Math 6020 / Problem Set 4 (two pages)

Categories & Functors

Basics

For categories \(C, D, \ldots \), let \(A, A_i, B, B_i, \ldots \) in \(\text{Ob}(C) \) denote objects of \(C, D, \ldots \) and \(f, g, \ldots, \) e.g. \(f \in \text{Hom}_C(A, B) \) denote morphisms. Further, \(I \) is an index set, respectively \(I, \leq \) is a directed (or filtered) ordered set when speaking about projective systems \((A_i, f_{kj})_{i, k \geq j}, \) respectively inductive systems \((B_i, f_{jk})_{i, j \leq k} \) and/or projective (or inverse) limits \(\lim_{\to} A_i \), respectively injective (or direct) limits \(\lim_{\leftarrow} B_i \).

- Be sure that you know the (proofs of the) following:
 - \(\text{id}_A \in \text{Hom}_C(A, A) \) is unique.
 - If \(f : A \to B \) in \(\text{Hom}(A, B) \) is an isomorphism, its inverse \(g \in \text{Hom}(B, A) \) is unique.
 - \(\text{End}_C(A) := \text{Hom}_C(A, A), \circ \) is a monoid w.r.t. composition \(\circ \) of morphisms.
 - \(\text{Aut}_C(A) := \{ f \in \text{End}_C(A) \mid f \text{ is isomorphism} \} \) is a group.

1) Indicate which of the following assertions are true (justify!):
 a) Groups is a full subcategory of Monoids.
 b) Fields is a full subcategory of Rings.
 c) \(F : \text{Rings} \to \text{Ab}, \) by \(R \mapsto R, + \) is a (co/contravariant?) functor.
 d) \(F : \text{Ab} \to \text{Rings}, \) by \(G \mapsto \text{End}(G), +, \circ \) is a (co/contravariant?) functor.

Universal Constructions

2) Complete the proofs of the assertions from the class:
 a) If the product \(\prod_i A_i \) in \(C \) exists, then \(\prod_i A_i \) is unique up to unique isomorphism.
 The same question correspondingly for coproducts \(\coprod_i A_i \).
 b) If \(A \prod B \) exists for all \(A, B \in \text{Ob}(C) \), then finite products \(\prod_{i=1}^n A_i, n > 0 \) exist in \(C \).
 The same question correspondingly for coproducts.

3) Let \(I, \leq \) be a directed ordered set. Complete the proofs of the assertions from the class:
 a) If \(\lim_{\to} A_i \) exists in \(C \), then \(\lim_{\to} A_i \) is unique up to unique isomorphism.
 b) The same correspondingly for \(\lim_{\leftarrow} A_i \).

4) Complete the proofs of the assertions from the class:
 a) If two-fold products and projective limits in \(C \) exist, the \(C \) has arbitrary products.
 Does the converse hold?
 b) Same question about coproducts and colimits.

Basics about categories of b.a.s. (basic algebraic structures)

Let \(C \) be one of the categories of the usual basic algebraic structures we discussed (sets, monoids, (abelian) groups, (commutative) rings, (skew) fields, \(R \)-modules). For an infinite
cardinal κ, let C_κ be the subcategory of C whose objects have cardinality $\leq \kappa$. Complete the proof of the following assertions from the class.

5) Let X be a non-empty set with $|X| \leq \kappa$. Prove/disprove the following:
 a) The collection A of all the monoid/group-ring/(skew) field structures on X is a set.
 b) The collection M of all the R-module structures on X with $R \in A$ is a set.
 c) Give an estimate in terms of κ for the cardinalities $|A|$ and $|M|$.

6) (Using Problem 5 above) Prove/disprove/answer the following:
 a) C_κ is a full subcategory of C.
 b) C_κ is equivalent to a small subcategory C^0_κ of C_κ.
 c) Recalling which products exist in C, which products exist in C_κ?

7) Let $(A_i, f_{kj})_{i, k \geq j}$ and a projective system and $(B_i, g_{jk})_{i, j \leq k}$ and an inductive system in C. Complete the proofs of the assertions from the class:
 a) Viewing C as a subcategory of Sets, prove that in Sets one has:
 - The projective limit of $(A_i, f_{kj})_{i, k \geq j}$ is $\varprojlim A_i := \{(x_i)_i \in \prod_i A_i \mid f_{kj}(x_k) = x_j \forall k \geq j\}$.
 - The inductive limit of $(B_i, g_{jk})_{i, j \leq k}$ is $\varinjlim B_i := \prod_i B_i/\sim$, where \sim the equivalence relation on $\prod_i B_i$ generated by $(j, x_j) \sim (k, x_k) \iff f_{jk}(x_j) = x_k \forall j \leq k$.
 b) $\varprojlim A_i$ and $\varinjlim B_i$ defined above carry canonically composition laws making them objects of the category C, and $f_i : \varprojlim A_i \to A_i$ and $g_i : B_i \to \varinjlim B_i$ from Sets are in $\text{Mor}(C)$.
 c) Finally, viewing $\varprojlim A_i$ and $\varinjlim B_i$ as objects in C, one has:
 - $\varprojlim A_i$ is the projective limit of $(A_i, f_{kj})_{i, k \geq j}$ in C.
 - $\varinjlim B_i$ is the injective limit of $(B_i, f_{jk})_{i, j \geq k}$ in C.

2