Math 6030 / Problem Set 2 (two pages)

Pontrjagin Duality for abelian m-torsion groups. Let \mathcal{A} be the category of abelian torsion groups, considered as discrete topological groups, and $\widehat{\mathcal{A}}$ be the category of profinite abelian groups. Further, let \mathcal{A}_{m} and $\widehat{\mathcal{A}}_{m}$ be the corresponding full subcategories of m-torsion groups. Finally, let C_{m} be a typical cyclic group of order m, e.g. $C_{m}=\mathbb{Z} / m, \frac{1}{m} \mathbb{Z} / \mathbb{Z}, \mu_{m}$, which we consider as a discrete topological group.
For Γ in \mathcal{A}_{m} or in $\widehat{\mathcal{A}}_{m}$, let $\mathcal{C}\left(\Gamma, C_{m}\right)$ be the space of continuous functions endowed with the open-compact topology. Not that $\mathcal{C}\left(\Gamma, C_{m}\right)$ is a toplogical group (wHY). Finally, denote $G^{*}:=\operatorname{Hom}\left(G, C_{m}\right) \subset \mathcal{C}\left(G, C_{m}\right)$ the group of continuous homomorphism.

1) Prove that $G^{*} \subset \mathcal{C}\left(G, C_{m}\right)$ is topologically closed in $\mathcal{C}\left(G, C_{m}\right)$, and further one has:
a) If $G \in \mathcal{A}_{m}$, then G^{*} is a profinite m-torsion group, hence $G^{*} \in \widehat{\mathcal{A}}_{m}$.

Further, $G \rightsquigarrow G^{*}$ defines a contravariant functor $\mathcal{A}_{m} \rightsquigarrow \widehat{\mathcal{A}}_{m}$.
b) If $G \in \widehat{\mathcal{A}}_{m}$, then G^{*} is a discrete m-torsion group, hence $G^{*} \in \mathcal{A}_{m}$.

Further, $G \rightsquigarrow G^{*}$ defines a contravariant functor $\widehat{\mathcal{A}}_{m} \rightsquigarrow \mathcal{A}_{m}$.
c) Further, G and G^{*} are isomorphic as topological groups iff G id a finite.
2) Duality. Let $\imath_{G}: G \rightarrow\left(G^{*}\right)^{*}=\operatorname{Hom}\left(G^{*}, C_{m}\right), g \mapsto \Phi_{g}, \Phi_{g}(\varphi)=\varphi(g) \forall \varphi \in G^{*}$. Prove:
a) The canonical map $\imath_{G}: G \rightarrow\left(G^{*}\right)^{*}$ is an isomorphism of topological groups, hence: $\widehat{\mathcal{A}}_{m} \rightsquigarrow \mathcal{A}_{m}$ and $\mathcal{A}_{m} \rightsquigarrow \hat{\mathcal{A}}_{m}$ are inverse to each other, thus $\mathcal{A}_{m}, \widehat{\mathcal{A}}_{m}$ are (anti)equivalent.
b) The subgroups of G correspond functorially to the factor groups of G^{*}.

Artin-Schreier Thm and (formally) real fields. Recall that a (formally) real field is any field K which admits a total ordering \leqslant which is compatible with the field operations (How). Obviously, in a real field K one has $-1_{K}<0_{K}<1_{K}$ (WHY), hence $\operatorname{char}(K)=0$ (WHY). A real field is called real closed if there is no proper algebraic extension $K^{\prime} \mid K$ of real fields, i.e., K^{\prime} carrying a total field ordering \leqslant^{\prime} which prolongs \leqslant to K^{\prime}. It turns out the total orderings of fields relate in a subtle with the (sums of) squares in K. In the sequel, $K^{\bullet,}{ }^{2}:=\left\{x^{2} \mid x \in K\right\}$ is the set of squares and $\sum K^{\bullet, 2}:=\left\{\sum_{i} x_{i}^{2} \mid x_{i} \in K\right\}$ is the set of finite sums of squares in K.
3) Without invoking the Artin-Schreier Thm, setting $\boldsymbol{i}=\sqrt{-1}$, prove directly:
a) TFAE: (i) $1<[\bar{K}: K]<\infty$; (ii) $1<\left[K^{s}: K\right]<\infty$; (iii) $K \neq K^{s}=K(\boldsymbol{i}), \operatorname{char}(K)=0$.
b) If (i), (ii), (iii) are satisfied, then $K^{\times}=-K^{\bullet, 2} \cup K^{\bullet, 2},-K^{\bullet, 2} \cap K^{\bullet, 2}=\{0\}, \sum K^{\bullet, 2}=K^{\bullet,{ }^{2}}$.

