Math 6020 / Problem Set 11 (two pages)

Field extensions/Galois theory
- Make sure that you know/studied the Steinitz Embedding Thm and Steinitz Transitivity Thm and some of their consequences (as mentioned in class):
 - $\text{Aut}_K(\overline{K})$ acts transitively on $S_L := \{ \phi : L \to \overline{K} \mid K \text{-embedding} \}$ via $\sigma(\phi) = \sigma \circ \phi$.
 - If $L_1 \mid K$ is a subextension of $L \mid K$, then $S_L \to S_{L_1}$, $\phi \mapsto \phi_1|_{L_1}$ is surjective.
 - If $L \mid K$ is normal, and $p(t) \in K[t]$ is irreducible, then $\text{Aut}_K(L)$ acts transitively on the roots of $p(t)$ in L.
 - If $L_1 \mid L$ is a normal subextension of a normal extension $L \mid K$, then $\text{Aut}_K(L) \to \text{Aut}_K(L_1)$, $\sigma \mapsto \sigma_1 := \sigma|_{L_1}$ is surjective.

- Suppose that $\text{char}(K) = p > 0$, and let $p(t) \in K[t]$ be monic and irreducible. Make sure that you know the details of the proofs of the assertions from the class:
 - There are unique $c \geq 0$ and $p_c(t) \in K[t]$ monic irreducible separable s.t. $p(t) = p_c(t^p)$.
 - There is a unique monic separable polynomial $q(t)$ such that $q(t)^p = p_c(t^p)$.
 - Moreover, if $p_c(t) = \sum_k a_k t^k$ and $q(t) = \sum_k b_k t^k$, then $b_k^p = a_k$ for all k.

1) Find the Galois group of (the splitting field of) each of the following polynomials.
 a) $p(t) = t^3 - 10$ over \mathbb{Q}, respectively over $\mathbb{Q}(\sqrt[3]{3})$.
 b) $p(t) = t^4 - 5$ over \mathbb{Q}, respectively over $\mathbb{Q}(i)$, where $i^2 = -1$.
 c) $p(t) = t^4 - u$ over the rational function fields $\mathbb{R}(u)$, respectively $\mathbb{C}(u)$ in the variable u.

2) Recalling Problem 8 from HW 10, for $n \geq 1$, set $K_n = \mathbb{Q}(\mu_n)$.
 a) Show that $K_n \mid \mathbb{Q}$ is Galois and that $G_n = G(K_n \mid \mathbb{Q}) \cong (\mathbb{Z} / n\mathbb{Z})^\times$ canonically [HOW].
 In particular, what is this Galois group when $n = 5, 6, 7, 8, 12$?
 b) Find all n such that G_n is a cyclic group, respectively a cyclic group of odd order.
 c) Find all $m \leq n$ such that $K_m \subset K_n$ and $G(K_n \mid K_m)$ is a cyclic group.
 d) Let $K := K_n$. Show that $K_+ := \mathbb{Q}(\zeta_n + \zeta_n^{-1})$ is Galois over \mathbb{Q}. What is $G(K \mid K_+)$?

3) Let $K = \mathbb{F}_p(t)$ and $L = K(\sqrt[p]{t})$, where $p = 4k + 1$ is a prime number.
 a) Find the separable subextension $L_{\text{sep}} \mid K$ of $L \mid K$ and the purely inseparable subextension $L_{\text{ins}} \mid K$ of $L \mid K$.
 b) Show explicitly in this example that $L = L_{\text{sep}} L_{\text{ins}}$ by expressing $\sqrt[p]{t}$ as a combination of elements from L_{sep} and L_{ins}.
 c) What happens in the cases $p = 4k + 3$ or $p = 2$?

