Math 6030 / Problem Set 10 (two pages)

Miscellaneous

Let R be a comm. ring, $f_{1}, \ldots, f_{n} \in R$ be s.t. $\left(f_{1}, \ldots, f_{n}\right)=R$ and $R_{f_{i}}=R\left[\frac{1}{f}\right]=R_{\Sigma_{f_{i}}}$ be the ring of fraction of R w.r.t. $\Sigma_{f_{i}}=\left\{f^{n} \mid n \in \mathbb{N}\right\}$. Equivalently, the Zariski open subsets $D_{f_{i}}:=\left\{\mathfrak{p} \in \operatorname{Spec}(R) \mid f_{i} \notin \mathfrak{p}\right\} \subset \operatorname{Spec}(R)$ constitute on open covering of $\operatorname{Spec}(R)$ (wHY). Note also setting $f_{j i}:=f_{j} f_{i}$, one has $D_{f_{j i}}=D_{f_{i}} \cap D_{f_{j}}$ for all i, j (wHY). For an R-module M, let $M_{f_{i}}:=M \otimes_{R} R_{f_{i}}$ be the corresponding module of fractions.

1) In the context above, prove the following useful/famous:

Globalization Lemma: Let $m_{i} \in M_{f_{i}}$ be such that $\forall j, k$ and all $\mathfrak{p} \in D_{f_{j k}}$ one has: $\frac{m_{j}}{1}=\frac{m_{k}}{1}$ in $M_{\mathfrak{p}}$. Then there exists $m \in M$ such that $m_{i}=\frac{m}{1}$ inside $M_{f_{i}}$.
Hint: Prove the following:

- There exist properly chosen powers $f_{i}^{\prime}:=f_{i}^{m_{i}}$, and elements $m_{i}^{\prime} \in M$ such that $m_{i}=\frac{m_{i}^{\prime}}{f_{i}^{\prime}}$.
- Show that w.l.o.g., we can suppose replace f_{i} by f_{i}^{\prime} for all i; thus have: $\frac{m_{j}^{\prime}}{f_{i}}=\frac{m_{k}^{\prime}}{f_{k}}$ for all j, k.
- From the equality $\frac{m_{j}^{\prime}}{f_{i}}=\frac{m_{k}^{\prime}}{f_{k}}$, deduce that $\exists n$ (sufficiently large) such that $\left(f_{j} f_{k}\right)^{n} f_{k} m_{j}^{\prime}=\left(f_{j} f_{k}\right)^{n} f_{j} m_{k}^{\prime}$ for all j, k.
- Replace m_{i}^{\prime} by $m^{\prime \prime}:=f_{i}^{n} m_{i}^{\prime}$ for all i, and conclude that $m_{i}=\frac{m_{i}^{\prime}}{f_{i}^{\prime}}=\frac{m_{i}^{\prime \prime}}{f_{i}^{n}}$.
- Show that setting $g_{i}=f_{i}^{n+1}$ we have: $\left(D_{g_{i}}\right)_{i}$ is an open covering of $\operatorname{Spec}(A)$, and $g_{k} m_{j}^{\prime \prime}=g_{j} m_{k}^{\prime \prime}$ for all j, k.
- Finally, $\exists a_{i} \in A$ such that $\sum_{i} a_{i} g_{i}=1$. Show that $m:=\sum_{i} a_{i} m_{i}^{\prime \prime}$ does the job.

2) Let R be a commutative ring with 1 , and view $R[t]$ as a ring extension of R.

For an ideal \mathfrak{a} of R, let $\mathfrak{a}[t]$ be the set of all the polynomials with coefficients from \mathfrak{a}.
a) Show that $\mathfrak{a}[t]$ is an ideal of $R[t]$, and that $\mathfrak{a}[t] \in \operatorname{Spec}(R[t])$ iff $\mathfrak{a} \in \operatorname{Spec}(R)$.
b) Prove/disprove: $\mathcal{N}(R[t])=(\mathcal{N}(R))[t]$, where $\mathcal{N}(\cdot)$ denogtes the nil-radical.
c) Show that Krull.dim $(R[t]) \geqslant \operatorname{Krull} \cdot \operatorname{dim}(R)+1$.

Prove/disprove: The above inequality is actually an equality.
d) The same question form c) in the case $R=\mathbb{Z}$, or more general, R Noetherian.

