
Due: April 26, 2024

Math 6030 / Problem Set 11 (two pages)
Miscellaneous
Recall: for a commutative ring R with 1R and a ∈ Id(R), we denote by N (a) ⊂ J (a) the nil
radical, resp. Jacobson radical of a. Equivalently, if pr : R → R = R/a and N (R) ⊂ J (R)
are the nil, resp. Jacobson radical of R, then N (a) = pr−1(N (R)) and J (a) = pr−1(J (R)).
1) Prove that for a commutative ring R with 1R, TFAE:

(i) For every p ∈ Spec(R) one has p = J (p).
(ii) For every a ∈ Id(R) one has N (a) = J (a).
(iii) For every surjective ring morphism R� S one has N (S) = J (S).

Terminology. R satisfying the equivalent conditions (i), (ii), (iii) above is a Jacobson ring.
2) Let I be a nonempty (finite or infinite) set. Prove/disprove/answer:

a) A polynomial ring k[ti]i∈I is a Jacobson ring, provided: (i) I is finite; (ii) I is arbitrary.
b) Same questions for the k-algebras R = k[xi]i∈I in I-generators.
c) Same questions for the polynomial ring Z[ti]i∈I , respectively the Z-algebra Z[xi]i∈I .

Let k be a base field, X = (X1, . . . , Xn) be k-independent variables, and recall that every
ideal a ⊂ k[X] is finitely generated (WHY), hence of the form a = (f1,..., fr) for some fj ∈ k[X].
Given a ∈ Id(k[X]), set R := k[X]/a = k[x1,..., xn] with xi := Xi(mod a). Let K|k a field
extension with K = K algebraically closed, and k|k ↪→ K|k the algebraic closure of k in K.
Given a set f = {fi}i of polynomials fi ∈ k[X], denote V (f) := {a ∈ Kn | fi(a) = 0 ∀ i}
and call V = V (f) ⊂ Kn an k-algebraic (sub)set of Kn. Finally, given a k-algebraic subset
V ⊂ Kn, we denote I(V ) := {f ∈ k[X] | f(a) = 0∀a ∈ V } and call it ideal of V .

3) Let V, W ⊂ Kn be k-algebraic subsets. Prove/disprove/answer:

a) Given f , let af ⊂ k[X] be the ideal generated by f . Then V (f) = V (af ).
b) I(V ) ⊂ k[X] is an ideal, and further one has I(V ) = N (af ) = J (af )
c) V = W iff I(V ) = I(W ) iff V ∩ k

n = W ∩ k
n.

4) Let td(K|k) be the transcendence degree of K|k. Prove/disprove/answer:

a) The map Homk (k[X], K)→ Kn, ϕ 7→ a := (ϕ(X1), . . . , ϕ(Xn)) is a bijection.
b) For every ϕ ∈ Homk ([X], K) one has pϕ := ker(ϕ) ∈ Spec(k[X]).
c) For p ∈ Spec(k[X]) ∃ϕ ∈ Homk(k[X], K) with p = pϕ iff coht(p) 6 td(K|k).

Integral ring extensions/Hilbert Decomposition Theory
Recall the basics: Let G be a profinite group, Ni, i ∈ I denote its open normal subgroups,
pri : G � Gi = G/Ni, g 7→ gi the canonical projections, hence G = lim←−i Gi canonically (HOW).
Let S be a discrete ring on which G acts continuously. Equivalently, the orbits Gx, x ∈ S
are finite (WHY). For every Ni, set Si := SNi := {x ∈ S |Nix = x}, and R := SG. Then Sj ⊃ Si

iff Nj ⊂ Ni (WHY), and consider the restriction maps ı∗ji : Id(Sj)→ Id(Si), aj 7→ ai := aj ∩ Si.
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Recall that S|R is integral (WHY), and so are S|Si, Sj|Si and Si|R (WHY), and recall the maps
Xp � Xj

p � X i
p of sets of primes Xp ⊂ Spec(S), X•p ⊂ Spec(S•), above a given p ∈ Spec(R).

5) In the above notation/context, prove/disprove/answer:
a) Gi acts on Si by gix := gx, where g 7→ gi under pri : G� Gi, and SGi

i = R.
b) S = ∪iSi, hence if a ∈ Id(S) and ai := a ∩ Si, then a = ∪iai.
c) (Id(Si), ı∗kj)i,k>j

is a projective system of sets, and Id(S) = lim←−i Id(Si) (HOW).
d) ı∗ji is compatible with the groups action, i.e., if gj 7→ gi, then ı∗ji(gj(aj)) = gi(ai).

6) Recalling that Spec(•) carries the Zariski topology, prove/disprove:
a) Spec(S)→ Spec(Si)→ Spec(R) are onto, continuous, compatible with group actions.
b) (X i

p, ı∗kj)i,k>j
is a projective surjective system of finite sets, and Xp = lim←−i X i

p.
Conclude: Xp ⊂ Spec(S) is a profinite topological space —as a subspace of Spec(S).

7) In the above context, for q 7→ qi 7→ p, prove/disprove:
a) Dq|p � Dqi|p under G� Gi, and Dq = lim←−i Dqi|p.
b) G acts continuously on the profinite space Xp, and Xp

∼= G/Dq|p as G-spaces.

8) In the above notation and context, (qj)j and (pi)i be maximal chains in Spec(S), respec-
tively in Spec(R). Prove/disprove:
a) Setting pj := qj ∩R, the chain (pj)j is maximal in Spec(R).
b) There is a maximal chain (qi)i in Spec(S) with pi = qi ∩R.
∗) Same questions for any subring S ′ ⊂ S which contains R, i.e., R ⊂ S ′ ⊂ S.

Fractional Ideals
Let R be a commutative ring R with 1R and K = RΣ0

R
be its total ring of fractions. An

R-submodule M ⊂ K, + is a fractional ideal (of R) if ∃ r ∈ Σ0
R such that rM ⊂ R. Recall

that given fractional ideals M, N of R, one defines (M : N) := {x ∈ K |xN ⊂ M} and
M ·N = 〈xy |x∈M, y∈N 〉R ⊂ K,+ the corresponding R-submodules. Finally, a fractional
ideal M is called invertible, if there is a fractional R-submodule N⊂K,+ such that M·N = R.
Notation. Let I ′R be the set of fractional ideals, IR ⊂ I ′R be the invertible fractional ideals.
9) In the above notation, Prove/disprove/answer:

a) If M, N ∈ I ′R, then M + N, M ·N, (M : N) are fractional ideals.
b) I ′R endowed with + and · is a semi-ring.
c) IR ⊂ I ′R is the group of invertible elements in the monoid I ′R, · of fractional ideals.

[Hint to a): Use that xR ∈ IR for all x∈K× (WHY) and N ′⊂N , M ′⊂M ⇒ (M ′ :N)⊂(M :N), (M :N)⊂(M :N ′) (WHY), etc.]

10) Let M be a fractional ideal, prove/disprove:
a) If M ∈ IR, then M is a finite R-module, and ∃ s ∈M ∩ Σ0

R.
b) M is invertible iff M · (R :M) = R. Hence M ∈ IR iff (R :M) is the inverse of M .
c) TFAE: (i) M ∈ IR; (ii) Mp ∈ IRp ∀ p ∈ Spec(R); (iii) Mm ∈ IRm ∀m ∈ Max(R).
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