Conclude: $x \leqslant y \stackrel{\text { def }}{\longleftrightarrow} y-x \in K^{\bullet, 2}$ defines a total field ordering on K.
4) Prove that for an arbitrary field K one has: $\sum K^{\bullet, 2}$ is a semifield, i.e., it is closed w.r.t. ,$+ \cdot$ and inverses x^{-1} for nonzero $x \in \sum K^{\bullet, 2}$. Invoking this fact, prove:
Artin's Theorem. K is a real field if and only if $-1 \notin \sum K^{*, 2}$.

$$
\begin{aligned}
& \text { [Hint to Artin's Thm: First, if } K \text { is real, then }-1 \notin \sum K^{*, 2}(\mathrm{WHY}) \text { and } \operatorname{char}(K)=0 \text { (WHY). For the converse prove: } \\
& \text { - Let } K_{1} \mid K \text { be an algebraic extension with }\left[K_{1}: K\right] \text { odd. Then } \sum K_{1}^{*, 2} \subset K_{1}^{\times} \text {is a semifield and }-1 \notin \sum K^{,, 2} \text {. } \\
& \text { - Let } K_{2}=K\left[\sqrt{\sum K^{*, 2}}\right] \text {. Then } \sum K_{2}^{,{ }^{2}} \subset K_{2}^{\times} \text {is a semifield and }-1 \notin \sum K^{,,^{2}} \text {. } \\
& \text { Conclude: If } \tilde{K} \subset \bar{K} \text { is a maximal real subfield, then } \bar{K}=\tilde{K}[\sqrt{-1}] \text {, hence } K \text { is a real closed by Problem 3) above.] }
\end{aligned}
$$

Basics about $\operatorname{Max}_{\bullet}(R), \operatorname{Spec}(R) \subset \Im \operatorname{Id}(R)$.
Recall that for a ring R we defined $\operatorname{Max}(R) \subset \Im \mathrm{Id}_{\bullet}(R), \operatorname{Spec}(R)$, where \bullet can be l (left), r (right), or empty, and the latter case, $\operatorname{Max}(R) \subset \operatorname{Id}(D)$, means two-sided. Further, $\mathcal{J}(R)=\cap_{\mathfrak{m} \in \operatorname{Max}}(R) \mathfrak{m}$ is the Jacobson radical of R, and $\mathcal{N}(R)=\cap_{\mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}$ is the nil-radical of R. Similarly, given $\mathfrak{a} \in \mathfrak{I d}(R), \mathcal{J}(\mathfrak{a})=\cap_{\mathfrak{a} \subset \mathfrak{m} \in \operatorname{Max}}(R) \mathfrak{m}$ is the Jacobson radical of \mathfrak{a}, and $\mathcal{N}(\mathfrak{a})=\cap_{\mathfrak{a} \subset \mathfrak{p} \in \operatorname{Spec}(R)} \mathfrak{p}$ is the nil-radical of \mathfrak{a}.
5) For an arbitrary ring R with 1_{R} prove/disprove/answer:
a) $\operatorname{Max}(R) \subset \operatorname{Spec}(R)$ and $\mathcal{J}(\mathfrak{m})=\mathfrak{m}$ for all $\mathfrak{m} \in \operatorname{Max}(R)$.
b) Every $\mathfrak{m} \in \operatorname{Max}_{l}(R)$ contains maximal ideals $\mathfrak{p} \subset \mathfrak{m}$, and all such \mathfrak{p} are prime ideals.
c) How do $\mathcal{N}(R)$ and $\mathcal{J}(R)$ compare?
6) For an arbitrary ring R with 1_{R} prove/disprove/answer:
a) Let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{n} \in \mathfrak{I d}(R), \mathfrak{p} \in \operatorname{Spec}(R)$. If $\cap_{i} \mathfrak{a}_{i} \subset \mathfrak{p}$, then $\exists i_{0}$ such that $\mathfrak{a}_{i_{0}} \subset \mathfrak{p}$.

