Math 6030 / Problem Set 11 (two pages)

Miscellaneous

Recall: for a commutative ring R with 1_{R} and $\mathfrak{a} \in \mathcal{I} d(R)$, we denote by $\mathcal{N}(\mathfrak{a}) \subset \mathcal{J}(\mathfrak{a})$ the nil radical, resp. Jacobson radical of \mathfrak{a}. Equivalently, if $p r: R \rightarrow \bar{R}=R / \mathfrak{a}$ and $\mathcal{N}(\bar{R}) \subset \mathcal{J}(\bar{R})$ are the nil, resp. Jacobson radical of \bar{R}, then $\mathcal{N}(\mathfrak{a})=p r^{-1}(\mathcal{N}(\bar{R}))$ and $\mathcal{J}(\mathfrak{a})=p r^{-1}(\mathcal{J}(\bar{R}))$.

1) Prove that for a commutative ring R with 1_{R}, TFAE:
(i) For every $\mathfrak{p} \in \operatorname{Spec}(R)$ one has $\mathfrak{p}=\mathcal{J}(\mathfrak{p})$.
(ii) For every $\mathfrak{a} \in \mathcal{I} d(R)$ one has $\mathcal{N}(\mathfrak{a})=\mathcal{J}(\mathfrak{a})$.
(iii) For every surjective ring morphism $R \rightarrow S$ one has $\mathcal{N}(S)=\mathcal{J}(S)$.

Terminology. R satisfying the equivalent conditions (i), (ii), (iii) above is a Jacobson ring.
2) Let I be a nonempty (finite or infinite) set. Prove/disprove/answer:
a) A polynomial ring $k\left[t_{i}\right]_{i \in I}$ is a Jacobson ring, provided: (i) I is finite; (ii) I is arbitrary.
b) Same questions for the k-algebras $R=k\left[x_{i}\right]_{i \in I}$ in I-generators.
c) Same questions for the polynomial ring $\mathbb{Z}\left[t_{i}\right]_{i \in I}$, respectively the \mathbb{Z}-algebra $\mathbb{Z}\left[x_{i}\right]_{i \in I}$.

Let k be a base field, $\underline{\boldsymbol{X}}=\left(X_{1}, \ldots, X_{n}\right)$ be k-independent variables, and recall that every ideal $\mathfrak{a} \subset k[\underline{\boldsymbol{X}}]$ is finitely generated (wHY), hence of the form $\mathfrak{a}=\left(f_{1}, \ldots, f_{r}\right)$ for some $f_{j} \in k[\underline{\boldsymbol{X}}]$. Given $\mathfrak{a} \in \mathcal{I} d(k[\underline{\boldsymbol{X}}])$, set $R:=k[\underline{\boldsymbol{X}}] / \mathfrak{a}=k\left[x_{1}, \ldots, x_{n}\right]$ with $x_{i}:=X_{i}(\bmod \mathfrak{a})$. Let $K \mid k$ a field extension with $K=\bar{K}$ algebraically closed, and $\bar{k}|k \hookrightarrow K| k$ the algebraic closure of k in K. Given a set $\boldsymbol{f}=\left\{f_{i}\right\}_{i}$ of polynomials $f_{i} \in k[\underline{\boldsymbol{X}}]$, denote $V(\boldsymbol{f}):=\left\{\boldsymbol{a} \in K^{n} \mid f_{i}(\boldsymbol{a})=0 \forall i\right\}$ and call $V=V(\boldsymbol{f}) \subset K^{n}$ an k-algebraic (sub)set of K^{n}. Finally, given a k-algebraic subset $V \subset K^{n}$, we denote $I(V):=\{f \in k[\underline{\boldsymbol{X}}] \mid f(\boldsymbol{a})=0 \forall \boldsymbol{a} \in V\}$ and call it ideal of V.
3) Let $V, W \subset K^{n}$ be k-algebraic subsets. Prove/disprove/answer:
a) Given \boldsymbol{f}, let $\mathfrak{a}_{f} \subset k[\underline{\boldsymbol{X}}]$ be the ideal generated by \boldsymbol{f}. Then $V(\boldsymbol{f})=V\left(\mathfrak{a}_{f}\right)$.
b) $I(V) \subset k[\underline{\boldsymbol{X}}]$ is an ideal, and further one has $I(V)=\mathcal{N}\left(\mathfrak{a}_{f}\right)=\mathcal{J}\left(\mathfrak{a}_{f}\right)$
c) $V=W$ iff $I(V)=I(W)$ iff $V \cap \bar{k}^{n}=W \cap \bar{k}^{n}$.
4) Let $\operatorname{td}(K \mid k)$ be the transcendence degree of $K \mid k$. Prove/disprove/answer:
a) The map $\operatorname{Hom}_{k}(k[\underline{X}], K) \rightarrow K^{n}, \varphi \mapsto \boldsymbol{a}:=\left(\varphi\left(X_{1}\right), \ldots, \varphi\left(X_{n}\right)\right)$ is a bijection.
b) For every $\varphi \in \operatorname{Hom}_{k}([\underline{\boldsymbol{X}}], K)$ one has $\mathfrak{p}_{\varphi}:=\operatorname{ker}(\varphi) \in \operatorname{Spec}(k[\underline{\boldsymbol{X}}])$.
c) For $\mathfrak{p} \in \operatorname{Spec}(k[\underline{\boldsymbol{X}}]) \exists \varphi \in \operatorname{Hom}_{k}(k[\underline{\boldsymbol{X}}], K)$ with $\mathfrak{p}=\mathfrak{p}_{\varphi}$ iff $\operatorname{coht}(\mathfrak{p}) \leqslant \operatorname{td}(K \mid k)$.

