Due: Feb 26, 2024

Math 6030 / Problem Set 4 (two pages)

Dual/bidual of an R**-module.** Let R be a commutative ring, M be an R-module.

- Maps(X, M) is the R-module of M-valued maps on X. The support of $f \in \text{Maps}(X, M)$ is $\sup(f) := \{x \in X \mid f(x) \neq 0_M\}$, and $\text{Maps}^0(X, M) := \{f \in \text{Maps}(X, M) \mid \sup(f) \text{ finite }\}$ is an R-submodule of Maps(X, M) (WHY).
- Recall: The dual of M is $M^{\vee} := \operatorname{Hom}_{R}(M, R)$, and the bidual of M is $M^{\vee\vee} := (M^{\vee})^{\vee}$ the dual of M^{\vee} . The map $i : M \to M^{\vee\vee}$, $x \mapsto \Psi_{x}$, $\Psi_{x}(\phi) := \phi(x)$ for $\phi \in M^{\vee}$ is the evaluation morphism, and M is called reflexive, if $i : M \to M^{\vee\vee}$ is an isomorphism of R-modules.
 - Finally recall the Kronecker symbol $\delta_{ij} \in \{0_R, 1_R\}$ defined for i, j in an arbitrary set.
- 1) Suppose that M is free, with basis $\mathcal{A} = (\alpha_i)_{i \in I}$. Prove/disprove/answer:
 - a) The maps $\alpha_i^{\vee}: M \to R$ define by $\alpha_i \mapsto \delta_{ii}$ are R-linearly independent maps.
 - b) If I is finite, then $\mathcal{A}^{\vee} := (\alpha_i^{\vee})_i \in I$ is an R-basis of M^{\vee} such that $\iota(\mathcal{A}) = \mathcal{A}^{\vee\vee}$. In particular, $\iota: M \to M^{\vee\vee}$ is an isomorphism, hence $M \cong_R M^{\vee}$ (non-canonically).
 - c) If I is infinite, then $i: M \to M^{\vee\vee}$ is injective, but never surjective.
- 2) Prove that R-Mod $\rightsquigarrow R$ -Mod, $M \bowtie M^{\vee}$ is a contravariant functor. Further, prove/disprove:
 - a) The functor above maps free R-modules to free R-modules.
 - b) Let N, M be free with bases $\mathcal{B} = (\beta_j)_{1 \leq j \leq n}$, $\mathcal{A} = (\alpha_1, \dots, \alpha_m)$, and $f \in \operatorname{Hom}_R(N, M)$ have matrix $A_f \in R^{m \times n}$ in the bases \mathcal{B}, \mathcal{A} , i.e., $f(\mathcal{B}) = \mathcal{A} \cdot A_f$. Then the matrix of $f^{\vee} : M^{\vee} \to N^{\vee}$ in the dual bases \mathcal{A}^{\vee} , \mathcal{B}^{\vee} is $A_{f^{\vee}} = A_f^{\tau} \in R^{n \times m}$, i.e., $f^{\vee}(\mathcal{A}^{\vee}) = \mathcal{B}^{\vee} \cdot A_f^{\tau}$.

Bilinear/multiliear maps & Tensor product. For $(M_{\nu})_{\nu\leqslant n}$, N in R-Mod, denote by $\mathcal{L}(\prod_{\nu}M_{\nu},N)$ the set of R-multilinear maps $f:\prod_{\nu}M_{\nu}\to N$, set $\mathcal{L}^{n}(M;N):=\mathcal{L}(M^{n},N)$, and let $\mathcal{L}^{n}_{\mathrm{sym}}(M;N)$, $\mathcal{L}^{n}_{\mathrm{alt}}(M;N)\subset\mathcal{L}^{n}(M;N)$ are the sets of the symmetric, resp. alternating maps. Make sure that you check all the details proving that $\mathcal{L}(\prod_{\nu}M_{\nu},N)\subset\mathrm{Maps}(\prod_{\nu}M_{\nu},N)$ and $\mathcal{L}^{n}_{\mathrm{sym}}(M;N)$, $\mathcal{L}^{n}_{\mathrm{alt}}(M;N)\subset\mathcal{L}^{n}(M;N)$ are R-submodules. Further, let \mathcal{X}_{ν} , \mathcal{A}_{ν} , respectively $\mathcal{X}=(x_{i})_{i}$, $\mathcal{A}=(\alpha)_{i}$, $i\in I$ be a system of generators R-basis of each R-parameters on, hence on R-parameters of the R-parameters of R-parameter

