Math 6030 / Problem Set 4 (two pages)

Dual/bidual of an R-module. Let R be a commutative ring, M be an R-module.

- $\operatorname{Maps}(X, M)$ is the R-module of M-valued maps on X. The support of $f \in \operatorname{Maps}(X, M)$ is $\sup (f):=\left\{x \in X \mid f(x) \neq 0_{M}\right\}$, and $\operatorname{Maps}^{0}(X, M):=\{f \in \operatorname{Maps}(X, M) \mid \sup (f)$ finite $\}$ is an R-submodule of $\operatorname{Maps}(X, M)$ (wHy).
- Recall: The dual of M is $M^{\vee}:=\operatorname{Hom}_{R}(M, R)$, and the bidual of M is $M^{\vee \vee}:=\left(M^{\vee}\right)^{\vee}$ the dual of M^{\vee}. The map $\imath: M \rightarrow M^{\vee \vee}, x \mapsto \Psi_{x}, \Psi_{x}(\phi):=\phi(x)$ for $\phi \in M^{\vee}$ is the evaluation morphism, and M is called reflexive, if $\imath: M \rightarrow M^{\vee \vee}$ is an isomorphism of R-modules.
- Finally recall the Kronecker symbol $\delta_{i j} \in\left\{0_{R}, 1_{R}\right\}$ defined for i, j in an arbitrary set.

1) Suppose that M is free, with basis $\mathcal{A}=\left(\alpha_{i}\right)_{i \in I}$. Prove/disprove/answer:
a) The maps $\alpha_{i}^{\vee}: M \rightarrow R$ define by $\alpha_{j} \mapsto \delta_{j i}$ are R-linearly independent maps.
b) If I is finite, then $\mathcal{A}^{\vee}:=\left(\alpha_{i}^{\vee}\right)_{i} \in I$ is an R-basis of M^{\vee} such that $\imath(\mathcal{A})=\mathcal{A}^{\vee}$. In particular, $\imath: M \rightarrow M^{\vee \vee}$ is an isomorphism, hence $M \cong{ }_{R} M^{\vee}$ (non-canonically).
c) If I is infinite, then $\imath: M \rightarrow M^{\vee \vee}$ is injective, but never surjective.
2) Prove that R-Mod $\rightsquigarrow R$-Mod, $M \rightsquigarrow M^{\vee}$ is a contravariant functor. Further, prove/disprove:
a) The functor above maps free R-modules to free R-modules.
b) Let N, M be free with bases $\mathcal{B}=\left(\beta_{j}\right)_{1 \leqslant j \leqslant n}, \mathcal{A}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, and $f \in \operatorname{Hom}_{R}(N, M)$ have matrix $A_{f} \in R^{m \times n}$ in the bases \mathcal{B}, \mathcal{A}, i.e., $f(\mathcal{B})=\mathcal{A} \cdot A_{f}$. Then the matrix of $f^{\vee}: M^{\vee} \rightarrow N^{\vee}$ in the dual bases $\mathcal{A}^{\vee}, \mathcal{B}^{\vee}$ is $A_{f}{ }^{\vee}=A_{f}^{\tau} \in R^{n \times m}$, i.e., $f^{\vee}\left(\mathcal{A}^{\vee}\right)=\mathcal{B}^{\vee} \cdot A_{f}^{\tau}$.
