Thm (Cont & Compactness)
Let \(f : X \to Y \) be a cont. map of metric spaces.
1) If \(X_0 \subset X \) is compact, then \(f(X_0) \subset Y \) is compact.
2) If \(X \) is compact, and \(f \) is bijective, then the inverse map \(f^{-1} : Y \to X \) is continuous.

Proof
By Heine-Borel Thm, enough to show:
Every \((y_n)_n \in f(f(X_0))\) has a conv. subseq. \(y_{n_k} \to y \in f(X_0)\).
Now, for \((y_n)_n\) with \(y_n \in f(X_0)\), consider \((x_n)_n \in f(X)\)
so \(y_n = f(x_n) \forall n \in \mathbb{N}\). Since \(X_0 \) compact,
by the Heine-Borel Thm, \(\exists x_{n_k} \to x \in X_0 \).
Hence \(f \) cont \(\Rightarrow f(x_{n_k}) \to f(x) \) in \(f(X_0) \) (why?)
Thus setting \(y := f(x) \), get \(y \in X_0 \) & \(y_{n_k} \to y \).

To 2): By def, one has \(y = f(x) \) iff \(x = f^{-1}(y) \).
By contrast, suppose \(\exists y_n \to y \) s.t. \(x_n := f^{-1}(y_n) \to x := f^{-1}(y) \).
Hence \(\exists \varepsilon > 0 \) and a subseq. \((x_{n_k})_k\) s.t. \(d(x_{n_k}, x) > \varepsilon \ \forall k \) (why?).
Since \(X \) compact \(\Rightarrow \exists (x_{n_{k_l}})_l \) s.t. \(x_{n_{k_l}} \to x' \in X \).
Then \(f \) cont \(\Rightarrow y_{n_{k_l}} = f(x_{n_{k_l}}) \to f(x') =: y' \), hence \(y = y' \) (why?)
Thus \(x' = x \) (why?), hence \(d(x_{n_{k_l}}, x) < \varepsilon \) for \(l \gg 0 \)
Corollary. Let \(f : X \to \mathbb{R} \) be cont, \(X \) compact. Then \(f \) has points of absolute minimum \(x_m \), and absolute maximum \(x_M \), i.e. satisfying:
\[
 f(x_m) \leq f(x) \leq x_M \quad \forall x \in X.
\]

Proof. \(f(X) \subset \mathbb{R} \) is compact, hence bonded and closed \((\text{why?})\), hence one has \((\text{why?})\):
\[
y_m = \min(f(X)), \quad y_M = \max(f(X)) \text{ exist.}
\]
Hence setting \(y_m = f(x_m), \ y_M = f(x_M), \) etc

The ring of cont. functions

Situation:
- \(X \) metric space
- \(F = \mathbb{R} \) or \(F = \mathbb{C} \) as metric spaces w.r.t. \(d \).
- For \(f, g : X \to F \) and \(x = +1 \), consider \(f + g : X \to F \).
- For \(a \in F \), \(f : X \to F \), consider \(af : X \to F \).
- If \(g(x) \neq 0 \) for \(x \in X_0 \), consider \(f/g : X_0 \to F \).
Prop(E(x,F)) In the above notation, TF has:

1) Suppose that \(\lim_{x \to x_0} f(x) = y, \lim_{x \to x_0} g(x) = y' \).
 Then \(\lim_{x \to x_0} (f \times g)(x) = y'x'y' \), \(\lim_{x \to x_0} \alpha f(x) = ay' \).
 Further, if \(y' \neq 0 \), \(\exists \delta > 0 \) s.t. \(g(x) \neq 0 \ \forall x \in B_{\delta}(x_0) \), and \(\lim_{x \to x_0} (f/g)(x) = y'/y'' \).

2) If \(f, g \) are cont at \(x_0 \), then \(f \times g \) and \(\alpha f \) are cont. at \(x_0 \). Further, if \(g(x_0) \neq 0 \), then \(f/g \) is cont at \(x_0 \).

Proof ex (Use Prop (Limits), and the corresp. properties of convergent sequences)

Corollary In the above notation, let us denote \(C(x,F) = \{ f : X \to F | f \text{ cont} \} \subseteq \text{Maps}(X,F) \).
Then \(C(x,F) \subseteq \text{Maps}(X,F) \) is a subring and an F-algebra.
Moreover, if \(f \in C(x,F), f(x) \neq 0 \ \forall x \in X \), then \(1/f \in C(x,F) \).

Proof ex (Everything follows from Prop(C(x,F)) above).
Continuity of elementary Functions

Thm The following functions are continuous:

1) The polynomial function $f_p : \mathbb{F} \to \mathbb{F}, x \mapsto p(x)$ with $p(t) \in \mathbb{F}[t]$ a fixed polynomial.

2) The power-α function $f_\alpha : (0, \infty) \to (0, \infty), x \mapsto x^\alpha$ with $\alpha \in \mathbb{R}$ fixed real number.

3) The exponential function $\exp_a : \mathbb{R} \to (0, \infty)$ for $a \in \mathbb{R}_{>0}, a \neq 1$. (What if $a=1$?)

4) The logarithmic function $\log_a : (0, \infty) \to \mathbb{R}$.