- $\mathcal{L}(\prod_{\nu} M_{\nu}, N) \to \operatorname{Maps}(\prod_{\nu} \mathcal{V}_{\nu}, N), f \mapsto f|_{\prod_{\nu} \mathcal{V}_{\nu}}$ is injective///an isom if $\mathcal{V}_{\nu} = \mathcal{X}_{\nu}$ /// $\mathcal{V}_{\nu} = \mathcal{A}_{\nu}$
- $\mathcal{L}^n_{\mathrm{sym}}(M;N) \to \mathrm{Maps}(\mathcal{V}^n_{\leqslant},N), \ f \mapsto f_{\mathcal{V}^n_{\leqslant}} \ \text{is injective} /\!\!/\!\!/ \text{an isom if} \ \mathcal{V}^n_{\leqslant} = \mathcal{X}^n_{\leqslant} /\!\!/\!\!/ \mathcal{V}^n_{\leqslant} = \mathcal{A}^n_{\leqslant}$
- $-\mathcal{L}^n_{\mathrm{alt}}(M;N) \to \mathrm{Maps}(\mathcal{V}^n_{\leqslant},N), \ f \mapsto f_{\mathcal{V}^n_{\leqslant}} \ \text{is an injective} /\!\!/\!\!/ \text{an isom} \ \mathcal{V}^n_{\leqslant} = \mathcal{X}^n_{\leqslant} /\!\!/\!\!/ \mathcal{V}^n_{\leqslant} = \mathcal{A}^n_{\leqslant}$

Finally recall that for n = 2 we speak about (symmetric/alternating) bilinear maps, and in the case N = R, + we speak about bilinear/multilinear (symmetric/multilinear forms).

- 3) Let n=2 and $|\mathcal{A}_{\nu}|=m_{\nu}$, $|\mathcal{A}|=m$ be finite, $N^{m_1\times m_2}$ be the $m_1\times m_2$ matrices over N and define $\Psi:\mathcal{L}(M_1\times M_2,N)\to N^{m_1\times m_2}$, $f\mapsto A_f:=\left(f(\alpha_{i_1},\alpha_{i_2})\right)_{i_1,i_2}$. Prove/disprove:
 - a) $\Psi: \mathcal{L}(M_1 \times M_2, N) \to N^{m_1 \times m_2}, f \mapsto A_f$ is an isomorphism of R-modules. Make an educated guess: What happens with A_f under changes of bases $\mathcal{B}_{\nu} = S_{\nu} \mathcal{A}_{\nu}$?
 - b) One has: $f \in \mathcal{L}^2_{\text{sym}}(M, N)$ iff A_f is symmetric; $f \in \mathcal{L}^2_{\text{alt}}(M, N)$ iff A_f is alternating.

