Math 6020 / Problem Set 1 (two pages)

Basic facts about \(\mathbb{N}, \mathbb{Z}, \mathbb{Q} \)

1) Prove in all detail the following:
- If \(l + m = n \) in \(\mathbb{N} \) and \(k \) divides two of the numbers \(l, m, n \), then divides all three of them.
- Every natural number \(n > 1 \) is a product of prime numbers.
- **Division with remainder**: If \(m \neq 0, \exists q, r \in \mathbb{N} \) unique s.t. \(n = m \cdot q + r \), \(0 \leq r < m \).
- **Euclidean Algorithm**: Let \(m, n \in \mathbb{N} \) with \(m \neq 0 \) nonzero, and set \(r_0 = n, r_1 = m \). For \(i \geq 1 \), define inductively, \(r_{i+1} \) as the remainder of division of \(r_{i-1} \) by \(r_i \). Then one has:
 (i) \(r_i = 0 \) for \(i \) sufficiently large.
 (ii) If \(i \geq 1 \) is maximal s.t. \(r_i \neq 0 \), then \(r_i = \gcd(m, n) \).
- Give an estimate of the number of operation to compute \(\gcd(m, n) \) in terms of \(m, n \).
- The set of prime numbers is infinite (“Euclid’s proof” Google it!).
- For \(n > 1 \) there are unique set distinct primes \(\Sigma_n = \{ p_1, \ldots, p_r \} \) and positive natural numbers \(n_p > 0 \) for \(p \in \Sigma_n \) s.t. \(n = \prod_{p \in \Sigma_n} p^{n_p} = p_1^{e_1} \cdots p_r^{e_r} \) with \(e_i = n_{p_i}, \ i = 1, \ldots, r \).
- For \(n, m > 1 \), let \(\Sigma_n, \Sigma_m \) and \(n_p \) for \(p \in \Sigma_n \) and \(m_p \) for \(p \in \Sigma_m \) be as above. Give the formula for \(\gcd(m, n) \) and \(\text{lcm}(m, n) \) in terms of \(\Sigma_n, \Sigma_m \) and \(n_p, m_p \) for \(p \in \Sigma_n \) and \(\Sigma_m \).

2) \(\mathbb{Z}, +, \cdot \) has no proper subrings, i.e., if is a subset \(X \subset \mathbb{Z} \) closed w.r.t. the usual addition, subtraction, multiplication, and has neutral elements \(0_X \neq 1_X \), then \(X = \mathbb{Z} \).

3) \(\mathbb{Q}, +, \cdot \) has no proper subfields, i.e., if a subset \(X \subset \mathbb{Q} \), \(X \neq \{0\} \) is closed with respect to the usual addition, subtraction, multiplication, and division, then \(X = \mathbb{Q} \).

4) Prove/answer the following:
 a) \(\mathbb{Q} \) has no isolated elements, i.e., \(\forall a, b \in \mathbb{Q} \) one has: \(a < b \Rightarrow \exists c \in \mathbb{Q} \) s.t. \(a < c < b \).
 b) In particular, “most of the subsets” \(X \subset \mathbb{Q} \) are not well ordered. [WHY].
 c) Let \(X := \{ a \in \mathbb{Q} \mid a^2 < 2 \} \subset \mathbb{Q} \). Show that sup\((X)\), inf\((X)\) do not exist in \(\mathbb{Q} \).
 d) Let \(a \in \mathbb{Q}, a \neq -1, 0, 1 \) be fixed. Then there is \(n_0 \in \mathbb{N} \) such that the equation \(x^n = a \) has no solutions in \(\mathbb{Q} \) for \(n \in \mathbb{N}_{>n_0} \).

Composition laws & Basic algebraic structures

5) Let \(X \) be a non-empty set, and recall the **symmetric difference** \(A \triangle B := (A \setminus B) \cup (B \setminus A) \) on \(\mathcal{P}(X) \). Prove/answer the following:
 a) \(\mathcal{P}(X), \triangle, \cap \) is a commutative ring.
 b) Which elements in the ring \(\mathcal{P}(X), \triangle, \cap \) are invertible/zero divisors/nilpotent?
 c) Solve the equation \(x^2 + 1_{\mathcal{P}(X)} = 0_{\mathcal{P}(X)} \) in \(\mathcal{P}(X) \).

6) Let \(S_n \) be the symmetric group. Prove/disprove/answer the following:
 a) \(S_n \) is generated by the transpositions \(\sigma_{ij} \in S_n \), where \(\sigma(i) = j, \sigma(k) = k \) for \(k \neq i, j \)
 b) Solve the equations \(x \circ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \) and \(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \circ x = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} \) in \(S_3 \).
 c) Find the smallest \(n_G > 0 \) s.t. \(\sigma^{n_G} = e_G \) for all \(\sigma \in G \), where: i) \(G = S_6 \); ii) \(G = S_n \).
7) Denote i) $A_1A_2A_3$ triangles; ii) $B_1B_2B_3B_4$ parallelograms; iii) $C_1C_2C_3C_4C_5$ pentagons with three equal sides $|C_1C_2| = |C_2C_3| = |C_3C_4|$. Depending of further properties of these shapes, write in each case the group of transformations as permutation groups of the vertices, hence the results will be subgroups of S_3, S_4, S_5, respectively (why). [Note that the groups of transformations depend on the geometric properties of the shapes under discussion; e.g. in the case of triangles $A_1A_2A_3$, the group can be $\{(123),(132)\}$, $\{(123),(132)\}$, or S_3 (why), etc.]

