Math 371 / Problem Set 7 (one page)

More about of Rings/Modules

1) For a square free \(d \in \mathbb{Z} \), consider \(R = \mathbb{Z}[\sqrt{d}] = \{ a + b\sqrt{d} | a, b \in \mathbb{Z} \} \). Prove the following:
 a) \(R \) is a subring of \(\mathbb{R} \) and \(f_R : R \to R, \alpha = a + b\sqrt{d} \mapsto a - b\sqrt{d} = \overline{\alpha} \) is a ring isomorphism.
 b) The fraction field of \(R \) is \(F = \{ x + y\sqrt{d} | x, y \in \mathbb{Q} \} \) and \(f_F : F \to F, \alpha = x + y\sqrt{d} \mapsto x - y\sqrt{d} = \overline{\alpha} \) is a field isomorphism.
 c) \(\alpha \in R \) is a unit iff \(\alpha \overline{\alpha} = \pm 1 \).

2) Let \(R \) be a principal ideal domain, and \(\Sigma \subset R \) be a multiplicative system. Prove/disprove:
 a) The ring of fractions \(R_\Sigma = \Sigma^{-1} R \) is a principal ideal domain.
 b) \(R_\Sigma \) is a local ring, i.e., it has a unique maximal proper ideal iff there is a \(\pi \in R \) prime element such that \(\Sigma = \{ r \in R | \pi \nmid r \} \).

4) Prove/disprove/answer the following:
 a) The polynomial ring \(R[t] \) over a commutative ring \(R \) is PID iff \(R \) is a field.
 b) The ring of continuous functions \(C(I, \mathbb{R}) \) with \(I = [a, b] \subset \mathbb{R} \) is not PID.

5) Prove that \(\sim_\Sigma \) is an equivalence relation on \(\mathcal{M} \). Let \(\frac{x}{r} := (x, r) \sim \) denote the equivalence classes and set \(M_\Sigma := \Sigma^{-1} = \{ \frac{x}{r} | x \in M, r \in \Sigma \} \).

 Define on \(M_\Sigma \) an addition and an action (or outer multiplication) of \(R_\Sigma \) by
 \[
 \frac{x}{r} + \frac{y}{s} = \frac{rx + sy}{rs}, \quad a \cdot \frac{x}{r} = \frac{ax}{rs}.
 \]

 Note that in particular, \(R \) also acts on \(M_\Sigma \) through the canonical map \(\iota : R \to R_\Sigma, a \mapsto \frac{a}{1} \), that is, via \(a \cdot \frac{x}{s} = \frac{ax}{s} \).

6) Prove the following:
 a) The \(+ \) in \(M_\Sigma \) and action of \(R, R_\Sigma \) are well defined and make \(M_\Sigma \) into \(R, R_\Sigma \) module.
 b) \(\iota_\Sigma : M \to M_\Sigma, x \mapsto \frac{x}{1} \) is \(R \)-morphism. \(\text{Ker}(\iota_\Sigma) = \{ 0_M \} \) if \(r \cdot x = 0_M \Rightarrow x = 0_M \forall r \in \Sigma \).
 c) If \(f : N \to M \) is a morphism of \(R \)-modules, then \(f_\Sigma : N_\Sigma \to M_\Sigma, \frac{x}{r} \mapsto \frac{f(x)}{r} \) is a morphism of \(R_\Sigma \) and \(R \) modules.

 Recall that for every prime ideal \(\mathfrak{P} \in \text{Spec}(R), \Sigma_\mathfrak{P} := R \setminus \mathfrak{P} \) is a multiplicative system, see HW 6, Problem 1. Let \(R_\mathfrak{P} \) and \(M_\mathfrak{P} \) be the corresponding ring/module of fractions.

7) In the above notation prove/disprove/answer:
 a) \(M = \{ 0_M \} \) is the trivial \(R \)-module iff \(M_\mathfrak{P} = \{ 0_M \} \) is the trivial \(R_\mathfrak{P} \)-module for all \(\mathfrak{P} \).
 b) \(f : N \to M \) is injective/surjective/isomorphism iff \(f_\mathfrak{P} : N_\mathfrak{P} \to M_\mathfrak{P} \) is so for all \(\mathfrak{P} \).
 (●) Does the same hold if one replaces prime ideals by maximal ideals?