Math 6030 / Problem Set 1 (two pages)

More about Trace/Norm/Discriminant. Recall that for a finite field extension L|K one has the (i) relative trace $\operatorname{Tr}_{L|K} : L \to K$, which is a K-linear map, and (ii) the relative norm $\operatorname{N}_{L|K} : L \to K$, which is multiplicative. See HW 12 from Math 6020, Problems 7, 8, 9.

The map $T_{L|K} : L \times L \to K$, $(x, y) \mapsto \operatorname{Tr}_{L|K}(xy)$ is symmetric K-bilinear (WHY). Given a K-basis $\mathcal{A} = (\alpha_i)_{i \leq n}$ of L|K and $B_{\mathcal{A}} = \operatorname{Tr}_{L|K}(\mathcal{A}^{\tau} \cdot \mathcal{A}) := (\operatorname{Tr}_{L|K}(\alpha_i \alpha_j))_{i,i}$, define/consider:

- $\partial_{\mathcal{A}} := \det(B_{\mathcal{A}})$, called the discriminant of the basis \mathcal{A} w.r.t. $T_{L|K}$

- The dual basis $\mathcal{A}^* = (\alpha_i^*)_{i \leq n}$ of \mathcal{A} w.r.t. $T_{L|K}$ (if it exists), i.e., $T_{L|K}(\alpha_i, \alpha_j^*) = \delta_{ij}$.
- 1) In the above notation, let $\mathcal{B} = (\beta_1, \ldots, \beta_n)$ be further K-basis of L|K. Prove:
 - a) There is $S \in \operatorname{GL}_n(K)$ with $\mathcal{B} = \mathcal{A}S$.
 - b) $\partial_{\mathcal{B}} = \det(S)^2 \partial_{\mathcal{A}}$, concluding the following:

 $\partial_{L|K} := \partial_{\mathcal{A}} \in K^{\times}/K^{\times 2}$ is independent of \mathcal{A} modulo the group of squares $K^{\times 2} \leq K^{\times}$.

2) Let L = K[x] be separable, $p(t) = \operatorname{Mipo}_K(x)$, and $\mathcal{A} = (x^i)_{0 \leq i < n}$. Prove:

a) \mathcal{A} is a K-basis of L|K and $\partial_{\mathcal{A}} = \prod_{i < j} (x_i - x_j)^2 = (-1)^{\frac{n(n-1)}{2}} N_{L|K}(p'(x)).$

b) Euler's Theorem. Set
$$p(t) = (t - x) \sum_{i < n} b_i t^i \in L[t]$$
. Then $\mathcal{A}^* = (b_i / p'(x))_{0 \leq i < n}$.

[Hints. To a): Set $A_x := (x_j^i)_{i,j} \in \overline{K}^{n \times n}$. Then $\partial_{\mathcal{A}} \stackrel{\text{why}}{=} \det(A_x A_x^{\tau}) = \det(A_x)^2$ (WHY), etc. To b): Last resort Google it !...] 3) In the above notation, prove that the following are equivalent:

- (i) L|K is separable.
- (ii) $\operatorname{Tr}_{L|K}$ is non-trivial, i.e., $\exists x \in L$ s.t. $\operatorname{Tr}_{L|K}(x) \neq 0$.
- (iii) $T_{L|K}$ is non-degenerate, i.e., $\forall x \in L \exists y \in L \text{ s.t. } T_{L|K}(x,y) \neq 0.$
- (iv) $\mathcal{A} = (\alpha_1, \dots, \alpha_n)$ has a dual basis $\mathcal{A}^* = (\alpha_1^*, \dots, \alpha_n^*)$.
- (v) $\partial_{\mathcal{A}} \neq 0$.

Infinite Galois Theory. Make sure that you checked all the details from the Fundamental Thm of Galois Theory: For a Galois extension L|K, let $L_{\alpha}|K$, $\alpha \in I$ be the set of finite Galois subextensions, and $p_{\alpha} : G := G(L|K) \to G(L_{\alpha}|K) =: G_{\alpha}, \sigma \mapsto \sigma_{\alpha} = \sigma|_{L_{\alpha}}$. Then p_{α} is surjective (WHY), and setting $\mathcal{F} := \mathcal{F}(L|K), \ \mathcal{F}_{\alpha} := \mathcal{F}(L_{\alpha}|K), \ \mathcal{G} := \{H \in \mathrm{Sg}(G) \mid H \text{ closed}\}, \ \mathcal{G}_{\alpha} = \mathcal{G}(L_{\alpha}|K)$, one has surjective projective systems (s.p.s.) and canonical maps as follows: $- (G_{\alpha}, p_{\gamma\beta})_{\alpha,\gamma \geq \beta}$ is a s.p.s. and $p : G \to \widehat{G} := \varprojlim_{\alpha} G_{\alpha}, \ \sigma \mapsto (\sigma_{\alpha})_{\alpha}$ is an isomorphism.