Proof. To 1): If $x_n \to x$, then $f(x_n) = p(x_n) \to p(x)$ (why?), etc.

To 2), 3): See HW 9, Problem 7, etc.

To 4): Let $X := [a, b] \subset \mathbb{R}, a < b$. Then X compact (why?) and $\exp_a : X \to Y$ with $Y = [a^a, a^b]$ for $a > 1$, etc., and its inverse map $\log_a : Y \to X$ is continuous (why?). Hence $\log_a : (0, \infty) \to \mathbb{R}$ is continuous (why?).
Continuity of analytic functions

Situation: \(F = \mathbb{R}, \mathbb{C}; \ B_{R} := B_{R}(0) \) for \(R \in [0, \infty] \)

- \(\mathcal{F}[t] = \{ \sum_{n} a_{n} t^{n} \mid a_{n} \in F \} \) ring of formal power series

Lemma: If \((a_{n})_n \in \mathcal{F}_{b}(F) \), then \(\sum_{n} a_{n} x^{n} \) abs. conv. for \(|x| < r \).

Proof: Let \(\varepsilon_{0} > 0 \) satisfy \(|a_{n} x^{n}| < \varepsilon_{0} \ \forall n \).

Then \(|a_{n} x^{n}| = |a_{n} r^{n}| \frac{x^{n}}{r^{n}} < \varepsilon_{0} \frac{x^{n}}{r^{n}} \ \forall n \) (why?)

And \(r_{0} := \frac{|x|}{r} < 1 \). Therefore one has:

\[
\sigma_{n} := \sum_{i \leq n} |a_{i} x^{i}| < \varepsilon_{0} \sum_{i = 0}^{n} |\frac{x}{r}|^{i} \leq \varepsilon_{0} \frac{1 - r_{0}^{n+1}}{1 - r_{0}} < \frac{\varepsilon_{0}}{1 - r_{0}}
\]

thus \((\sigma_{n})_{n} \) is convergent (why?), hence by definition, \(\sum_{n} a_{n} x^{n} \) is abs. conv.

Def: \(\rho := \sup \{ r \mid (a_{n} r^{n})_n \text{ bounded} \} \in \mathbb{R}_{\geq 0} \cup \{ \infty \} \)

is the radius of convergence of \(f(t) = \sum_{n} a_{n} t^{n} \).

The map \(f: D_{\rho} \to F, \ x \mapsto f(x) := \sum_{n} a_{n} x^{n}, \ D_{\rho} = B_{\rho}(0) \), is the analytic function defined by \(f(t) \).

Rem: Let \(f(t) = \sum_{n} a_{n} t^{n}, \ g(t) = \sum_{n} b_{n} t^{n}, \ h(t) = \sum_{n} a_{n} b_{n} t^{n} \in \mathcal{F}[t] \).

Then the radii of convergence satisfy: \(\rho_{h} \geq \rho_{f} \cdot \rho_{g} \).

In part, \(\sum_{n} a_{n} t^{n}, \sum_{n} a_{n} x^{n} \) have equal radii of conv.

Proof: \(\exists \chi \) (Hint: \(g(t) = \sum_{n} a_{n} x^{n} \) has \(\rho_{g} = 1 \), etc).

Problem: What is that?
Ex \(\exp(t), \sin(t), \cos(t) \) are absolutely convergent on the whole \(\mathbb{C} \) (why?)

Thm Let \(f(t) = \sum_n a_n t^n \) have \(D_f \neq \emptyset \). Then the analytic function \(f: D_f \to \mathbb{F}, x \mapsto \sum_n a_n x^n \) is cont. In particular, \(\exp, \sin, \cos \) are continuous on \(\mathbb{C} \).

proof: Let \(x_0 \in D_f \) be given, hence \(|x_0| < \rho \).

Choose any \(\delta > 0 \) s.t. \(|x_0| + \delta < \rho \), hence \(B_{\delta}(x_0) \subseteq D_f \) (why?)

Then \(x \in B_{\delta}(x_0) \Rightarrow |x| + |x_0| < \rho \) (why?), and consider any \(r > 0 \) s.t. \(|x| + |x_0| < r < \rho \). Then:

\[
 f(x) - f(x_0) = \sum_n a_n (x^n - x_0^n) = (x-x_0) \sum_n a_n \sum_{i+j=n} x^i z_0^j,
\]

and since \(|x|, |x_0| < r \), get \(|x^i z_0^j| < r^{n-1} \) for \(i+j=n-1 \)

Therefore, \(|f(x) - f(x_0)| \leq |x-x_0| \sum_n |a_n| \cdot n \cdot r^{n-1} \) (why?)

Finally, since \(r < \rho \), one has \((a_n \cdot r^n) \) bounded, hence \((|a_n| \cdot n \cdot r^{n-1}) \) bounded (why? see Rem above)

Thus \(\sum_n |a_n| \cdot r^n \) is conv, say \(\sum_n |a_n| \cdot n \cdot r^n = \varepsilon_0 \).

Then one has \(|f(x) - f(x_0)| < |x-x_0| \cdot \varepsilon_0 \), implying that \(f(x) \) cont at \(x = x_0 \) (why?).