8) Prove that in a finite ring R, $+, \cdot$ every $x \in R$ is either invertible or a zero divisor.

The rings \mathbb{C}_R and \mathbb{H}_R attached to a commutative ring R

Let R be a commutative ring with $1_R \neq 0_R$, e.g. $R = \mathbb{Z}$, $R = \mathbb{Q}$, etc. Define the complexes \mathbb{C}_R and the quaternions \mathbb{H}_R over R by $\mathbb{C}_R := R^2 := \{a + bi \mid a, b \in R\}$, respectively $\mathbb{H}_R := R^4 := \{a + bi + c_1j + d_\kappa \mid a, b, c, d \in R\}$, endowed with the coordinate-wise $+$ and the multiplication \cdot defined by: $i^2 = j^2 = k^2 = -1_R$, $i \cdot j = k$, $j \cdot k = i$, $k \cdot i = j$. Define $\phi_C : R \to \mathbb{C}_R$, $a \mapsto (a, 0_R)$, $\phi_H : R \to \mathbb{H}_R$, $a \mapsto (a, 0_R, 0_R, 0_R)$, $\iota : \mathbb{C}_R \to \mathbb{H}_R$, $(a, b) \mapsto (a, b, 0_R, 0_R)$.

9) Prove/disprove the following:
 a) $\mathbb{C}_R, +, \cdot$ and $\mathbb{H}_R, +, \cdot$ are rings, \mathbb{C}_R is comm., and $\mathbb{H}_R, +, \cdot$ is comm. iff $1_R = -1_R$.
 b) $\iota : \mathbb{C}_R \to \mathbb{H}_R$ maps $1_{\mathbb{C}_R}$ to $1_{\mathbb{H}_R}$ and is compatible with addition and multiplication.
 c) ϕ_C, ϕ_H and map 1_R to $1_{\mathbb{C}_R}$, resp. $1_{\mathbb{H}_R}$ and are compatible with $+$ and \cdot and $\phi_H(R)$ lies in the center of \mathbb{H}_R, i.e., $\phi_H(a) \cdot x = x \cdot \phi_H(a)$ $\forall a \in R$, $x \in \mathbb{H}_R$.
 d) Does $\iota(C_R)$ lie in the center of \mathbb{H}_R as well?
 e) Let R be a domain, and consider equations $x_1^2 + \cdots + x_k^2 = 0_R$ over R. One has:
 - \mathbb{C}_R is a domain iff $x_1^2 + x_2^2 = 0_R$ has no non-trivial solution in R.
 - \mathbb{H}_R has no non-trivial zero divisors iff $x_1^2 + \cdots + x_4^2 = 0_R$ has no non-trivial solutions.

Polynomials and formal power series

Given a commutative ring R with $0_R \neq 1_R$, recall $R[t] \subset R[[t]]$ as introduced in class. Recall that the degree of polynomial $p = \sum_{n} a_n t^n \in R[t]$ is defined as follows: First, if $p = 0_R[t]$, then $\deg(p) = -\infty$ and second, if $p \neq 0_R[t]$, then $\deg(p) := \max\{n \mid a_n \neq 0_R\}$.

Terminology: If $p = \sum_a a_n t^n \neq 0_R[t]$ and $d = \deg(p)$, then a_d is the leading coefficient of p.

10) Let $f = \sum_{n} a_n t^n \in R[[t]]$ and $p = \sum_{n} a_n t^n \in R[t]$ be given. Prove/disprove the following:
 a) (i) $f \in R[t]^x$ iff $a_0 \in R^x$. (ii) $p \in R[t]^x$ iff $a_0 \in R^x$ and $a_n, n > 0$ is nilpotent.
 b) p is nilpotent iff all a_n are nilpotent. Is the same true correspond. for $f \in R[[t]]$?

11) Prove the following:
 a) For $p, q \in R[t]$ one has: $\deg(p + q) \leq \max(\deg(p), \deg(q))$, $\deg(pq) \leq \deg(p) + \deg(q)$.
 Both for addition and/or multiplication, give sufficient condition such that “=” holds.
 b) The division with remainder holds as follows:
 Let $f, g \in R[t]$ and g have invertible leading coefficient, in particular, $g \neq 0_R[t]$.
 Then there exist unique $p, r \in R[t]$ such that $f = gq + r$ and $\deg(r) < \deg(g)$.
 c) If $R = F$ is a field, the Euclidean algorithm holds in $F[t]$. (…last resort: Google it!)