
Due: Feb 2, 2024

Math 6030 / Problem Set 1 (two pages)
More about Trace/Norm/Discriminant. Recall that for a finite field extension L|K one
has the (i) relative trace TrL|K : L→ K, which is a K-linear map, and (ii) the relative norm
NL|K : L→ K, which is multiplicative. See HW 12 from Math 6020, Problems 7, 8, 9.

The map TL|K : L × L → K, (x, y) 7→ TrL|K(xy) is symmetric K-bilinear (WHY). Given a
K-basis A = (αi)i6n of L|K and BA= TrL|K(Aτ·A) := (TrL|K(αiαj))i,j, define/consider:

- ∂A := det(BA), called the discriminant of the basis A w.r.t. TL|K

- The dual basis A∗ = (α∗i )i6n of A w.r.t. TL|K (if it exists), i.e., TL|K(αi,α∗j ) = δij.
1) In the above notation, let B = (β1, . . . , βn) be further K-basis of L|K. Prove:

a) There is S ∈ GLn(K) with B = AS.
b) ∂B = det(S)2∂A, concluding the following:
∂L|K := ∂A ∈ K×/K×2 is independent of A modulo the group of squares K×2 6 K×.

2) Let L = K[x] be separable, p(t) = MipoK(x), and A = (xi)06i<n. Prove:

a) A is a K-basis of L|K and ∂A = ∏
i<j(xi − xj)2 = (−1)

n(n−1)
2 NL|K(p′(x)).

b) Euler’s Theorem. Set p(t) = (t− x) ∑
i<n bit

i ∈ L[t]. Then A∗ = (bi/p′(x))06i<n.

[Hints. To a): Set Ax := (xij)i,j ∈ K
n×n. Then ∂A

why
= det(AxAτx) = det(Ax)2 (WHY), etc. To b): Last resort Google it !. . . ]

3) In the above notation, prove that the following are equivalent:
(i) L|K is separable.
(ii) TrL|K is non-trivial, i.e., ∃x ∈ L s.t. TrL|K(x) 6= 0.
(iii) TL|K is non-degenerate, i.e., ∀x ∈ L ∃ y ∈ L s.t. TL|K(x, y) 6= 0.
(iv) A = (α1, . . . ,αn) has a dual basis A∗ = (α∗1, . . . ,α∗n).
(v) ∂A 6= 0.

Infinite Galois Theory. Make sure that you checked all the details from the Fundamental
Thm of Galois Theory: For a Galois extension L|K, let Lα|K, α ∈ I be the set of finite
Galois subextensions, and pα : G := G(L|K) → G(Lα|K) =:Gα, σ 7→ σα = σ|Lα . Then pα
is surjective (WHY), and setting F := F(L|K), Fα := F(Lα|K), G := {H ∈ Sg(G) |H closed},
Gα = G(Lα|K), one has surjective projective systems (s.p.s.) and canonical maps as follows:
- (Gα, pγβ)α,γ>β is a s.p.s. and p : G→ Ĝ := lim←−α Gα, σ 7→ (σα)α is an isomorphism.
- (Fα,ϕγβ)α,γ>β is a s.p.s. and ϕ : F → F̂ := lim←−α Fα, L′ 7→ (L′α)α, L′α := ∩Lα is bijective.
- (Gα,φγβ)α,γ>β is a s.p.s. and φ : G → Ĝ := lim←−α Gα, H 7→ (Hα)α, Hα := H|Lα is bijective.
- The isomorphism of s.p.s. (galα : Fα → Gα)α defines an isomorphism gal : F → G (HOW).
- etc.

