Math 6030 / Problem Set 11 (two pages)

Miscellaneous

Recall: for a commutative ring R with 1_R and $\mathfrak{a} \in \mathcal{I}d(R)$, we denote by $\mathcal{N}(\mathfrak{a}) \subset \mathcal{J}(\mathfrak{a})$ the nil radical, resp. Jacobson radical of \mathfrak{a} . Equivalently, if $pr: R \to \overline{R} = R/\mathfrak{a}$ and $\mathcal{N}(\overline{R}) \subset \mathcal{J}(\overline{R})$ are the nil, resp. Jacobson radical of \overline{R} , then $\mathcal{N}(\mathfrak{a}) = pr^{-1}(\mathcal{N}(\overline{R}))$ and $\mathcal{J}(\mathfrak{a}) = pr^{-1}(\mathcal{J}(\overline{R}))$.

1) Prove that for a commutative ring R with 1_R , TFAE:

- (i) For every $\mathfrak{p} \in \operatorname{Spec}(R)$ one has $\mathfrak{p} = \mathcal{J}(\mathfrak{p})$.
- (ii) For every $\mathfrak{a} \in \mathcal{I}d(R)$ one has $\mathcal{N}(\mathfrak{a}) = \mathcal{J}(\mathfrak{a})$.
- (iii) For every surjective ring morphism $R \twoheadrightarrow S$ one has $\mathcal{N}(S) = \mathcal{J}(S)$.

Terminology. R satisfying the equivalent conditions (i), (ii), (iii) above is a Jacobson ring.

2) Let I be a nonempty (finite or infinite) set. Prove/disprove/answer:

- a) A polynomial ring $k[t_i]_{i \in I}$ is a Jacobson ring, provided: (i) I is finite; (ii) I is arbitrary.
- b) Same questions for the k-algebras $R = k[x_i]_{i \in I}$ in I-generators.
- c) Same questions for the polynomial ring $\mathbb{Z}[t_i]_{i \in I}$, respectively the \mathbb{Z} -algebra $\mathbb{Z}[x_i]_{i \in I}$.

Let k be a base field, $\underline{X} = (X_1, \ldots, X_n)$ be k-independent variables, and recall that every ideal $\mathfrak{a} \subset k[\underline{X}]$ is finitely generated (WHY), hence of the form $\mathfrak{a} = (f_1, \ldots, f_r)$ for some $f_j \in k[\underline{X}]$. Given $\mathfrak{a} \in \mathcal{I}d(k[\underline{X}])$, set $R := k[\underline{X}]/\mathfrak{a} = k[x_1, \ldots, x_n]$ with $x_i := X_i \pmod{\mathfrak{a}}$. Let K|k a field extension with $K = \overline{K}$ algebraically closed, and $\overline{k}|k \hookrightarrow K|k$ the algebraic closure of k in K. Given a set $f = \{f_i\}_i$ of polynomials $f_i \in k[\underline{X}]$, denote $V(f) := \{a \in K^n | f_i(a) = 0 \forall i\}$ and call $V = V(f) \subset K^n$ an k-algebraic (sub)set of K^n . Finally, given a k-algebraic subset $V \subset K^n$, we denote $I(V) := \{f \in k[\underline{X}] | f(a) = 0 \forall a \in V\}$ and call it ideal of V.

3) Let $V, W \subset K^n$ be k-algebraic subsets. Prove/disprove/answer:

- a) Given f, let $\mathfrak{a}_f \subset k[\underline{X}]$ be the ideal generated by f. Then $V(f) = V(\mathfrak{a}_f)$.
- b) $I(V) \subset k[\underline{X}]$ is an ideal, and further one has $I(V) = \mathcal{N}(\mathfrak{a}_f) = \mathcal{J}(\mathfrak{a}_f)$
- c) V = W iff I(V) = I(W) iff $V \cap \overline{k}^n = W \cap \overline{k}^n$.

4) Let td(K|k) be the transcendence degree of K|k. Prove/disprove/answer:

- a) The map $\operatorname{Hom}_k(k[\underline{X}], K) \to K^n, \ \varphi \mapsto a := (\varphi(X_1), \ldots, \varphi(X_n))$ is a bijection.
- b) For every $\varphi \in \operatorname{Hom}_k([\underline{X}], K)$ one has $\mathfrak{p}_{\varphi} := \ker(\varphi) \in \operatorname{Spec}(k[\underline{X}])$.
- c) For $\mathfrak{p} \in \operatorname{Spec}(k[\underline{X}]) \exists \varphi \in \operatorname{Hom}_k(k[\underline{X}], K)$ with $\mathfrak{p} = \mathfrak{p}_{\varphi}$ iff $\operatorname{coht}(\mathfrak{p}) \leq \operatorname{td}(K|k)$.

Integral ring extensions/Hilbert Decomposition Theory

Recall the basics: Let G be a profinite group, N_i , $i \in I$ denote its open normal subgroups, $pr_i: G \twoheadrightarrow G_i = G/N_i, g \mapsto g_i$ the canonical projections, hence $G = \varprojlim_i G_i$ canonically (How). Let S be a discrete ring on which G acts continuously. Equivalently, the orbits $Gx, x \in S$ are finite (WHY). For every N_i , set $S_i := S^{N_i} := \{x \in S \mid N_i x = x\}$, and $R := S^G$. Then $S_j \supset S_i$ iff $N_j \subset N_i$ (WHY), and consider the restriction maps $i_{ji}^*: \mathcal{I}d(S_j) \to \mathcal{I}d(S_i), \mathfrak{a}_j \mapsto \mathfrak{a}_i := \mathfrak{a}_j \cap S_i$. Recall that S|R is integral (WHY), and so are $S|S_i, S_j|S_i$ and $S_i|R$ (WHY), and recall the maps $X_{\mathfrak{p}} \twoheadrightarrow X_{\mathfrak{p}}^j \twoheadrightarrow X_{\mathfrak{p}}^j$ of sets of primes $X_{\mathfrak{p}} \subset \operatorname{Spec}(S), X_{\mathfrak{p}}^{\mathfrak{p}} \subset \operatorname{Spec}(S_{\bullet})$, above a given $\mathfrak{p} \in \operatorname{Spec}(R)$.

