Math 6030 / Problem Set 10 (two pages)

Miscellaneous

Let R be a comm. ring, $f_1, \ldots, f_n \in R$ be s.t. $(f_1, \ldots, f_n) = R$ and $R_{f_i} = R[\frac{1}{f}] = R_{\Sigma_{f_i}}$ be the ring of fraction of R w.r.t. $\Sigma_{f_i} = \{f^n \mid n \in \mathbb{N}\}$. Equivalently, the Zariski open subsets $D_{f_i} := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid f_i \notin \mathfrak{p} \} \subset \operatorname{Spec}(R)$ constitute on open covering of $\operatorname{Spec}(R)$ (WHY). Note also setting $f_{ji} := f_j f_i$, one has $D_{f_{ji}} = D_{f_i} \cap D_{f_j}$ for all i, j (WHY). For an R-module M, let $M_{f_i} := M \otimes_R R_{f_i}$ be the corresponding module of fractions.

1) In the context above, prove the following useful/famous:

Globalization Lemma: Let $m_i \in M_{f_i}$ be such that $\forall j, k$ and all $\mathfrak{p} \in D_{f_{jk}}$ one has: $\frac{m_j}{1} = \frac{m_k}{1}$ in $M_{\mathfrak{p}}$. Then there exists $m \in M$ such that $m_i = \frac{m}{1}$ inside M_{f_i} .

Hint: Prove the following:

- There exist properly chosen powers $f'_i := f^{m_i}_i$, and elements $m'_i \in M$ such that $m_i = \frac{m'_i}{f'_i}$. Show that w.l.o.g., we can suppose replace f_i by f'_i for all i; thus have: $\frac{m'_j}{f_i} = \frac{m'_k}{f_k}$ for all j, k. From the equality $\frac{m'_j}{f_i} = \frac{m'_k}{f_k}$, deduce that $\exists n$ (sufficiently large) such that $(f_j f_k)^n f_k m'_j = (f_j f_k)^n f_j m'_k$ for all j, k.
- Replace m'_i by $m'' := f_i^n m'_i$ for all i, and conclude that $m_i = \frac{m'_i}{f'_i} = \frac{m''_i}{f_i^n}$.
- Show that setting $g_i = f_i^{n+1}$ we have: $(D_{g_i})_i$ is an open covering of Spec(A), and $g_k m''_j = g_j m''_k$ for all j, k.
- Finally, $\exists a_i \in A$ such that $\sum_i a_i g_i = 1$. Show that $m := \sum_i a_i m''_i$ does the job.
- 2) Let R be a commutative ring with 1, and view R[t] as a ring extension of R. For an ideal \mathfrak{a} of R, let $\mathfrak{a}[t]$ be the set of all the polynomials with coefficients from \mathfrak{a} .
 - a) Show that $\mathfrak{a}[t]$ is an ideal of R[t], and that $\mathfrak{a}[t] \in \operatorname{Spec}(R[t])$ iff $\mathfrak{a} \in \operatorname{Spec}(R)$.
 - b) Prove/disprove: $\mathcal{N}(R[t]) = (\mathcal{N}(R))[t]$, where $\mathcal{N}(\cdot)$ denotes the nil-radical.
 - c) Show that $\operatorname{Krull.dim}(R[t]) \ge \operatorname{Krull.dim}(R) + 1$.

Prove/disprove: The above inequality is actually an equality.

d) The same question form c) in the case $R = \mathbb{Z}$, or more general, R Noetherian.

Integral ring extensions

Recall the notations: S|R for a ring extension, $\tilde{R}|R$ is the integral closure of R in S, and $\widetilde{\mathfrak{a}} \subset S$ be the set of all $x \in S$ which are integral over $\mathfrak{a} \in \mathcal{I}d(R)$. Let $\mathfrak{b} \in \mathcal{I}d(S)$ be proper ideals and for multiplicative systems $\Sigma \subset R$ consider the resulting $R_{\Sigma} \to R_{\Sigma} \to S_{\Sigma}$.

3) Prove/disprove/answer:

- a) $\tilde{\mathfrak{a}}$ equals the nil-radical $\tilde{\mathfrak{a}} = \mathcal{N}(\mathfrak{a}\tilde{R})$ of $\mathfrak{a}\tilde{R}$ in \tilde{R} .
- b) Set $\mathfrak{a} := \mathfrak{b} \cap R$, $\tilde{\mathfrak{a}} := \mathfrak{b} \cap \tilde{R}$. Then $\tilde{R}/\tilde{\mathfrak{a}}$ is integral over R/\mathfrak{a} . Does it hold $\tilde{R/\mathfrak{a}} = \tilde{R}/\tilde{\mathfrak{a}}$?
- c) (i) $R_{\Sigma} \to \widetilde{R}_{\Sigma} \to S_{\Sigma}$ are ring extensions; (ii) \widetilde{R}_{Σ} is integral over R_{Σ} ; (iii) $\widetilde{R}_{\Sigma} = \widetilde{R}_{\Sigma}$.

