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LINE AND HYPERPLANE GT-VARIANTS

FLORIAN POP AND ADAM TOPAZ

ABSTRACT. In this work, we introduce a variant of the Grothendieck-Teichmiiller group,
defined in terms of complements of hyperplane arrangements and pro-¢ two-step nilpotent
fundamental groups, and prove that it is isomorphic to the absolute Galois group of Q.
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1. INTRODUCTION

One of the primary themes in Grothendieck’s Esquisse d’un Programme was to study the
structure of the absolute Galois group of Q (and other fields) via its action on geometric ob-
jects, specifically (geometric étale) fundamental groups of algebraic varieties. In this paper,
we study this Galois action on certain natural quotients of the geometric étale fundamental
groups of complements of hyperplane arrangements. Our main result shows that the absolute
Galois group of Q itself can be determined entirely in terms of the (outer) automorphisms
of such fundamental groups.

The primary motivation for this work arises from the relatlonshlp between the absolute
Ga101s group of Q and the Grothendieck-Teichmiiller group GT. Drinfel’d @ described
GT explicitly as a subgroup of Aut(Fg) where F, denotes the free profinite group on two
letters, say x,y. Concretely, GT consists of elements o € Aut(FQ) which act on z,y as
o(x) = 2%, o(y) = f~ > f for some \ € 7> and f in the (closed) commutator subgroup of
1/7\2, where the pair (), f) satisfies three explicit relations. Essentially as a consequence of
Belyi’s theorem [3], it is known that that Gal(Q|Q) has a canonical embedding into Aut(F}),
via the 1dent1ﬁcat10n of Fy with 7¢(P* . {0,1,00},01). The image of this embedding is
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contained in GT [3]. Arguably the most important open problem in this area is the so-called
Grothendieck-Teichmiiller conjecture which predicts that the canonical map

Gal(QQ) < GT

discussed above is an Egmorphism.

The work around GT is quite extensive, originating with Drinfel’d [6], Ihara [13-15],
Deligne [5], followed by many others, e.g. Hain-Matsumoto [9], Matsumoto [18], Harbater-
Schneps [10], Thara-Matsumoto [16], Lochak-Schneps [17], Nakamura-Schneps [20], Hoshi-
Mochizuki [12], Enriquez [7], and including some very recent work due to Hoshi-Minamide-
Mochizuki [11] and Minamide-Nakamura [19]. Nevertheless, the precise relationship between
Gal(Q|Q) and GT, particularly whether the map Gal(QQ) — GT is surjective, remains
completely open to this day.

Let us now take a more functorial point of view. Write Profo,; for the category whose
objects are profinite groups and whose morphisms are continuous outer-homomorphisms. In
other words,

HomProfom (G7 H) = Homcont(Ga H)/ IHH(H),

where Homen (G, H) is the set of continuous homomorphisms G — H and the inner auto-
morphism group Inn(H) acts by postcomposition.
For categories V of geometrically integral (Q-varieties, let

Ty YV — Profoy, X +— Wft(X ®q @)

denote the geometric fundamental group functor. Since we consider this functor as taking
values in Profo,, the choice of basepoints in the computation of the fundamental group is
irrelevant, and is therefore omitted from the notation above. One has a canonical represen-
tation py : Gal(Q|Q) — Aut(7y), and Grothendieck suggested studying Gal(Q|Q) via py
for categories V, such as the full Teichmiiller modular tower 7 = {M,.}, . see [8]. If V
contains a hyperbolic curve, e.g. Mg 4 = P' \ {0, 1, 00}, then py is known to be injective by
work by Drinfel’d [6] Voevodski [25], Matsumoto [18] and Hoshi-Mochizuki [12].

In relation to GT Harbater-Schneps [10] showed that GT = Aut* (7y,), where V) is the
full subcategory of T whose objects are Mg 4 and M5, while Aut” refers to the collection
automorphisms ¢ € Aut(7y,) which preserve the conjugacy classes of “inertia at infinity.”
On the other hand, there is recent quite significant progress on the relationship between
GT and Aut (my) with V C T, arising from the work of Hoshi-Minamide-Mochizuki [11] and
Minamide-Nakamura [19]. Among other things, it follows from these works that

GT = Aut(7y,) = Aut(7r,),

where 7y is the genus zero part of T, while also GT = Out (m$( M2 ®g Q)). As mentioned

above, p : Gal(Q|Q) — GT is known to be injective since M, 4 is contained in V,y. However,
the surjectivity of this map, or equivalently, the question of whether this map is an isomor-
phism, is one of the most important open problems in modern Galois theory. This question
is an active area of research, and has been studied by many authors.