- $(\mathcal{F}_{\alpha}, \varphi_{\gamma\beta})_{\alpha,\gamma \geq \beta}$ is a s.p.s. and $\varphi : \mathcal{F} \to \widehat{\mathcal{F}} := \lim_{\leftarrow \alpha} \mathcal{F}_{\alpha}, L' \mapsto (L'_{\alpha})_{\alpha}, L'_{\alpha} := \cap L_{\alpha}$ is bijective.

- $(\mathcal{G}_{\alpha}, \phi_{\gamma\beta})_{\alpha,\gamma \geq \beta}$ is a s.p.s. and $\phi: \mathcal{G} \to \widehat{\mathcal{G}} := \lim_{\leftarrow} \mathcal{G}_{\alpha}, H \mapsto (H_{\alpha})_{\alpha}, H_{\alpha} := H|_{L_{\alpha}}$ is bijective.
- The isomorphism of s.p.s. $(\operatorname{gal}_{\alpha}: \mathcal{F}_{\alpha} \to \mathcal{G}_{\alpha})_{\alpha}$ defines an isomorphism gal $: \mathcal{F} \to \mathcal{G}$ (How). - etc.

Cyclotomic extensions/character. Let K be a field, m > 0 with $char(K) \nmid m, \overline{K} | K$ a fixed algebraic closure, and $K_m := K(\mu_m) \subset \overline{K}$ be the splitting field of the m^{th} cyclotomic polynomial Φ_m . Define the cyclotomic character $\chi_{K,m}$ of $K_m | K$ as follows: Let $\zeta \in \mu_m$

be a fixed primitive m^{th} root of unity. Then $\sigma(\zeta)$ is a primitive root of unity for each $\sigma \in G(K_m|K)$ (WHY), hence there is $\overline{n}_{\sigma} \in (\mathbb{Z}/m\mathbb{Z})^{\times}$ s.t. $\sigma(\zeta) = \zeta^{n_{\sigma}}$ for any $\mathbb{Z} \ni n_{\sigma} \mapsto \overline{n}_{\sigma}$ (WHY). 4) In the above notation prove the following:

- a) $\chi_m : G(K_m | K) \to (\mathbb{Z}/m\mathbb{Z})^{\times}, \ \sigma \mapsto \overline{n}_{\sigma}$ is injective and independent of ζ .
- b) If $K = \mathbb{Q}$, then $\chi_m : G(\mathbb{Q}_m | \mathbb{Q}) \to (\mathbb{Z}/m\mathbb{Z})^{\times}$ is an isomorphism.
- c) If $K = \mathbb{F}_p$, then $\operatorname{Im}(\chi_m)$ is the cyclic group generated by $\overline{p} \in (\mathbb{Z}/m\mathbb{Z})^{\times}$.

• Recall: (i) The ring of *p*-adic integers $\mathbb{Z}_p = \varprojlim_e \mathbb{Z}/p^e \mathbb{Z}$ is a profinite ring having group of units $\mathbb{Z}_p^{\times} = \varprojlim_e (\mathbb{Z}/p^e \mathbb{Z})^{\times}$ (WHY). (ii) The adic completion $\widehat{\mathbb{Z}} := \varprojlim_m \mathbb{Z}/m\mathbb{Z}$ of \mathbb{Z} is a compact ring (WHY) and canonically: $\widehat{\mathbb{Z}} \cong \prod_p \mathbb{Z}_p$ as rings and $\widehat{\mathbb{Z}}^{\times} = \varprojlim_m (\mathbb{Z}/m\mathbb{Z})^{\times} \cong \prod_p \mathbb{Z}_p^{\times}$ as groups (WHY).