Integral ring extensions/Hilbert Decomposition Theory

Recall the basics: Let G be a profinite group, $N_{i}, i \in I$ denote its open normal subgroups, $p r_{i}: G \rightarrow G_{i}=G / N_{i}, g \mapsto g_{i}$ the canonical projections, hence $G=\lim _{\hbar_{i}} G_{i}$ canonically (How). Let S be a discrete ring on which G acts continuously. Equivalently, the orbits $G x, x \in S$ are finite (wHy). For every N_{i}, set $S_{i}:=S^{N_{i}}:=\left\{x \in S \mid N_{i} x=x\right\}$, and $R:=S^{G}$. Then $S_{j} \supset S_{i}$ iff $N_{j} \subset N_{i}(\mathrm{WHY})$, and consider the restriction maps $\imath_{j i}^{*}: \mathcal{I} d\left(S_{j}\right) \rightarrow \mathcal{I} d\left(S_{i}\right), \mathfrak{a}_{j} \mapsto \mathfrak{a}_{i}:=\mathfrak{a}_{j} \cap S_{i}$.

Recall that $S \mid R$ is integral (WHY), and so are $S\left|S_{i}, S_{j}\right| S_{i}$ and $S_{i} \mid R$ (wHy), and recall the maps $X_{\mathfrak{p}} \rightarrow X_{\mathfrak{p}}^{j} \rightarrow X_{\mathfrak{p}}^{i}$ of sets of primes $X_{\mathfrak{p}} \subset \operatorname{Spec}(S), X_{\mathfrak{p}}^{\bullet} \subset \operatorname{Spec}\left(S_{\bullet}\right)$, above a given $\mathfrak{p} \in \operatorname{Spec}(R)$.
5) In the above notation/context, prove/disprove/answer:
a) G_{i} acts on S_{i} by $g_{i} x:=g x$, where $g \mapsto g_{i}$ under $p r_{i}: G \rightarrow G_{i}$, and $S_{i}^{G_{i}}=R$.
b) $S=\cup_{i} S_{i}$, hence if $\mathfrak{a} \in \mathcal{I} d(S)$ and $\mathfrak{a}_{i}:=\mathfrak{a} \cap S_{i}$, then $\mathfrak{a}=\cup_{i} \mathfrak{a}_{i}$.
c) $\left(\mathcal{I} d\left(S_{i}\right), l_{k j}^{*}\right)_{i, k \geqslant j}$ is a projective system of sets, and $\mathcal{I} d(S)=\lim _{\Sigma_{\imath}} \mathcal{I} d\left(S_{i}\right)$ (How).
d) $\imath_{j i}^{*}$ is compatible with the groups action, i.e., if $g_{j} \mapsto g_{i}$, then $\imath_{j i}^{*}\left(g_{j}\left(\mathfrak{a}_{j}\right)\right)=g_{i}\left(\mathfrak{a}_{i}\right)$.
6) Recalling that $\operatorname{Spec}(\bullet)$ carries the Zariski topology, prove/disprove:
a) $\operatorname{Spec}(S) \rightarrow \operatorname{Spec}\left(S_{i}\right) \rightarrow \operatorname{Spec}(R)$ are onto, continuous, compatible with group actions.
b) $\left(X_{\mathfrak{p}}^{i}, \imath_{k j}^{*}\right)_{i, k \geqslant j}$ is a projective surjective system of finite sets, and $X_{\mathfrak{p}}=\lim _{\Sigma_{i}} X_{\mathfrak{p}}^{i}$.