Cyclotomic extensions/character. Let K be a field, m > 0 with char(K) - m, K|K a
fixed algebraic closure, and Km := K(µm) ⊂ K be the splitting field of the mth cyclotomic
polynomial Φm. Define the cyclotomic character χK,m of Km|K as follows: Let ζ ∈ µm
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be a fixed primitive mth root of unity. Then σ(ζ) is a primitive root of unity for each
σ ∈ G(Km|K) (WHY), hence there is nσ ∈ (Z/mZ)× s.t. σ(ζ) = ζnσ for any Z 3 nσ 7→ nσ (WHY).
4) In the above notation prove the following:

a) χm : G(Km|K)→ (Z/mZ)×, σ 7→ nσ is injective and independent of ζ.
b) If K = Q, then χm : G(Qm|Q)→ (Z/mZ)× is an isomorphism.
c) If K = Fp, then Im(χm) is the cyclic group generated by p ∈ (Z/mZ)×.

• Recall: (i) The ring of p-adic integers Zp = lim←−e Z/peZ is a profinite ring having group of
units Z×p = lim←−e (Z/peZ)× (WHY). (ii) The adic completion Ẑ := lim←−m Z/mZ of Z is a compact ring
(WHY) and canonically: Ẑ ∼=

∏
p Zp as rings and Ẑ× = lim←−m (Z/mZ)× ∼=

∏
p Z×p as groups (WHY).

5) Let Kcycl := ∪mKm ⊂ K, the cyclotomic extension of K. Prove/disprove/answer:
a) G(Kcycl|K) = lim←−m G(Km|K) (HOW) and the cyclotomic character χK = lim←−m χK,m of K is

an embedding of profinite groups χK : G(Kcycl|K)→ Ẑ× (HOW).
b) χQ : G(Qcycl|Q)→ Ẑ× is an isomorphism of profinite groups.
c) Fp = Fcycl

p and Im(χFp) ⊂
∏
q 6=p Z×q , but Im(χFp) 6⊂

∏
q∈Σ Z×q if ∃ ` 6= p, ` 6∈ Σ.

6) Prove the following “initial form” of the Hilbert 90 (as proven in Hilbert’s Zahlbericht).
Let L|K be a finite cyclic extension with Galois group G = 〈σ〉. Then for a ∈ L one has:
a) TrL|K(a) = 0 iff ∃ a0 ∈ L s.t. a = σ(a0)− a0.
b) NL|K(a) = 1 iff ∃ a0 ∈ L s.t. a = σ(a0)/a0.

Cohomology of profinite groups. If G is a topological group, e.g. a profinite group, a
G-module is by definition a topological abelian group A, e.g. a discrete abelian group, on
which G acts continuously. If so, one also considers the “topological” variants of cocycles
Zi
top(G,A) and coboundaries Bi

top(G,A) of G with values in A, thus the resulting “topological”
cohomology groups H i

top(G,A). In the case of profinite groups, e.g. G = G(L|K) the Galois
group of Galois extensions L|K acting on —usually— discrete abelian groups A, e.g. L+

and/or L×, the result are cohomology groups H i(G,A) of profinite groups.
7) Let profinite groups G act continuously on discrete abelian groups A and G

pα−→Gα = G/Gα

be the finite quotients of G. Then Gα acts on Aα := AGα (HOW), and further, A = ∪αAα (WHY).
For i > 0, let C(Gi,A) ⊃ Zi(G,A) ⊃ Bi(G,A) be the continuous maps on Gi, respectively
the continuous ith cocycles/coboundaries. Prove the following:

a) C(Gi
α,Aα)= Maps(Gi

α,Aα) ↪→ C(Gi,A) by f 7→ f◦piα, and C(Gi,A) = lim−→α C(G
i
α,Aα).

b) Bi(G,A) = lim−→α Bi(Gα,Aα) ⊂ lim−→α Zi(Gα,Aα) = Zi(G,A) for i = 1, 2.1

c) For 0→ A→ B → C → 0 exact seq. of discrete G-modules, one has a long exact seq.:
0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)→ H2(G,A)→ . . .

Conclude: G = G(L|K) acts continuoulsy on the discrete groups A = L+, L× and one has:
Generalized Hilbert 90. Z1(G,A) = B1(G,A), hence H1(G,L+) = 0 and H1(G,L×) = 1.

1 Actually, this holds for all i > 0, but we did not define the objects for i > 2.
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