- 5) Let $K^{\text{cycl}} := \bigcup_m K_m \subset \overline{K}$, the cyclotomic extension of K. Prove/disprove/answer:
 - a) $G(K^{\text{cycl}}|K) = \underset{m}{\lim} G(K_m|K)$ (How) and the cyclotomic character $\chi_K = \underset{m}{\lim} \chi_{K,m}$ of K is an embedding of profinite groups $\chi_K : G(K^{\text{cycl}}|K) \to \widehat{\mathbb{Z}}^{\times}$ (How).
 - b) $\chi_{\mathbb{Q}} : G(\mathbb{Q}^{\text{cycl}}|\mathbb{Q}) \to \widehat{\mathbb{Z}}^{\times}$ is an isomorphism of profinite groups.
 - c) $\overline{\mathbb{F}}_p = \mathbb{F}_p^{\text{cycl}}$ and $\text{Im}(\chi_{\mathbb{F}_p}) \subset \prod_{q \neq p} \mathbb{Z}_q^{\times}$, but $\text{Im}(\chi_{\mathbb{F}_p}) \not\subset \prod_{q \in \Sigma} \mathbb{Z}_q^{\times}$ if $\exists \ell \neq p, \ell \notin \Sigma$.
- 6) Prove the following "*initial form*" of the Hilbert 90 (as proven in Hilbert's Zahlbericht). Let L|K be a finite cyclic extension with Galois group $G = \langle \sigma \rangle$. Then for $a \in L$ one has:
 - a) $\operatorname{Tr}_{L|K}(a) = 0$ iff $\exists a_0 \in L$ s.t. $a = \sigma(a_0) a_0$.
 - b) $N_{L|K}(a) = 1$ iff $\exists a_0 \in L$ s.t. $a = \sigma(a_0)/a_0$.

Cohomology of profinite groups. If G is a topological group, e.g. a profinite group, a G-module is by definition a topological abelian group A, e.g. a discrete abelian group, on which G acts continuously. If so, one also considers the "topological" variants of cocycles $Z_{top}^i(G, A)$ and coboundaries $B_{top}^i(G, A)$ of G with values in A, thus the resulting "topological" cohomology groups $H_{top}^i(G, A)$. In the case of profinite groups, e.g. G = G(L|K) the Galois group of Galois extensions L|K acting on—usually—discrete abelian groups A, e.g. L^+ and/or L^{\times} , the result are cohomology groups $H^i(G, A)$ of profinite groups.

7) Let profinite groups G act continuously on discrete abelian groups A and $G \xrightarrow{p_{\alpha}} \overline{G}_{\alpha} = G/G_{\alpha}$ be the finite quotients of G. Then \overline{G}_{α} acts on $A_{\alpha} := A^{G_{\alpha}}$ (How), and further, $A = \bigcup_{\alpha} A^{\alpha}$ (WHY). For i > 0, let $\mathcal{C}(G^{i}, A) \supset Z^{i}(G, A) \supset B^{i}(G, A)$ be the continuous maps on G^{i} , respectively the continuous i^{th} cocycles/coboundaries. Prove the following:

- a) $\mathcal{C}(G^i_{\alpha}, A_{\alpha}) = \mathsf{Maps}(\overline{G}^i_{\alpha}, A_{\alpha}) \hookrightarrow \mathcal{C}(G^i; A)$ by $\overline{f} \mapsto \overline{f} \circ p^i_{\alpha}$, and $\mathcal{C}(G^i; A) = \lim_{\overrightarrow{\alpha}} \mathcal{C}(\overline{G}^i_{\alpha}, A_{\alpha})$.
- b) $B^{i}(G, A) = \lim_{\overrightarrow{\alpha}} B^{i}(\overline{G}_{\alpha}, A_{\alpha}) \subset \lim_{\overrightarrow{\alpha}} Z^{i}(\overline{G}_{\alpha}, A_{\alpha}) = Z^{i}(G, A)$ for i = 1, 2.
- c) For $0 \to A \to B \to C \to 0$ exact seq. of discrete *G*-modules, one has a long exact seq.: $0 \to A^G \to B^G \to C^G \to H^1(G, A) \to H^1(G, B) \to H^1(G, C) \to H^2(G, A) \to \dots$

<u>Conclude</u>: G = G(L|K) acts continuoulsy on the discrete groups $A = L^+$, L^{\times} and one has: Generalized Hilbert 90. $Z^1(G, A) = B^1(G, A)$, hence $H^1(G, L^+) = 0$ and $H^1(G, L^{\times}) = 1$.

¹ Actually, this holds for all i > 0, but we did not define the objects for i > 2.