Integral ring extensions

Recall the notations: $S \mid R$ for a ring extension, $\widetilde{R} \mid R$ is the integral closure of R in S, and $\tilde{\mathfrak{a}} \subset S$ be the set of all $x \in S$ which are integral over $\mathfrak{a} \in \mathcal{I} d(R)$. Let $\mathfrak{b} \in \mathcal{I} d(S)$ be proper ideals and for multiplicative systems $\Sigma \subset R$ consider the resulting $R_{\Sigma} \rightarrow \widetilde{R}_{\Sigma} \rightarrow S_{\Sigma}$.
3) Prove/disprove/answer:
a) $\tilde{\mathfrak{a}}$ equals the nil-radical $\tilde{\mathfrak{a}}=\mathcal{N}(\mathfrak{a} \widetilde{R})$ of $\mathfrak{a} \widetilde{R}$ in \widetilde{R}.
b) Set $\mathfrak{a}:=\mathfrak{b} \cap R, \tilde{\mathfrak{a}}:=\mathfrak{b} \cap \widetilde{R}$. Then $\widetilde{R} / \tilde{\mathfrak{a}}$ is integral over R / \mathfrak{a}. Does it hold $\widetilde{R / \mathfrak{a}}=\widetilde{R} / \tilde{\mathfrak{a}}$?
c) (i) $R_{\Sigma} \rightarrow \widetilde{R}_{\Sigma} \rightarrow S_{\Sigma}$ are ring extensions; (ii) \widetilde{R}_{Σ} is integral over R_{Σ}; (iii) $\widetilde{R_{\Sigma}}=\widetilde{R}_{\Sigma}$.
4) Give an example of an integral ring extension $S \mid R$ for which Going down does not hold, i.e., there are prime ideals $\mathfrak{p}_{1} \subset \mathfrak{p}_{2}$ in $\operatorname{Spec}(R)$ and $\mathfrak{q}_{2} \in \operatorname{Spec}(S)$ s.t. $\mathfrak{p}_{2}=\mathfrak{q}_{2} \cap R$, bur there is no prime ideal $\mathfrak{q}_{1} \subset \mathfrak{q}_{2}$ s.t. $\mathfrak{p}_{1}=\mathfrak{q}_{2} \cap R$.
5 A quadratic number field is any field extension $K \mid \mathbb{Q}$ s.t. $[K: \mathbb{Q}]=2$. Recall that the integral closure \mathcal{O}_{K} of \mathbb{Z} in K is the ring of integers of K. Show the following:
a) For $K \mid \mathbb{Q}$ quadratic there a unique square free $\exists d \in \mathbb{Z}, d \neq 1$ such that $K=\mathbb{Q}[\sqrt{d}]$.
b) Compute the ring of integers \mathcal{O}_{K} of $K=\mathbb{Q}[\sqrt{d}]$ for $d=-1, \pm 2, \pm 3$.
c) Do you recognize the general rule which gives \mathcal{O}_{K} ?
6) Let $k=\bar{k}$ be algebraically closed field, $R=k[t]$ be the polynomial ring, $S:=k\left[t_{1}, t_{2}\right] / \mathfrak{a}$, where $\mathfrak{a}=\left(t_{2}^{2}-t_{1}^{3}+t_{1}^{2}+6\right)$. Hence setting $x_{i}:=t_{i}(\bmod \mathfrak{a}), i=1,2$, have $S=k\left[x_{1}, x_{2}\right]$ (why).
a) Show that S is an integral domain.
b) Compute the integral closure \widetilde{S} of S in $L=\operatorname{Quot}(S)$.
c) For $\varphi: R \rightarrow S, t \mapsto x_{1}$, prove/disprove: S becomes an integral ring extension via φ.
d) Compute the fibers of $\varphi^{*}: \operatorname{Spec}(S) \rightarrow \operatorname{Spec}(S)$ and of $r^{*}: \operatorname{Spec}(\widetilde{S}) \rightarrow \operatorname{Spec}(S)$, where $\imath: S \rightarrow \widetilde{S}$ is the inclusion.
7) The same questions as above in the case $\mathfrak{a}=\left(t_{2}^{2}-t_{1}^{3}\right)$.