4) Let $\alpha = \sqrt{2} \in \mathbb{R}$, $\beta = \sqrt{3 + \sqrt{2}} \in \mathbb{R}$ and consider $K = \mathbb{Q}(\alpha)$, $L = \mathbb{Q}(\beta)$.
 a) Describe the normal closures $K^n \mid \mathbb{Q}$ and $L^n \mid \mathbb{Q}$ of $K \mid \mathbb{Q}$ and $L \mid \mathbb{Q}$.
 b) Describe the Galois groups $G(K^n \mid \mathbb{Q})$ and $G(L^n \mid \mathbb{Q})$.

Due: Th, Dec 7, 2023
5) In the notation from Problem 4) above, answer the following:
 a) Find a primitive element of \(M := \mathbb{Q}(\alpha, \beta) \) over \(\mathbb{Q} \).
 b) What is \(M^n \) and \(G(M^n|\mathbb{Q}) \)?

6) Consider the rational function fields \(\mathbb{F}_p(t) \) and \(\mathbb{F}_p(t, u) \). Prove/disprove/answer:
 a) Every normal finite extension of \(\mathbb{F}_p(t) \) has a primitive element.
 b) Every normal finite extension of \(\mathbb{F}_p(t, u) \) has a primitive element.

The Frobenius endomorphism

- Recall that a field \(K \) is called perfect, if \(K \) does not have any purely inseparable extensions. In particular, if \(\text{char}(K) = 0 \), then \(K \) is perfect. Further, if \(\text{char}(K) = p > 0 \), then \(K \) is perfect iff every \(a \in F \) is a \(p \)-power.
- Let \(\text{char}(K) = p > 0 \). Then the map \(F : K \to K, x \mapsto x^p \) is a field morphism (why), and \(F \) is an isomorphism iff \(K \) is perfect (why). Terminology: \(F \) is the Frobenius endomorphism.

7) Let \(K \) be a field with \(\text{char}(K) = p > 0 \) and \(L|K \) denote algebraic extensions. Prove/disprove:
 a) \(F \) commutes with all field morphisms \(\sigma : F \to F \), i.e., \(F \circ \sigma = \sigma \circ F \).
 b) \(K \) is perfect iff \(F(K) = K \) iff all \(L|K \) are perfect iff all \(L|K \) are separable.
 b) If \(K \) is a finite field, then \(K \) is perfect, and every finite \(L|K \) has a primitive element.

Cyclotomic polynomials in \(\text{char} = p > 0 \).

- Recall the discussion form HW 10 about roots of unity and cyclotomic polynomials \(\Phi_n \).

8) Let \(K = \mathbb{F}_{p^e} \) be a finite field, \(p = \text{char}(K) \), and \(F : K \to K \) the Frobenius. Prove/disprove/answer:
 a) \(K \) is the fixed field of \(F^e \) acting on \(K \).
 b) For \(m \geq 1 \) there is a unique \(L|K \) of degree \(m \), and \(L|K \) is cyclic with \(G(L|K) = \langle F^e \rangle \).
 c) \(\Phi_n(t) \in K[t] \) is never irreducible.
 d) How many irreducible factors does \(\Phi_n(t) \) have over \(K \)?

[Hints: To a): \(F^e(x) = x \iff x^{p^e} = x \iff x^{p^e-1} = 1 \iff x \in \mu_{p^e-1} \), etc. To b): \([L:K] = m \iff |L| = p^m \iff L^\times = \mu_{p^m-1} \) (why), etc. To c) & d): \(F^e \) acts on \(\mu_n \) by raising to the \(p^e \)-power, hence the orbit of every \(\zeta \in \mu_n \) is \(\{\zeta_1 = \zeta, \zeta_2 = \zeta^{p^e}, \ldots\} \) and has length the minimal \(d \) such that \(\zeta^{p^e d} = \zeta \) (why). Conclude: If \(\zeta \in \mu_n \) is a primitive \(n^{1/k} \) root of unity, then \(d \) is the order of \(\zeta^{p^e} \in (\mathbb{Z}/n\mathbb{Z})^\times \) (why). Compare that with \(\deg \Phi_n(t) = |(\mathbb{Z}/n\mathbb{Z})^\times| = \varphi(n), \) etc.]