5) In the above notation/context, prove/disprove/answer:

- a) G_i acts on S_i by $g_i x := gx$, where $g \mapsto g_i$ under $pr_i : G \twoheadrightarrow G_i$, and $S_i^{G_i} = R$.
- b) $S = \bigcup_i S_i$, hence if $\mathfrak{a} \in \mathcal{I}d(S)$ and $\mathfrak{a}_i := \mathfrak{a} \cap S_i$, then $\mathfrak{a} = \bigcup_i \mathfrak{a}_i$.
- c) $(\mathcal{I}d(S_i), i_{kj}^*)_{i,k \ge j}$ is a projective system of sets, and $\mathcal{I}d(S) = \lim_{i \ge j} \mathcal{I}d(S_i)$ (How).
- d) \imath_{ji}^* is compatible with the groups action, i.e., if $g_j \mapsto g_i$, then $\imath_{ji}^*(g_j(\mathfrak{a}_j)) = g_i(\mathfrak{a}_i)$.

6) Recalling that Spec(•) carries the Zariski topology, prove/disprove:

- a) $\operatorname{Spec}(S) \to \operatorname{Spec}(S_i) \to \operatorname{Spec}(R)$ are onto, continuous, compatible with group actions.
- b) $(X^i_{\mathfrak{p}}, \imath^*_{kj})_{i,k \ge j}$ is a projective surjective system of finite sets, and $X_{\mathfrak{p}} = \varprojlim X^i_{\mathfrak{p}}$.

Conclude: $X_{\mathfrak{p}} \subset \operatorname{Spec}(S)$ is a *profinite topological space*—as a subspace of $\operatorname{Spec}(S)$.

- 7) In the above context, for $\mathfrak{q} \mapsto \mathfrak{q}_i \mapsto \mathfrak{p}$, prove/disprove:
 - a) $D_{\mathfrak{q}|\mathfrak{p}} \twoheadrightarrow D_{\mathfrak{q}_i|\mathfrak{p}}$ under $G \twoheadrightarrow G_i$, and $D_{\mathfrak{q}} = \lim_{i \to \infty} D_{\mathfrak{q}_i|\mathfrak{p}}$.
 - b) G acts continuously on the profinite space $X_{\mathfrak{p}}$, and $X_{\mathfrak{p}} \cong G/D_{\mathfrak{q}|\mathfrak{p}}$ as G-spaces.
- 8) In the above notation and context, $(\mathfrak{q}_j)_j$ and $(\mathfrak{p}_i)_i$ be maximal chains in Spec(S), respectively in Spec(R). Prove/disprove:
 - a) Setting $\mathfrak{p}_i := \mathfrak{q}_i \cap R$, the chain $(\mathfrak{p}_i)_j$ is maximal in Spec(R).
 - b) There is a maximal chain $(\mathfrak{q}_i)_i$ in $\operatorname{Spec}(S)$ with $\mathfrak{p}_i = \mathfrak{q}_i \cap R$.
 - *) Same questions for any subring $S' \subset S$ which contains R, i.e., $R \subset S' \subset S$.

Fractional Ideals

Let R be a commutative ring R with 1_R and $K = R_{\Sigma_R^0}$ be its total ring of fractions. An R-submodule $M \subset K$, + is a fractional ideal (of R) if $\exists r \in \Sigma_R^0$ such that $rM \subset R$. Recall that given fractional ideals M, N of R, one defines $(M : N) := \{x \in K | xN \subset M\}$ and $M \cdot N = \langle xy | x \in M, y \in N \rangle_R \subset K$, + the corresponding R-submodules. Finally, a fractional ideal M is called invertible, if there is a fractional R-submodule $N \subset K$, + such that $M \cdot N = R$. Notation. Let \mathcal{I}'_R be the set of fractional ideals, $\mathcal{I}_R \subset \mathcal{I}'_R$ be the invertible fractional ideals.

9) In the above notation, Prove/disprove/answer:

- a) If $M, N \in I'_R$, then $M + N, M \cdot N, (M:N)$ are fractional ideals.
- b) I'_R endowed with + and \cdot is a semi-ring.
- c) $I_R \subset I'_R$ is the group of invertible elements in the monoid I'_R , \cdot of fractional ideals.

 $[\textbf{Hint to a}): \text{ Use that } xR \in \mathcal{I}_R \text{ for all } x \in K^{\times} (\textbf{WHY}) \text{ and } N' \subset N, \ M' \subset M \Rightarrow (M':N) \subset (M:N), (M:N) \subset (M:N') (\textbf{WHY}), \text{ etc.}]$

10) Let M be a fractional ideal, prove/disprove:

- a) If $M \in \mathcal{I}_R$, then M is a finite R-module, and $\exists s \in M \cap \Sigma_R^0$.
- b) M is invertible iff $M \cdot (R:M) = R$. Hence $M \in \mathcal{I}_R$ iff (R:M) is the inverse of M.
- c) TFAE: (i) $M \in I_R$; (ii) $M_{\mathfrak{p}} \in I_{R_{\mathfrak{p}}} \forall \mathfrak{p} \in \operatorname{Spec}(R)$; (iii) $M_{\mathfrak{m}} \in I_{R_{\mathfrak{m}}} \forall \mathfrak{m} \in \operatorname{Max}(R)$.