Math 6030 / Problem Set 3 (two pages)

More about the functor Spec(R).

Let T be a topological space. Recall: A subset $X \subset T$ is irreducible, if X is closed and cannot be represented as $X = X_1 \cup X_2$ with $X_1, X_2 \subset T$ distinct closed subsets. Further, an irreducible component of T is any maximal irreducible subset in T. A subset $X \subset T$ is disconnected if $X \subset D_1 \cup D_2$ with $D_1, D_2 \subset X$ open and disjoint and $X \cap D_1, X \cap D_2 \neq \emptyset$. Further, a connected component of T is a maximal subset of T which is connected. A subset which is not disconnected is called **connected**. Finally, recall that a (commutative) ring R is called **regular von Neumann** if $\forall r \in R \exists r' \in R$ s.t. $e_r := r'r$ is an idempotent s.t. $re_r = r$.

1) For $\mathfrak{p} \in \operatorname{Spec}(R)$, let $X_{\mathfrak{p}} = \overline{\{\mathfrak{p}\}} \subset \operatorname{Spec}(R)$ be the topological closure. Prove/disprove:

- a) $\mathfrak{q} \in X_{\mathfrak{p}}$ iff $\mathfrak{p} \subset \mathfrak{q}$ and $X_{\mathfrak{p}} \subset \operatorname{Spec}(R)$ is irreducible. In particular, the only closed points of $\operatorname{Spec}(R)$ are $\mathfrak{m} \in \operatorname{Max}(R)$.
- b) Spec(R) is irreducible iff $Min(R) = \{\mathfrak{p}_0\}$ consists of one point.
- c) The irreducible components of $\operatorname{Spec}(R)$ are precisely $X_{\mathfrak{p}_0} \subset \operatorname{Spec}(R)$ with \mathfrak{p}_0 minimal.

2) Prove/disprove:

- a) $\operatorname{Spec}(R)$ is compact iff $\dim(R) = 0$ iff $\operatorname{Spec}(R)$ is a profinite topological space.
- b) Suppose that R is regular von Neumann. Then $\mathcal{N}(R) = (0)$ and $\operatorname{Spec}(R)$ is compact. Make an educated guess: Does the converse of the assertion at b) above hold?
- c) Spec(R) is disconnected iff $R = R_1 \times R_2$ iff $\exists e \in R$ idempotent $e \neq 1_R, 0_R$.

3) For a morphism $f: R \to S$ in **Rings**^{com} with $f(1_R) = 1_S$, prove/disprove/answer:

- a) $f^* : \operatorname{Spec}(S) \to \operatorname{Spec}(R)$ is a closed immersion iff $f : R \to S$ is surjective.
- b) TFAE: (i) $\mathfrak{a}^{ec} = \mathfrak{a} \ \forall \ \mathfrak{a} \in \mathfrak{Id}(R);$ (ii) $f^*(\operatorname{Spec}(S)) = \operatorname{Spec}(R);$ (iii) $f^*(\operatorname{Max}(S)) = \operatorname{Max}(R).$
- c) **Rings**^{com} \rightsquigarrow **Top**, $R \mapsto$ Spec(R) maps finite products to coproducts.
- (*) Make educated guesses: *Does the same hold correspondingly for* (i) finite correducts (ii) arbitrary products (iii) projective/inductive line

(i) finite coproducts. (ii) arbitrary products. (iii) projective/inductive limits.

Rings/modules of fractions & Localization.

Recall that all the rings considered here a commutative with identity, and for multiplicative systems $\Sigma \subset R$ we suppose that $0 \notin \Sigma$ and $R_{\Sigma} = \Sigma^{-1}R$ denotes the Σ ring of fractions of R with structure morphism $\varphi_{\Sigma} : R \to R_{\Sigma}, a \mapsto \frac{a}{1}$. Make sure that you know/checked the details that the addition and multiplication in R_{Σ} are well defined and that $R_{\Sigma}, \varphi_{\Sigma}$ has the universal property given in class. Further, recall the following:

- $\Sigma_{\mathfrak{p}} := R \setminus \mathfrak{p}$ is multiplicative system $\forall \mathfrak{p} \in \operatorname{Spec}(R)$ (WHY).
- Further, $\varphi_{\mathfrak{p}}: R \to R_{\mathfrak{p}}:= R_{\Sigma_{\mathfrak{p}}}$ is the localization of R at \mathfrak{p} .
- $\Sigma_0 := \{r \in R \mid r \text{ is not zero divisor}\}$ is a multiplicative system (WHY).