4) Give an example of an integral ring extension S|R for which Going down does not hold, i.e., there are prime ideals $\mathfrak{p}_1 \subset \mathfrak{p}_2$ in $\operatorname{Spec}(R)$ and $\mathfrak{q}_2 \in \operatorname{Spec}(S)$ s.t. $\mathfrak{p}_2 = \mathfrak{q}_2 \cap R$, bur there is **no** prime ideal $\mathfrak{q}_1 \subset \mathfrak{q}_2$ s.t. $\mathfrak{p}_1 = \mathfrak{q}_2 \cap R$.

5 A quadratic number field is any field extension $K|\mathbb{Q}$ s.t. $[K:\mathbb{Q}] = 2$. Recall that the integral closure \mathcal{O}_K of \mathbb{Z} in K is the ring of integers of K. Show the following:

a) For $K|\mathbb{Q}$ quadratic there a unique square free $\exists d \in \mathbb{Z}, d \neq 1$ such that $K = \mathbb{Q}[\sqrt{d}]$.

- b) Compute the ring of integers \mathcal{O}_K of $K = \mathbb{Q}[\sqrt{d}]$ for $d = -1, \pm 2, \pm 3$.
- c) Do you recognize the general rule which gives \mathcal{O}_K ?

6) Let $k = \overline{k}$ be algebraically closed field, R = k[t] be the polynomial ring, $S := k[t_1, t_2]/\mathfrak{a}$, where $\mathfrak{a} = (t_2^2 - t_1^3 + t_1^2 + 6)$. Hence setting $x_i := t_i \pmod{\mathfrak{a}}$, i = 1, 2, have $S = k[x_1, x_2]$ (WHY).

- a) Show that S is an integral domain.
- b) Compute the integral closure \hat{S} of S in L = Quot(S).
- c) For $\varphi: R \to S, t \mapsto x_1$, prove/disprove: S becomes an integral ring extension via φ .
- d) Compute the fibers of $\varphi^* : \operatorname{Spec}(S) \to \operatorname{Spec}(S)$ and of $i^* : \operatorname{Spec}(\widetilde{S}) \to \operatorname{Spec}(S)$, where $i: S \to \widetilde{S}$ is the inclusion.

7) The same questions as above in the case $\mathfrak{a} = (t_2^2 - t_1^3)$.

• Recall the context of the **Key Lemma** concerning the special change of variables as follows: k is an arbitrary field, $\underline{X} = (X_1, \ldots, X)$ are k-independent variables, $\underline{i} = (i_1, \ldots, i_n) \in \mathbb{N}^n$ are multi-indices, and $\|\underline{i}\| = i_1 + \cdots + i_n$ is the norm of \underline{i} . Further, $p(\underline{X}) = \sum_{\underline{i}} a_{\underline{i}} \underline{X}^{\underline{i}} \in k[\underline{X}]$ is a non-zero polynomial of total degree $d \ge 0$. Hence $p(\underline{X}) = \sum_{m=0}^{d} p_{(m)}(\underline{X})$, where $p_{(m)}(\underline{X}) = \sum_{\underline{\|i\|}=m} a_{\underline{i}} \underline{X}^{\underline{i}}$ is the homogeneous part of degree m of $p(\underline{X})$. Finally for d >, consider the change of variables:

- (I) $X_n = a_n X'_n$, $X_i = X'_i + a_i X'_n$ with $a_i \in k, 1 \leq i \leq n$.
- (II) $X_n = X_n^{m_n}, X_i = X_i' + X_n^{m_i}$ with $m_i \in \mathbb{N}, 1 \leq i \leq n$.
- 8) For $p(\underline{X}) = \sum_{i} a_{\underline{i}} \underline{X}^{\underline{i}}$ non-constant of degree d, set $q(\underline{X}') := p(\underline{X})$. Try to prove:
 - a) If $X \subset k$ is an infinite subset, there are $a_1, \ldots, a_n \in X$, $a \in k^{\times}$ such that

 $q(\underline{X}') = aX'^{d}_{n} + (\text{terms in which } X'_{n} \text{ has exponent } < d)$

b) If $X \subset \mathbb{N}$ is an infinite subset, there are $m_1 \ll \cdots \ll m_n$ in $X, a_{\underline{i}} \neq 0$ such that

 $q(\underline{X}') = a_{\underline{\imath}} X_n^{\prime n_0} + (\text{terms in which } X_n' \text{ has exponent } < n_0)$

[Hint: To a): First, $q(\underline{X}')$ has total degree d (WHY), and second, the coefficient of X'^d is $p(a_1, ..., a_n)$ (WHY), etc.

To b): Let \prec be the lexicographic ordering of \mathbb{N}^d (what is that?!). Let $I \subset \mathbb{N}^n$ be the set of all $\underline{\imath}$ s.t. $a_{\underline{\imath}} \neq 0$, and $\underline{\imath}_0 = \max(I)$. Next show (by induction of n) that for properly chosen $m_1 \ll \cdots \ll m_n$ in X, the map $\varphi : [0, \ldots, d]^n \to \mathbb{N}, \underline{\imath} \mapsto \sum i_j m_j$ preserves the total ordering. Hence $n_0 := \varphi(\underline{\imath}_0) = \max(\varphi(I))$ is the maximal degree of X'_n in $q(\underline{X}')$, and it is attended only at $\underline{\imath} = \underline{\imath}_0$ (WHY), etc....]