1.1. Connections with the I/OM. The issue of surjectivity mentioned above is related

to a conjecture due to Thara/Oda-Matsumoto, the classical I/OM for short, asserting that
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py is an isomorphism in the case where V is the category of all geometrically integral Q-
varieties. The classical I/OM has a positive answer, see Pop [22], Introduction, for a short
historical note. However, the solution to the classical I/OM (and its refinements/extensions)
is obtained via completing Bogomolov’s Program in birational anabelian geometry (BP) [4]
under additional hypotheses which are satisfied in the context of the I/OM; see [22,24].

More precisely, BP, which is still essentially open in general, asserts that a function field
K|k, with trdeg(K |k) > 1 and k algebraically closed, can be recovered, in a suitable functorial
sense, from its pro-¢ abelian-by-central Galois group 115, — I1% (see §2.3|below for notations).
In this context we consider the group

PAut®(Il% ) := image(Aut(I1%) — Aut(Il%))/Z,

as well as the canonical map Aut(K) — PAut®(Il%). We say that “BP holds” provided that
Aut(K) — PAut®(Il%) is an isomorphism. If BP also holds for all finite extensions L|K,
then it follows that the canonical map Aut(K) — Out(Gal(K*P|K)) is also an isomorphism.

This approach can be used to study Gal(Q|Q) in the case V = V", a birational variant
of Vy mentioned above, as follows. First, recall that

M074 = ]Pl AN {0, 1, OO}, M075 = <M0,4 X M0,4) ~ A

were A is the diagonal. In particular, Mg s can be identified with the open affine subvariety
A%\ L of A? = Spec Q[z, y], where L is the zero-locus of the following function:

r-(I—2)-y-(1-y) (z—vy).

The objects of V§'™ consist of Mg 4, My s, and any nonempty open affine Q-subvariety U of
My 5, while the morphisms of VP are the identity morphisms, the inclusions among the U,
and the projections

m U — P {0,100} = Moy

defined by any one of the functions ¢ € ¥y := {x,y,x — y} whenever U is disjoint from the
base locus of the rational map ¢.

Setting Ko = Q(z,y), k = Q, and K = k(z,y), the morphisms 7 : Spec Ky — M4
for t € ¥y give rise to projections 7; : Gal(K|K) — 7' (Mo4 ®¢ Q) in Profo,. Let
Auty, (K) C Aut(K) denote the subgroup of automorphisms which preserve the subring
k[t,1/t,1/(1—t)] for every t € ¥y, and Outy, (Gal(K|K)) C Out(Gal(K|K)) be the subgroup
of all the automorphisms which preserve the kernels of the projections m; for t € ¥3. One
obtains an embedding

Aut(Typr) = Outy, (Gal(K|K))

by taking limits along the various open subvarieties U. It turns out that endowing Gal(K|K)
with the additional data of the projections m, for t € ¥ is sufficient to complete BP for K
and its finite extensions. Using this, one deduces that Auty, (K) = Outy, (Gal(K|K)), while
the m, t € Xy, rigidify the situation so that one has

Gal(Q|Q) — Aut(Typir) = Outy, (Gal(K|K)) = Gal(Q|Q).

This finally shows that the canonical map Gal(Q|Q) — Aut(Typir) s an isomorphism. Re-

placing 7 by its pro-¢ abelian-by-central quotient I1¢ — 1%, and Out(7y) with PAut®(I1$,)
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(again, see for the notation), the analogous assertions hold in this setting as well, hence
the canonical map:

Gal(Q|Q) — PAute(Il%,)

bir
VO

is an isomorphism. See [22] for more details.