Further, $\varphi_0 : R \to \operatorname{Quot}(R) := R_{\Sigma_0}$ is the total ring of fraction of R.

Given a multiplicative system $\Sigma \subset R$, define its saturation $\tilde{\Sigma} := \{r \in R \mid \exists s \in \Sigma \text{ s.t. } r \mid s\}.$

Given $\Sigma \subset R$, define the Σ -saturation of \mathfrak{a} by $\tilde{\mathfrak{a}}_{\Sigma} := \{a \in R \mid \exists r \in \Sigma \text{ s.t. } ar \in \mathfrak{a}\}$, and denote:

 $\Im d(R)_{\Sigma} := \{ \mathfrak{a} \in \Im d(R) \, | \, \mathfrak{a} \cap \Sigma = \emptyset \}, \quad \operatorname{Spec}(R)_{\Sigma} = \operatorname{Spec}(R) \cap \Im d(R)_{\Sigma}.$

- 4) Let $\Sigma_1 \subset \Sigma_2 \subset R$ be multiplicative systems. Prove/disprove/answer:
 - a) There is a canonical ring homomorphism $\varphi_{\Sigma_1\Sigma_2}: R_{\Sigma_1} \to R_{\Sigma_2}$.
 - b) If $\Sigma_2 = \tilde{\Sigma}$ is the saturation of $\Sigma = \Sigma_1$, then $\varphi_{\Sigma\tilde{\Sigma}}$ is an isomorphism.
 - c) Make an educated guess: When is $\varphi_{\Sigma_1 \Sigma_2}$ an isomorphism?
- 5) In the above notation, prove/disprove/answer:
 - a) $\tilde{\mathfrak{a}}_{\Sigma} \in \mathfrak{Id}(R)$, $\mathfrak{a} \subset \mathfrak{a}_{\Sigma}$, and $\tilde{\mathfrak{a}}_{\Sigma} = \tilde{\mathfrak{a}}_{\Sigma}$. Further, $\tilde{\mathfrak{p}}_{\Sigma} = \mathfrak{p}$ for $\mathfrak{p} \in \operatorname{Spec}(R)$.
 - b) For $\mathfrak{a} \in \mathfrak{Id}(R)$ one has $\mathfrak{a} \cap \Sigma = \emptyset$ iff $\tilde{\mathfrak{a}}_{\Sigma} \cap \Sigma = \emptyset$.
- 6) For $\varphi_{\Sigma} : R \to R_{\Sigma}$, recalling the extension/contraction of ideals, prove/disprove/answer:
 - a) First, $\mathfrak{a}^e = R_{\Sigma}$ iff $\mathfrak{a} \cap \Sigma \neq \emptyset$, and second, every $\mathfrak{b} \in \mathfrak{Id}(R_{\Sigma})$ is of the form $\mathfrak{b} = \mathfrak{a}^e$.
 - b) First, $\mathfrak{a}^{ec} = \mathfrak{a}$ iff \mathfrak{a} is Σ -saturated, and second, $\mathfrak{a}^{e} = \mathfrak{a}^{e}$ iff $\tilde{\mathfrak{a}}_{\Sigma} = \tilde{\mathfrak{a}}_{\Sigma}^{e}$.
 - c) $\varphi_{\Sigma}^* : \operatorname{Spec}(R_{\Sigma}) \to \operatorname{Spec}(R)_{\Sigma} \subset \operatorname{Spec}(R)$ is a well defined homeomorphism.
- 7) Recall $\varphi_0: R \to \operatorname{Quot}(R) = R_{\Sigma_0}$, and let $x = \frac{a}{r} \in R_{\Sigma_0}^{\times}$ be given. Prove/disprove:
 - a) $\Sigma_0 = \Sigma_0$ and $\varphi_{\Sigma} : R \to R_{\Sigma}$ is injective iff $\Sigma \subset \Sigma_0$.
 - b) TFAE: (i) $x \notin R_{\Sigma_0}^{\times}$; $x \in R_{\Sigma_0}$ is zero divisor in R_{Σ_0} ; (iii) $a \in R$ is zero divisor in R.
 - c) Therefore one has: $\operatorname{Spec}(R_{\Sigma_0}) = \operatorname{Max}(R_{\Sigma_0}) = \operatorname{Min}(R)_{\Sigma_0}^e$, implying that:

 $\mathfrak{p} \in Min(R)$ iff \mathfrak{p} consists of zero divisors only.

