $\mathfrak{m}^{e} \neq\left(1_{S}\right) \forall \mathfrak{m} \in \operatorname{Max}(R)$.

More about Hom_{R} and Exactness
Recall that for an exact sequence $(\mathcal{E}): 0 \rightarrow M^{\prime} \xrightarrow{\imath} M \xrightarrow{p} M^{\prime \prime} \rightarrow 0$ TFAE (wHY):
(i) $\exists \jmath \in \operatorname{Hom}_{R}\left(M, M^{\prime}\right)$ such that $\jmath \circ \imath=\operatorname{id}_{M^{\prime}}$. (ii) $\exists s \in \operatorname{Hom}_{R}\left(M^{\prime \prime}, M\right)$ such that $p \circ s=\mathrm{id}_{M^{\prime \prime}}$. If so, \jmath is a retract of \imath and $M=\operatorname{Im}(\imath) \oplus \operatorname{Ker}(\jmath)$ in case (i), respectively s is a section of p and $M=\operatorname{Im}(s) \oplus \operatorname{Ker}(p)$ in case (ii). And if (i), (ii) are satisfied, (\mathcal{E}) is called split. Further, a (long) sequence $\cdots \rightarrow M_{i-1} \xrightarrow{\phi_{i}} M_{i} \xrightarrow{\phi_{i+1}} M_{i+1} \rightarrow \ldots$ of R-modules is exact at M_{i} iff $0 \rightarrow \operatorname{Im}\left(\phi_{i}\right) \rightarrow M_{i} \rightarrow \operatorname{Im}\left(\phi_{i+1}\right) \rightarrow 0$ is exact (wHY), and similarly for split at M_{i} (How).

Finally, recall that an R-module P is called projective, if P has the lifting property, i.e., if for any surjective morphism $f: M \rightarrow M^{\prime \prime}$ of R-modules, $\operatorname{Hom}_{R}(P, M) \rightarrow \operatorname{Hom}_{R}\left(P, M^{\prime \prime}\right)$ is surjective. Make sure that you know/checked the characterizations of P being projective, e.g. P projective iff $\mathcal{H}_{P}=\operatorname{Hom}_{R}(P, \bullet)$ is exact iff P is direct summand in an R-free module...
9) Let M, M_{i} be R-modules, S be a commutative f.f. R-algebra. Prove/disprove/answer:
a) M is projective iff $M_{\mathfrak{p}}$ is projective $\forall \mathfrak{p} \in \operatorname{Spec}(R)$ iff $M_{\mathfrak{m}}$ is projective $\forall \mathfrak{m} \in \operatorname{Max}(R)$.
b) $M=\oplus_{i} M_{i}$ is projective iff all M_{i} are projective. Does the same hold for $M=\prod_{i} M_{i}$?
c) If M is a projective, then M is flat. Does the converse hold/if M is finite R-module?
d) M is projective iff M_{S} is so. Further, M_{1}, M_{2} are projective iff $M_{1} \otimes_{R} M_{2}$ is projective.