Conclude: $\quad X_{\mathfrak{p}} \subset \operatorname{Spec}(S)$ is a profinite topological space - as a subspace of $\operatorname{Spec}(S)$.
7) In the above context, for $\mathfrak{q} \mapsto \mathfrak{q}_{i} \mapsto \mathfrak{p}$, prove/disprove:
a) $D_{\mathfrak{q} \mid \mathfrak{p}} \rightarrow D_{\mathfrak{q}_{i} \mid \mathfrak{p}}$ under $G \rightarrow G_{i}$, and $D_{\mathfrak{q}}=\lim _{\Sigma_{i}} D_{\mathfrak{q}_{i} \mid \mathfrak{p}}$.
b) G acts continuously on the profinite space $X_{\mathfrak{p}}$, and $X_{\mathfrak{p}} \cong G / D_{\mathfrak{q} \mid \mathfrak{p}}$ as G-spaces.
8) In the above notation and context, $\left(\mathfrak{q}_{j}\right)_{j}$ and $\left(\mathfrak{p}_{i}\right)_{i}$ be maximal chains in $\operatorname{Spec}(S)$, respectively in $\operatorname{Spec}(R)$. Prove/disprove:
a) Setting $\mathfrak{p}_{j}:=\mathfrak{q}_{j} \cap R$, the chain $\left(\mathfrak{p}_{j}\right)_{j}$ is maximal in $\operatorname{Spec}(R)$.
b) There is a maximal chain $\left(\mathfrak{q}_{i}\right)_{i}$ in $\operatorname{Spec}(S)$ with $\mathfrak{p}_{i}=\mathfrak{q}_{i} \cap R$.
*) Same questions for any subring $S^{\prime} \subset S$ which contains R, i.e., $R \subset S^{\prime} \subset S$.

Fractional Ideals

Let R be a commutative ring R with 1_{R} and $K=R_{\Sigma_{R}^{0}}$ be its total ring of fractions. An R-submodule $M \subset K,+$ is a fractional ideal (of R) if $\exists r \in \Sigma_{R}^{0}$ such that $r M \subset R$. Recall that given fractional ideals M, N of R, one defines $(M: N):=\{x \in K \mid x N \subset M\}$ and $M \cdot N=\langle x y \mid x \in M, y \in N\rangle_{R} \subset K,+$ the corresponding R-submodules. Finally, a fractional ideal M is called invertible, if there is a fractional R-submodule $N \subset K,+$ such that $M \cdot N=R$.
Notation. Let \mathcal{I}_{R}^{\prime} be the set of fractional ideals, $\mathcal{I}_{R} \subset \mathcal{I}_{R}^{\prime}$ be the invertible fractional ideals.
9) In the above notation, Prove/disprove/answer:
a) If $M, N \in I_{R}^{\prime}$, then $M+N, M \cdot N,(M: N)$ are fractional ideals.
b) I_{R}^{\prime} endowed with + and \cdot is a semi-ring.
c) $I_{R} \subset I_{R}^{\prime}$ is the group of invertible elements in the monoid I_{R}^{\prime}, of fractional ideals.
[Hint to a): Use that $x R \in \mathcal{I}_{R}$ for all $x \in K^{\times}(\mathrm{WHY})$ and $N^{\prime} \subset N, M^{\prime} \subset M \Rightarrow\left(M^{\prime}: N\right) \subset(M: N),(M: N) \subset\left(M: N^{\prime}\right)($ WHY $)$, etc.]
10) Let M be a fractional ideal, prove/disprove:
a) If $M \in \mathcal{I}_{R}$, then M is a finite R-module, and $\exists s \in M \cap \Sigma_{R}^{0}$.
b) M is invertible iff $M \cdot(R: M)=R$. Hence $M \in \mathcal{I}_{R}$ iff $(R: M)$ is the inverse of M.
c) TFAE: (i) $M \in I_{R}$; (ii) $M_{\mathfrak{p}} \in I_{R_{\mathfrak{p}}} \forall \mathfrak{p} \in \operatorname{Spec}(R)$; (iii) $M_{\mathfrak{m}} \in I_{R_{\mathfrak{m}}} \forall \mathfrak{m} \in \operatorname{Max}(R)$.