• For a multiplicative system $\Sigma \subset R$ and an *R*-module *M*, one has the canonical morphism of $\phi_{\Sigma} : M \to M_{\Sigma} = \Sigma^{-1}M, x \mapsto \frac{x}{1}$, and M_{Σ} is canonically an R_{Σ} -module via $\frac{a}{r} \cdot \frac{x}{s} := \frac{ax}{rs}$. Further, recall the localizations $M_{\mathfrak{p}}, \mathfrak{p} \in \operatorname{Spec}(R)$ and $M_{\mathfrak{m}}, \mathfrak{m} \in \operatorname{Max}(R)$. Finally, consider sequences $(\mathcal{E}) : M \to N \to P$ of morphisms in *R*-Mod.

8) Prove that $\mathcal{F}_{\Sigma} : R$ -Mod $\rightsquigarrow R_{\Sigma}$ -Mod, $M \mapsto M_{\Sigma}$ is a covariant functor. Prove/disprove:

- a) \mathcal{F}_{Σ} is compatible with products and coproducts, inductive/projective limits.
- b) If $M \to N \to P$ is exact in *R*-Mod, so is $M_{\Sigma} \to N_{\Sigma} \to P_{\Sigma}$. Hence \mathcal{F} is exact.
- c) In the above notation, for a sequence $M \to N \to P$ in *R*-Mod, TFAE:
 - (i) $M \to N \to P$ is exact.
 - (ii) $M_{\mathfrak{p}} \to N_{\mathfrak{p}} \to P_{\mathfrak{p}}$ is exact $\forall \mathfrak{p} \in \operatorname{Spec}(R)$.
 - (iii) $M_{\mathfrak{m}} \to N_{\mathfrak{m}} \to P_{\mathfrak{m}}$ is exact $\forall \mathfrak{m} \in \operatorname{Max}(R)$.
- d) Same question above for arbitrary exact sequences $\cdots \to M_{i-1} \to M_i \to M_{i+1} \to \ldots$

Recall: For a free S-module N, its rank $\operatorname{rk}_S(N)$ is the cardinality of an S-basis of N. An *R*-module M is locally free, if $M_{\mathfrak{p}}$ is a free $R_{\mathfrak{p}}$ -module $\forall \mathfrak{p} \in \operatorname{Spec}(R)$. Further, if $r \notin \mathcal{N}(R)$, then $\Sigma_r = \{r^n \mid n \in \mathbb{N}\}$ is a multiplicative system, and set $R_r := R_{\Sigma_r}$ and $M_r := M_{\Sigma_r}$. Finally, recall that $D_r := \{\mathfrak{p} \mid r \notin \mathfrak{p}\}, r \in R$ is a basis of Zariski open neighborhoods of \mathfrak{p} (WHY).

- 9) Prove that an *R*-module *M* is locally free iff $M_{\mathfrak{m}}$ is $R_{\mathfrak{m}}$ -free for all $\mathfrak{m} \in \operatorname{Max}(R)$. Further, for *M* a finitely generated *R* module, prove (disprove (answer))
 - Further, for M a finitely generated R-module, prove/disprove/answer:
 - a) M is locally free iff $\exists r_1, \ldots, r_n \in R$ s.t. $\cup_i D_{r_i} = \operatorname{Spec}(R)$ and M_{r_i} is R_{r_i} -free $\forall i \leq n$.
 - b) Is it true that $\operatorname{rk}_{R_{\mathfrak{p}}}(M_{\mathfrak{p}})$ is independent of $\mathfrak{p} \in \operatorname{Spec}(R)$?