Bilinear/multiliear maps \& Tensor product. For $\left(M_{\nu}\right)_{\nu \leqslant n}, N$ in R-Mod, denote by $\mathcal{L}\left(\prod_{\nu} M_{\nu}, N\right)$ the set of R-multilinear maps $f: \prod_{\nu} M_{\nu} \rightarrow N$, set $\mathcal{L}^{n}(M ; N):=\mathcal{L}\left(M^{n}, N\right)$, and let $\mathcal{L}_{\text {sym }}^{n}(M ; N), \mathcal{L}_{\text {alt }}^{n}(M ; N) \subset \mathcal{L}^{n}(M ; N)$ are the sets of the symmetric, resp. alternating maps. Make sure that you check all the details proving that $\mathcal{L}\left(\prod_{\nu} M_{\nu}, N\right) \subset \operatorname{Maps}\left(\Pi_{\nu} M_{\nu}, N\right)$ and $\mathcal{L}_{\text {sym }}^{n}(M ; N), \mathcal{L}_{\text {alt }}^{n}(M ; N) \subset \mathcal{L}^{n}(M ; N)$ are R-submodules. Further, let $\mathcal{X}_{\nu}, \mathcal{A}_{\nu}$, respectively $\mathcal{X}=\left(x_{i}\right)_{i}, \mathcal{A}=(\alpha)_{i}, i \in I$ be a system of generators $/ R$-basis of each M_{ν}, respectively of M. I^{n} acts on, hence on \mathcal{X}^{n} and \mathcal{A}^{n} by $\sigma\left(i_{1}, \ldots, i_{n}\right)=\left(i_{\sigma 1}, \ldots, i_{\sigma n}\right)$, and let $\mathcal{X}_{\leqslant}^{n}, \mathcal{A}_{\leqslant}^{n}$, respectively $\mathcal{X}_{<}^{n}, \mathcal{A}_{<}^{n}$ be systems of representatives for the S_{n} action $\mathcal{X}^{n}, \mathcal{A}^{n}$, respectively on $\mathcal{X}^{n} \backslash \Delta, \mathcal{A}^{n} \backslash \Delta$ with Δ the fat diagonal. Make sure that you check in detail that:

- $\mathcal{L}\left(\prod_{\nu} M_{\nu}, N\right) \rightarrow \operatorname{Maps}\left(\Pi_{\nu} \mathcal{V}_{\nu}, N\right),\left.f \mapsto f\right|_{\Pi_{\nu} \nu_{\nu}}$ is injective/// an isom if $\mathcal{V}_{\nu}=\mathcal{X}_{\nu} / / / \mathcal{V}_{\nu}=\mathcal{A}_{\nu}$
- $\mathcal{L}_{\text {sym }}^{n}(M ; N) \rightarrow \operatorname{Maps}\left(\mathcal{V}_{\leqslant}^{n}, N\right), f \mapsto f_{\mathcal{V}_{\leqslant}^{n}}$ is injective $/ / /$ an isom if $\mathcal{V}_{\leqslant}^{n}=\mathcal{X}_{\leqslant}^{n} / / / \mathcal{V}_{\leqslant}^{n}=\mathcal{A}_{\leqslant}^{n}$
- $\mathcal{L}_{\text {alt }}^{n}(M ; N) \rightarrow \operatorname{Maps}\left(\mathcal{V}_{\leqslant}^{n}, N\right), f \mapsto f_{\mathcal{V}_{\leqslant}^{n}}$ is an injective $/ / /$ an isom $\mathcal{V}_{\leqslant}^{n}=\mathcal{X}_{\leqslant}^{n} / / / \mathcal{V}_{\leqslant}^{n}=\mathcal{A}_{\leqslant}^{n}$

Finally recall that for $n=2$ we speak about (symmetric/alternating) bilinear maps, and in the case $N=R,+$ we speak about bilinear/multilinear (symmetric/multilinear forms).
3) Let $n=2$ and $\left|\mathcal{A}_{\nu}\right|=m_{\nu},|\mathcal{A}|=m$ be finite, $N^{m_{1} \times m_{2}}$ be the $m_{1} \times m_{2}$ matrices over N and define $\Psi: \mathcal{L}\left(M_{1} \times M_{2}, N\right) \rightarrow N^{m_{1} \times m_{2}}, f \mapsto A_{f}:=\left(f\left(\alpha_{i_{1}}, \alpha_{i_{2}}\right)\right)_{i_{1}, i_{2}}$. Prove/disprove:
a) $\Psi: \mathcal{L}\left(M_{1} \times M_{2}, N\right) \rightarrow N^{m_{1} \times m_{2}}, f \mapsto A_{f}$ is an isomorphism of R-modules.