The same question with " \subset " replaced by " $=$ ".
b) Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{n} \in \operatorname{Spec}(R), \mathfrak{a} \in \operatorname{Id}(R)$. If $\mathfrak{a} \subset \cup_{i} \mathfrak{p}_{i}$, then $\exists i_{0}$ such that $\mathfrak{a} \subset \mathfrak{p}_{i_{0}}$. What is the corresponding assertion with " \subset " replaced by " $=$ " ?
7) For an arbitrary ring R with 1_{R} and $\mathfrak{a}, \mathfrak{a}_{i} \in \mathfrak{I d}(R)$, prove/disprove/answer:
a) $\mathcal{N}(\mathcal{N}(\mathfrak{a}))=\mathcal{N}(\mathfrak{a}), \mathcal{N}\left(\sum_{i} \mathfrak{a}_{i}\right)=\mathcal{N}\left(\sum_{i} \mathcal{N}\left(\mathfrak{a}_{i}\right)\right)$.
b) $\mathcal{N}\left(\prod_{i} \mathfrak{a}_{i}\right)=\cap_{i} \mathcal{N}\left(\mathfrak{a}_{i}\right)=\mathcal{N}\left(\cap_{i} \mathfrak{a}_{i}\right)$.
$(*)$ What are the corresponding assertions for the Jacobson radical $\mathcal{J}(\bullet)$?

Extension/Contraction of Ideals.

Let $f: R \rightarrow S$ be a ring morphism with $f\left(1_{R}\right)=1_{S}$, and recall the \bullet-ideal extension map $f_{*}: \Im d_{\bullet}(R) \rightarrow \Im d_{\bullet}(S), \mathfrak{a} \mapsto \mathfrak{a}^{e}:=(f(\mathfrak{a}))$, respectively the •-ideal contraction map $f^{*}: \Im \mathrm{I} .(S) \rightarrow \Im \mathrm{d}_{\bullet}(R), \mathfrak{b} \mapsto \mathfrak{b}^{c}:=f^{-1}(\mathfrak{b})$. These maps a well defined (wHY). Further, let $\Im_{0}^{c}(R) \subset \Im \mathrm{d}_{\bullet}(R)$ be the subset of ideals which are contracted, and $\Im^{\circ} \mathrm{d}_{\bullet}^{e}(S) \subset \Im \mathrm{d}_{\bullet}(S)$ be the subset of ideals which are extended.
8) For \mathfrak{a}, $\mathfrak{a}_{i} \in \mathfrak{I d} \cdot(R)$ and $\mathfrak{b}, \mathfrak{b}_{i} \in \mathrm{Id}_{\bullet}(S)$, prove/disprove the assertions (same made in class):
a) $\mathfrak{a}^{e c}:=\left(\mathfrak{a}^{e}\right)^{c} \supset \mathfrak{a}$ and $\mathfrak{b}^{c e}:=\left(\mathfrak{b}^{c}\right)^{e} \subset \mathfrak{b}$.
b) $f_{*}:{\Im d^{c}}_{\bullet}^{c}(R) \rightarrow{\Im d^{e}}_{\bullet}^{(}(S)$ and $f^{*}:{\Im d^{e}}_{\bullet}^{e}(S) \rightarrow{\Im d^{c}}_{\bullet}^{c}(R)$ are well defined bijections and $f^{*}=f_{*}^{-1}$.
c) $\left(\sum_{i} \mathfrak{a}_{i}\right)^{e}=\sum_{i} \mathfrak{a}_{i}^{e}$ and $\left(\prod_{i} \mathfrak{a}_{i}\right)^{e}=\prod_{i} \mathfrak{a}_{i}^{e}$. Further, $\left(\sum_{i} \mathfrak{b}_{i}\right)^{c}=\sum_{i} \mathfrak{a}_{i}^{c}$ and $\left(\prod_{i} \mathfrak{b}_{i}\right)^{c}=\prod_{i} \mathfrak{a}_{i}^{c}$. The same questions for $\mathfrak{a}_{i} \in \mathfrak{I d}_{\bullet}^{c}(R)$, respectively $\mathfrak{b}_{i} \in \Im \mathrm{~d}_{\bullet}^{e}(S)$.
9) In the above notation, prove/disprove/answer the following:
a) If $\mathfrak{q} \in \operatorname{Spec}(S)$, then $\mathfrak{q}^{c} \in \operatorname{Spec}(R)$, i.e., contractions of prime ideals are prime ideals. Hence $f^{*}: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(R), \mathfrak{q} \mapsto \mathfrak{p}:=\mathfrak{q}^{c}=f^{-1}(\mathfrak{q})$ is well defined.
b) For $\mathfrak{b} \in \operatorname{Id}(S)$ one has $\mathcal{N}(\mathfrak{b})^{c}=\mathcal{N}\left(\mathfrak{b}^{c}\right)$. The same question for $\mathfrak{b} \in \mathfrak{I d}{ }^{e}(S)$.
10) Give examples to show that, in general, maximal ideals do not behave well under extension and/or contraction, and that prime ideals do not behave well under extension.

