
Due: Feb 9, 2024
Math 6030 / Problem Set 2 (two pages)

Pontrjagin Duality for abelian m-torsion groups. Let A be the category of abelian
torsion groups, considered as discrete topological groups, and Â be the category of profinite
abelian groups. Further, let Am and Âm be the corresponding full subcategories of m-torsion
groups. Finally, let Cm be a typical cyclic group of order m, e.g. Cm = Z/m, 1

m
Z/Z,µm,

which we consider as a discrete topological group.
For Γ in Am or in Âm, let C(Γ,Cm) be the space of continuous functions endowed with
the open-compact topology. Not that C(Γ,Cm) is a toplogical group (WHY). Finally, denote
G∗ := Hom(G,Cm) ⊂ C(G,Cm) the group of continuous homomorphism.
1) Prove that G∗ ⊂ C(G,Cm) is topologically closed in C(G,Cm), and further one has:

a) If G ∈ Am, then G∗ is a profinite m-torsion group, hence G∗ ∈ Âm.
Further, G G∗ defines a contravariant functor Am  Âm.

b) If G ∈ Âm, then G∗ is a discrete m-torsion group, hence G∗ ∈ Am.
Further, G G∗ defines a contravariant functor Âm  Am.

c) Further, G and G∗ are isomorphic as topological groups iff G id a finite.

2) Duality. Let ıG : G→ (G∗)∗ = Hom(G∗,Cm), g 7→ Φg, Φg(ϕ) = ϕ(g)∀ϕ ∈ G∗. Prove:
a) The canonical map ıG : G→ (G∗)∗ is an isomorphism of topological groups, hence:
Âm  Am and Am  Âm are inverse to each other, thus Am, Âm are (anti)equivalent.

b) The subgroups of G correspond functorially to the factor groups of G∗.

Artin–Schreier Thm and (formally) real fields. Recall that a (formally) real field is any
field K which admits a total ordering 6 which is compatible with the field operations (HOW).
Obviously, in a real field K one has −1K < 0K < 1K (WHY), hence char(K) = 0 (WHY). A real
field is called real closed if there is no proper algebraic extension K ′|K of real fields, i.e., K ′
carrying a total field ordering 6′ which prolongs 6 to K ′. It turns out the total orderings of
fields relate in a subtle with the (sums of) squares in K. In the sequel, K •,2 := {x2 |x ∈ K}
is the set of squares and ∑

K
•,2 := {∑i x

2
i |xi ∈ K} is the set of finite sums of squares in K.

3) Without invoking the Artin–Schreier Thm, setting i =
√
−1, prove directly:

a) TFAE: (i) 1< [K :K]<∞; (ii) 1< [Ks :K]<∞; (iii) K 6= Ks = K(i), char(K) = 0.
b) If (i), (ii), (iii) are satisfied, then K×=−K •,2∪K •,2, −K •,2∩K •,2 = {0}, ∑

K
•,2 = K

•,2.
Conclude: x 6 y

def←→ y − x ∈ K •,2 defines a total field ordering on K.

4) Prove that for an arbitrary field K one has: ∑
K

•,2 is a semifield, i.e., it is closed w.r.t.
+, · and inverses x−1 for nonzero x ∈ ∑

K
•,2. Invoking this fact, prove:

Artin’s Theorem. K is a real field if and only if −1 6∈ ∑
K

•,2.

[Hint to Artin’s Thm: First, if K is real, then −1 6∈
∑

K
•,2 (WHY) and char(K) = 0 (WHY). For the converse prove:

- Let K1|K be an algebraic extension with [K1 : K] odd. Then
∑

K
•,2
1 ⊂ K×

1 is a semifield and −1 6∈
∑

K
•,2.

- Let K2 = K[
√∑

K •,2 ]. Then
∑

K
•,2
2 ⊂ K×

2 is a semifield and −1 6∈
∑

K
•,2.

Conclude: If K̃ ⊂ K is a maximal real subfield, then K = K̃[
√
−1], hence K is a real closed by Problem 3) above.]
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Basics about Max•(R), Spec(R) ⊂ Id(R).
Recall that for a ring R we defined Max•(R) ⊂ Id•(R), Spec(R), where • can be l (left),
r (right), or empty, and the latter case, Max(R) ⊂ Id(D), means two-sided. Further,
J (R) = ∩m∈Max•(R)m is the Jacobson radical of R, and N (R) = ∩p∈Spec(R)p is the nil-radical
of R. Similarly, given a ∈ Id(R), J (a) = ∩a⊂m∈Max•(R)m is the Jacobson radical of a, and
N (a) = ∩a⊂p∈Spec(R)p is the nil-radical of a.
5) For an arbitrary ring R with 1R prove/disprove/answer:

a) Max(R) ⊂ Spec(R) and J (m) = m for all m ∈ Max(R).
b) Every m ∈ Maxl(R) contains maximal ideals p ⊂ m, and all such p are prime ideals.
c) How do N (R) and J (R) compare?

6) For an arbitrary ring R with 1R prove/disprove/answer:
a) Let a1, . . . , an ∈ Id(R), p ∈ Spec(R). If ∩iai ⊂ p, then ∃ i0 such that ai0 ⊂ p.

The same question with “⊂” replaced by “=”.
b) Let p1, . . . , pn ∈ Spec(R), a ∈ Id(R). If a ⊂ ∪i pi, then ∃ i0 such that a ⊂ pi0 .

What is the corresponding assertion with “⊂” replaced by “=” ?

7) For an arbitrary ring R with 1R and a, ai ∈ Id(R), prove/disprove/answer:
a) N(N (a)) = N (a), N (∑

i ai) = N( ∑
iN (ai)).

b) N ( ∏
i ai) = ∩iN (ai) = N (∩iai).

(∗) What are the corresponding assertions for the Jacobson radical J (•) ?

Extension/Contraction of Ideals.
Let f : R → S be a ring morphism with f(1R) = 1S, and recall the • -ideal extension
map f∗ : Id•(R) → Id•(S), a 7→ ae := (f(a))•, respectively the • -ideal contraction map
f ∗ : Id•(S) → Id•(R), b 7→ bc := f−1(b). These maps a well defined (WHY). Further, let
Idc
•(R) ⊂ Id•(R) be the subset of ideals which are contracted, and Ide

•(S) ⊂ Id•(S) be the
subset of ideals which are extended.
8) For a, ai ∈ Id•(R) and b, bi ∈ Id•(S), prove/disprove the assertions (same made in class):

a) aec := (ae)c ⊃ a and bce := (bc)e ⊂ b.
b) f∗: Idc

•(R)→ Ide
•(S) and f ∗: Ide

•(S)→ Idc
•(R) are well defined bijections and f ∗ = f−1

∗ .
c) (∑

i ai)e = ∑
i a

e
i and (∏

i ai)e = ∏
i a

e
i . Further, (∑

i bi)c = ∑
i a

c
i and (∏

i bi)c = ∏
i a

c
i .

The same questions for ai ∈ Idc
•(R), respectively bi ∈ Ide

•(S).

9) In the above notation, prove/disprove/answer the following:
a) If q ∈ Spec(S), then qc ∈ Spec(R), i.e., contractions of prime ideals are prime ideals.

Hence f ∗ : Spec(S)→ Spec(R), q 7→ p := qc = f−1(q) is well defined.
b) For b ∈ Id(S) one has N (b)c = N (bc). The same question for b ∈ Ide(S).

10) Give examples to show that, in general, maximal ideals do not behave well under ex-
tension and/or contraction, and that prime ideals do not behave well under extension.

2