Make an educated guess: What happens with A_{f} under changes of bases $\mathcal{B}_{\nu}=S_{\nu} \mathcal{A}_{\nu}$?
b) One has: $f \in \mathcal{L}_{\text {sym }}^{2}(M, N)$ iff A_{f} is symmetric; $f \in \mathcal{L}_{\text {alt }}^{2}(M, N)$ iff A_{f} is alternating.
c) Make an educated guess: When do exist R-bases \mathcal{A} s.t. $A_{f}:=f\left(\alpha_{i}, \alpha_{j}\right)_{i, j}$ is diagonal?
4) For \mathcal{A} an R-basis of M, in the above notation, answer:
a) Given a map $f_{0}: \mathcal{A}_{\leqslant}^{n} \rightarrow N$, define/describe $f \in \mathcal{L}_{\text {sym }}^{n}(M ; N)$ satisfying $\left.f\right|_{\mathcal{A}_{太}^{n}}=f_{0}$.
b) Given a map $f_{0}: \mathcal{A}_{<}^{n} \rightarrow N$, define $/$ describe $f \in \mathcal{L}_{\text {alt }}^{n}(M ; N)$ satisfying $\left.f\right|_{\mathcal{A}_{\gtrless}^{n}}=f_{0}$.
5) Let $\Sigma \subset R$ be a multiplicative system. Prove in all detail the assertions from class:
a) $R^{+} \otimes_{R} M \cong \cong_{R} M$ and $R_{\Sigma} \otimes_{R} M \cong_{R} M_{\Sigma}$ canonically (How).
b) $M \otimes_{R} N \cong_{R} N \otimes_{R} M$ canonically (How).
c) $\left(M \otimes_{R} N\right) \otimes_{R} P \cong_{R} M \otimes_{R}\left(N \otimes_{R} P\right)$ canonically (How).
d) $\left(M_{1} \oplus M_{2}\right) \otimes_{R} N \cong_{R}\left(M_{1} \otimes_{R} N\right) \oplus\left(M_{2} \otimes_{R} N\right)$ (нош). Hence $M \otimes_{R} N$ is R-free, if M, N are so. Make an educated guess: Given R-bases \mathcal{A}, \mathcal{B} of M, resp. N, give an R-basis of $M \otimes_{R} N$.
6) Let S_{1}, S_{2} be R-algebras, $S^{+}=S_{1}^{+} \otimes_{R} S_{2}^{+}$endowed with $\imath_{1}: S_{1}^{+} \rightarrow S^{+}, s_{1} \mapsto s_{1} \otimes 1_{S_{2}}$, $\imath_{2}: S_{2}^{+} \rightarrow S^{+}, s_{2} \mapsto 1_{S_{1}} \otimes s_{2}$. Prove in all detail the assertions from class:
a) The multiplication $\left(s_{1} \otimes s_{2}\right) \cdot\left(s_{1}^{\prime} \otimes s_{2}^{\prime}\right):=\left(s_{1} s_{1}^{\prime}\right) \otimes\left(s_{2} s_{2}^{\prime}\right)$ on $S=S_{1}^{+} \otimes_{R} S_{2}^{+}$is well defined, and $S=S_{1} \otimes_{R} S_{2}$ becomes an R-algebra via $\varphi_{S}: R \rightarrow S, r \mapsto r\left(1_{S_{1}} \otimes 1_{S_{2}}\right)$.
b) If S_{1}, S_{2} are commutative, S endowed with $\imath_{\nu}: S_{\nu} \rightarrow S, \nu=1,2$ is the coproduct of S_{1}, S_{2} in the category of commutative rings (allowing $R=\left\{0_{R}\right\}$ as object as well).
c) In general, $S=S_{1} \otimes_{R} S_{2}$ endowed with $\imath_{\nu}, \nu=1,2$ is the the "commutative coproduct" of S_{1}, S_{2} in the category of R-algebras (Hоw).