- c) Make an educated guess: When do exist R-bases A s.t. $A_f := f(\alpha_i, \alpha_j)_{i,j}$ is diagonal?
- 4) For A an R-basis of M, in the above notation, answer:
 - a) Given a map $f_0: \mathcal{A}^n_{\leq} \to N$, define/describe $f \in \mathcal{L}^n_{\text{sym}}(M; N)$ satisfying $f|_{\mathcal{A}^n_{\leq}} = f_0$.
 - b) Given a map $f_0: \mathcal{A}^n_{<} \to N$, define/describe $f \in \mathcal{L}^n_{alt}(M; N)$ satisfying $f|_{\mathcal{A}^n_{<}} = f_0$.
- 5) Let $\Sigma \subset R$ be a multiplicative system. Prove in all detail the assertions from class:
 - a) $R^+ \otimes_R M \cong_R M$ and $R_{\Sigma} \otimes_R M \cong_R M_{\Sigma}$ canonically (HOW).
 - b) $M \otimes_R N \cong_R N \otimes_R M$ canonically (HOW).
 - c) $(M \otimes_R N) \otimes_R P \cong_R M \otimes_R (N \otimes_R P)$ canonically (HOW).
 - d) $(M_1 \oplus M_2) \otimes_R N \cong_R (M_1 \otimes_R N) \oplus (M_2 \otimes_R N)$ (How). Hence $M \otimes_R N$ is R-free, if M, N are so. Make an educated guess: Given R-bases A, B of M, resp. N, give an R-basis of $M \otimes_R N$.
- **6)** Let S_1, S_2 be R-algebras, $S^+ = S_1^+ \otimes_R S_2^+$ endowed with $i_1 : S_1^+ \to S^+$, $i_2 \mapsto s_1 \otimes 1_{S_2}$, $i_2 : S_2^+ \to S^+$, $i_2 \mapsto 1_{S_1} \otimes s_2$. Prove in all detail the assertions from class:
 - a) The multiplication $(s_1 \otimes s_2) \cdot (s'_1 \otimes s'_2) := (s_1 s'_1) \otimes (s_2 s'_2)$ on $S = S_1^+ \otimes_R S_2^+$ is well defined, and $S = S_1 \otimes_R S_2$ becomes an R-algebra via $\varphi_S : R \to S$, $r \mapsto r(1_{S_1} \otimes 1_{S_2})$.
 - b) If S_1, S_2 are commutative, S endowed with $i_{\nu}: S_{\nu} \to S$, $\nu = 1, 2$ is the coproduct of S_1, S_2 in the category of commutative rings (allowing $R = \{0_R\}$ as object as well).
 - c) In general, $S = S_1 \otimes_R S_2$ endowed with ι_{ν} , $\nu = 1, 2$ is the "commutative coproduct" of S_1, S_2 in the category of R-algebras (HOW).
- 7) Let S be a commutative R-algebra. Prove that the base change/extension of scalars $R\text{-}\mathbf{Mod} \leadsto S\text{-}\mathbf{Mod}, M \bowtie M_S := S^+ \otimes_R M$ is a covariant functor. Further, prove/disprove:
 - a) If $M' \to M \to M''$ is exact in R-Mod, so is $M'_S \to M_S \to M''_S$ in S-Mod.
 - b) The same question for: (i) $S = R_{\Sigma}$ for $\Sigma \subset R$ a multiplicative system; (ii) $S = R/\mathfrak{a}$ with $\mathfrak{a} \in \mathfrak{I}d(R)$ an ideal, e.g. $\mathfrak{a} = \mathcal{J}(R)$ the Jacobson radical of R.
 - c) Finally, the questions a), b) above for M', M, M'' finite R-modules.
- 8) Let M have an R-basis \mathcal{A} with $|\mathcal{A}| = m$. Setting $\mathcal{L}^n_{\bullet}(M) := \mathcal{L}^n_{\bullet}(M; R)$, prove/disprove/answer:
- a) $\mathcal{L}^n(M)$, $\mathcal{L}^n_{\text{sym}}(M)$, $\mathcal{L}^n_{\text{alt}}(M)$ have R-bases with m^n , $\binom{m+n-1}{n}$, $\binom{m}{n}$ entries, respectively.
- b) All R-bases \mathcal{B} of M have $|\mathcal{B}| = m$. Terminology. $|\mathcal{A}|$ is the rank $\operatorname{rk}(M)$ of M.
- c) Every system of generators \mathcal{X} of M with $|\mathcal{X}| \leq m$ is an R-basis of M.
- 9) Determinant of $\varphi \in \operatorname{End}_R(M)$, $A \in R^{m \times m}$. Given M in R-Mod, define an outer multiplication of $\operatorname{End}_R(M)$, \circ on $\mathcal{L}^n_{\bullet}(M,N)$ by $\varphi \cdot f := f \circ \varphi^n$. Prove/disprove/answer:
 - a) The outer multiplication $f \cdot \varphi := f \circ \varphi^n$ is associative, i.e., $f \cdot (\psi \circ \varphi) = (f \cdot \psi) \cdot \varphi$.
 - b) Let M be R-free of rank $m = \operatorname{rk}(M)$, hence $\mathcal{L}^m_{\operatorname{alt}}(M) \cong_R R$, + is R-free of rank 1 (WHY). Then for every $\varphi \in \operatorname{End}_R(M) \exists a_{\varphi} \in R$ unique s.t. $\varphi \cdot f = a_{\varphi} f$ for all $f \in \mathcal{L}^m_{\operatorname{alt}}(M)$.

Terminology. The element $det(\varphi) := a_{\varphi} \in R$ is called the determinant of $\varphi \in End_R(M)$.

- c) $\det(\psi \circ \varphi) = \det(\psi) \det(\varphi) = \det(\varphi \circ \psi)$ and $\varphi \in \operatorname{Aut}_R(M)$ iff $\det(\varphi) \in R^{\times}$.
- d) If $A := (a_{ij})_{i,j} \in R^{m \times m}$ is the matrix of φ in some R-basis \mathcal{A} , i.e., $\varphi(\mathcal{A}) = \mathcal{A} \cdot A_{\varphi}$, then: $\det(A) := \det(\varphi) = \sum_{\sigma \in S_m} \operatorname{sgn}(\sigma) a_{\sigma(1)1} \dots a_{\sigma(m)m} = \sum_{\tau \in S_m} \operatorname{sgn}(\tau) a_{1\tau(1)} \dots a_{m\tau(m)} = \det(A^{\tau})$.