- Recall the context of the Key Lemma concerning the special change of variables as follows: k is an arbitrary field, $\underline{\boldsymbol{X}}=\left(X_{1}, \ldots, X\right)$ are k-independent variables, $\underline{\boldsymbol{u}}=\left(i_{1}, \ldots, i_{n}\right) \in \mathbb{N}^{n}$ are multi-indices, and $\|\underline{\boldsymbol{\imath}}\|=i_{1}+\cdots+i_{n}$ is the norm of $\underline{\boldsymbol{\imath}}$. Further, $p(\underline{\boldsymbol{X}})=\sum_{\underline{\boldsymbol{\imath}}} a_{\underline{\boldsymbol{\imath}}} \underline{\underline{\boldsymbol{x}}} \underline{\underline{\boldsymbol{\imath}}} \in k[\underline{\boldsymbol{X}}]$ is a non-zero polynomial of total degree $d \geqslant 0$. Hence $p(\underline{\boldsymbol{X}})=\sum_{m=0}^{d} p_{(m)}(\underline{\boldsymbol{X}})$, where $p_{(m)}(\underline{\boldsymbol{X}})=\sum_{\|\underline{\boldsymbol{\imath}}\|=m} a_{\underline{\underline{\imath}}} \underline{\boldsymbol{X}}^{\underline{\boldsymbol{\imath}}}$ is the homogeneous part of degree m of $p(\underline{\boldsymbol{X}})$.
Finally for $d>$, consider the change of variables:
(I) $X_{n}=a_{n} X_{n}^{\prime}, X_{i}=X_{i}^{\prime}+a_{i} X_{n}^{\prime}$ with $a_{i} \in k, 1 \leqslant i \leqslant n$.
(II) $X_{n}=X_{n}^{\prime m_{n}}, X_{i}=X_{i}^{\prime}+X_{n}^{\prime m_{i}}$ with $m_{i} \in \mathbb{N}, 1 \leqslant i \leqslant n$.

8) For $p(\underline{\boldsymbol{X}})=\sum_{\underline{\underline{\imath}}} a_{\underline{\underline{2}}} \underline{\boldsymbol{X}}^{\underline{\imath}}$ non-constant of degree d, set $q\left(\underline{\boldsymbol{X}}^{\prime}\right):=p(\underline{\boldsymbol{X}})$. Try to prove:
a) If $X \subset k$ is an infinite subset, there are $a_{1}, \ldots, a_{n} \in X, a \in k^{\times}$such that

$$
q\left(\underline{\boldsymbol{X}}^{\prime}\right)=a X_{n}^{\prime d}+\left(\text { terms in which } X_{n}^{\prime} \text { has exponent }<d\right)
$$

b) If $X \subset \mathbb{N}$ is an infinite subset, there are $m_{1} \ll \cdots \ll m_{n}$ in $X, a_{\underline{2}} \neq 0$ such that

$$
q\left(\underline{\boldsymbol{X}}^{\prime}\right)=a_{\underline{2}} X_{n}^{\prime n_{0}}+\left(\text { terms in which } X_{n}^{\prime} \text { has exponent }<n_{0}\right)
$$

[Hint: To a): First, $q\left(\underline{\boldsymbol{X}}^{\prime}\right)$ has total degree d (WHY), and second, the coefficient of $X^{\prime d}$ is $p\left(a_{1}, \ldots, a_{n}\right)$ (WHY), etc.
To b): Let \prec be the lexicographic ordering of \mathbb{N}^{d} (what is that?!). Let $I \subset \mathbb{N}^{n}$ be the set of all $\underline{\boldsymbol{\imath}}$ s.t. $a_{\underline{\imath}} \neq 0$, and $\underline{\boldsymbol{v}}_{0}=\max (I)$. Next show (by induction of n) that for properly chosen $m_{1} \ll \cdots \ll m_{n}$ in X, the map $\varphi:[0, \ldots, d]^{n} \rightarrow \mathbb{N}, \underline{\boldsymbol{\imath}} \mapsto \sum i_{j} m_{j}$ preserves the total ordering. Hence $n_{0}:=\varphi\left(\underline{\boldsymbol{v}}_{0}\right)=\max (\varphi(I))$ is the maximal degree of X_{n}^{\prime} in $q\left(\underline{\boldsymbol{X}}^{\prime}\right)$, and it is attended only at $\underline{\boldsymbol{\imath}}=\underline{\boldsymbol{\imath}}_{0}(\mathrm{WHY})$, etc. $\left.\ldots\right]$