1.2. The category .%. In this work, we consider the line-arrangement variant of VP,
and prove similar results in this new context which is much more restrictive in the Galois-
theoretic sense. Precisely, let %5 C VP be the category of Q-varieties whose objects are
Mo, Mys and all Uy, = A? \ L where L is a closed Q-subvariety which is (geometrically) a
finite union of affine lines, and whose morphisms are the identity morphisms, the inclusions
Uy, = Uy, for Ly C Ly, and the projections m; : Uy, — P!\ {0,1,00} for t € 3y with X
as above, whenever L is sufficiently large. A main consequence of our general result (see
Theorem is as follows.

Main Theorem. The canonical map p : Gal(Q|Q) — PAut®(I1%,) is an isomorphism.

Since % C VY™, the Main Theorem above could be seen as an intermediate step between
the category V5™ which is of birational nature and yields Gal(Q|Q), and the category V, which

is not of birational nature and yields GT. Therefore we view this work as a step toward

understanding the relationship between Gal(Q|Q) and ﬁ, because there is no apparent
birational content to the categories of varieties used in defining the latter.

1.3. Strategy of proof. The general outline of the proof of the Main Theorem above is as
follows. See also the discussion in the next subsection for a comparison of the strategy and
techniques of this paper with the ones used to prove that Gal(Q|Q) = PAut*(IlS,, ).

0

Most of the work takes place inside of the following limit object:
IT" .= lmIl;, , € {a,c},
% L

where L C A2 varies over all line arrangements defined over Q. The argument proceeds
roughly as follows:

(1) First, we recover the inertia groups associated to all lines inside of II* using IT¢ along
with some additional data arising from the structure of %, thereby obtaining an
action of Aut®(Il%,) on the collection of lines.

(2) Second, we identify the collection of lines with points in the dual projective plane,
and show that this action is compatible with the lines in this projective space.

(3) Finally, we apply the fundamental theorem of projective geometry [2] and eventually
show that this action factors through Gal(Q|Q).

(4) To conclude, we prove that the kernel of the induced map Aut‘(Il%, ) — Gal(Q|Q) is
contained in the image of the canonical map Z; — Aut(Il%, ).

1.4. Comparison with the proof of Gal(Q|Q) = PAutC(H%,ir). The description of Gal(Q|Q)
arising from BP, proceeds roughtl as follows. For Ky = Q(z,y), k = Q and K = k(z,y) as
in , let K% denote the ¢-adic completion of the multiplicative group K*. Using Kummer
theory and a fixed isomorphism Z,(1) = Zy, one has an identification:

K* = Hom(IIS,, Z).
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Notice that the kernel of the ¢-adic completion map K* — K~ is k>, hence it induces an

embedding K*/k* — K*, while K */k* can be identified with the projectivization of the
k-vector space (K, +). The strategy of BP now proceeds as follows:

irst, usin e projections 7 : — 115, , one identifies the prime divisors
1) First, using th jecti 1% 115 {0,100} identifies th ime divi

of K|k (among the quasi-prime divisors described via the local theory).

(2) Second, one recovers k(u)*/k* — KX for all u € K ~ k, thus K*/kE* — K~ as
a subgroup. One also recovers the projective lines Iy, := (kf + kg)*/k* C K*/k*,
where f,g € K are k-linearly independent, as being [y, = f - l; , with u = g/ f.

(3) Finally, apply the fundamental theorem of projective geometry [2] to obtain (K, +)
as a k-vector space, and use the compatibility with the multiplicative structure of
K*/k* to obtain the field structure of K.

Moreover, one shows that the recipes in steps (1), (2) and (3) are invariant under the action
of PAut®(I1%,,,). Thus one obtains a morphism

V(l;)ir
PAut( ;Lﬂgir) — Auty, (K) = Gal(Q|Q)
which is then shown to be the inverse of the canonical map Gal(Q|Q) — PAutC(H‘\’“}é,ir).

In practice, both steps (1) and (2) above rely on the so-called local theory whereby one
detects inertia and decomposition groups in I1%, associated to quasi-prime divisors of K |k.
This local theory builds on the theory of rigid elements [1] which exploits the field structure
of K; see [23]. Furthermore, in order to recover [;, in step (2), one uses l,, with u = g/f.
Hence in step (2) one also relies on the full field structure of K, see [21] for more on the general
global theory. Thus, both the local and global parts of the BP strategy used to obtain the
equality Gal(Q|Q) = Autc(Hﬁljgir) depend in an essential way on being in a birational context.