7) Let S be a commutative R-algebra. Prove that the base change/extension of scalars R-Mod $\rightsquigarrow S$-Mod, $M \rightsquigarrow M_{S}:=S^{+} \otimes_{R} M$ is a covariant functor. Further, prove/disprove:
a) If $M^{\prime} \rightarrow M \rightarrow M^{\prime \prime}$ is exact in R-Mod, so is $M_{S}^{\prime} \rightarrow M_{S} \rightarrow M_{S}^{\prime \prime}$ in S-Mod.
b) The same question for: (i) $S=R_{\Sigma}$ for $\Sigma \subset R$ a multiplicative system;
(ii) $S=R / \mathfrak{a}$ with $\mathfrak{a} \in \mathfrak{I d}(R)$ an ideal, e.g. $\mathfrak{a}=\mathcal{J}(R)$ the Jacobson radical of R.
c) Finally, the questions a), b) above for $M^{\prime}, M, M^{\prime \prime}$ finite R-modules.
8) Let M have an R-basis \mathcal{A} with $|\mathcal{A}|=m$. Setting $\mathcal{L}_{\bullet}^{n}(M):=\mathcal{L}_{\bullet}^{n}(M ; R)$, prove/disprove/answer:
a) $\mathcal{L}^{n}(M), \mathcal{L}_{\text {sym }}^{n}(M), \mathcal{L}_{\text {alt }}^{n}(M)$ have R-bases with $m^{n},\binom{m+n-1}{n},\binom{m}{n}$ entries, respectively.
b) All R-bases \mathcal{B} of M have $|\mathcal{B}|=m$. Terminology. $|\mathcal{A}|$ is the rank $\operatorname{rk}(M)$ of M.
c) Every system of generators \mathcal{X} of M with $|\mathcal{X}| \leqslant m$ is an R-basis of M.
9) Determinant of $\varphi \in \operatorname{End}_{R}(M), A \in R^{m \times m}$. Given M in R-Mod, define an outer multiplication of $\operatorname{End}_{R}(M)$, o on $\mathcal{L}_{\bullet}^{n}(M, N)$ by $\varphi \cdot f:=f \circ \varphi^{n}$. Prove/disprove/answer:
a) The outer multiplication $f \cdot \varphi:=f \circ \varphi^{n}$ is associative, i.e., $f \cdot(\psi \circ \varphi)=(f \cdot \psi) \cdot \varphi$.
b) Let M be R-free of rank $m=\operatorname{rk}(M)$, hence $\mathcal{L}_{\text {alt }}^{m}(M) \cong{ }_{R} R$, + is R-free of rank 1 (WHY). Then for every $\varphi \in \operatorname{End}_{R}(M) \exists a_{\varphi} \in R$ unique s.t. $\varphi \cdot f=a_{\varphi} f$ for all $f \in \mathcal{L}_{\text {alt }}^{m}(M)$.
Terminology. The element $\operatorname{det}(\varphi):=a_{\varphi} \in R$ is called the determinant of $\varphi \in \operatorname{End}_{R}(M)$.
c) $\operatorname{det}(\psi \circ \varphi)=\operatorname{det}(\psi) \operatorname{det}(\varphi)=\operatorname{det}(\varphi \circ \psi)$ and $\varphi \in \operatorname{Aut}_{R}(M) \operatorname{iff} \operatorname{det}(\varphi) \in R^{\times}$.
d) If $A:=\left(a_{i j}\right)_{i, j} \in R^{m \times m}$ is the matrix of φ in some R-basis \mathcal{A}, i.e., $\varphi(\mathcal{A})=\mathcal{A} \cdot A_{\varphi}$, then: $\operatorname{det}(A):=\operatorname{det}(\varphi)=\sum_{\sigma \in S_{m}} \operatorname{sgn}(\sigma) a_{\sigma(1) 1} \ldots a_{\sigma(m) m}=\sum_{\tau \in S_{m}} \operatorname{sgn}(\tau) a_{1 \tau(1)} \ldots a_{m \tau(m)}=\operatorname{det}\left(A^{\tau}\right)$.