As outlined in §1.3] we still have a local and a global portion to the proof of our Main
Theorem, and we again eventually rely on the fundamental theorem of projective geome-
try [2]. However, if one mimics the BP strategy outlined in the steps above, then Kummer

Theory yields the subgroup of K generated by Kummer classes of functions of the form
a+br+cy € K, a,b,c € k. While this subgroup is contained in K*/k*, it is not a projective-
linear subspace, and thus the BP strategy breaks down. In other words, there is no (obvious
or non-obvious) candidate for a k-projective space arising from Kummer Theory that plays
the role of K*/k*. Therefore we had to develop some genuinely new techniques for both
the local and global portions of our argument which do not rely on the arithmetic structure
of function fields of any of the varieties involved, and which do not apply the fundamental
theorem of projective geometry on an object constructed using Kummer theory.

2. PREPARATION AND RESULTS

We now introduce the notation and terminology necessary to state our main result.

2.1. Hyperplane arrangements. Let k£ be an algebraically closed field which will be fixed
throughout. By a wariety, we mean a k-variety, i.e. an integral scheme which is separated
and of finite type over k. We will always omit &k from the notation whenever possible. For
example, we write A" for A}, P" for P}, etc.

A morphism of varieties is a morphism of k-schemes and we denote by Var the category

of varieties. If kg is a subfield of k, we say that a variety X resp. a morphism of varieties
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X — Y is defined over kg if it is the base-change of some ky-variety resp. some morphism of
ko-varieties. If X is a variety, then by a closed subvariety of X we mean a reduced closed
subscheme of X; in particular, our convention is that subvarieties may have many irreducible
components. If Z C X is a closed subvariety and X is the base-change of a kp-scheme X,
then we say that Z is defined over ky provided that Z is the base-change of some closed
subscheme Zy; C Xj.

Let A be a variety and z1, ..., z, € O(2l) be given. Put x := (z1,...,2,) and consider the
induced map 2 — A" defined by t; — x;. We will say that the pair (,x) is an affine space
provided that this map is an isomorphism, and in this case call x a system of coordinates
on 2. We will usually omit x from the notation when referring to affine spaces, and simply
write 2 instead of (2, x).

A partial system of coordinates z = (z1,...,zy,) on a variety 2 is a tuple which can be
extended to a system of coordinates. If x = (z1,...,z,,) is a (partial) system of coordinates,
we write A" for Spec[z1, ..., x,,] with the z; considered as indeterminant variables, and write
Tx © A — A for the associated projection which sends the element z; € k[zy,...,x,] to
z; € O(RA). If x = (w) consists of a single element, we abbreviate the notation as AL := Al
and 7 : A — AL for the associated projection.

Let 2 be an affine space with system of coordinates x = (z1,...,x,). By a hyperplane we
mean a closed subvariety of 2 which is the zero-locus of a function of the form

a0+@1'x1+"'+an'xna aiEka (ala"'aan)#o'

Note that the notion of a hyperplane in 2 depends implicitly on a choice of system of
coordinates x, and we will ensure that x is clear from context whenever we speak about

hyperplanes.
Such hyperplanes will usually be denoted using the letter $) possibly decorated in some
way. If w :=a9+ay- -2+ -+ a, -z, is a function as above, we will write £, for the

associated hyperplane obtained as the zero-locus of w. The collection of all hyperplanes
in an affine space 2 will be denoted by Planesy, or just Planes if 2 is understood from
context.

A hyperplane arrangement in an affine space 2 is a finite union of the form

H1IU---UHN,, H; € Planesy,

considered as a reduced closed subvariety of 2. Hyperplane arrangements will usually be
denoted using the letter H possibly decorated in some way. Given a hyperplane arrangement
H in 2, we write Uy := A ~ H for its complement.

If x = (z1,...,2,) is a system of coordinates for an affine space A, w € k[z1,...,z,] is a
linear polynomial whose zero-locus is a hyperplane $,, and H is a hyperplane arrangement
in 2 which contains $),,, then 7 : 2 — Al restricts to a morphism 7, : Ug — G,,,. f H
also contains $);_, then we may restrict further to obtain 7, : Ug — P! \ {0, 1, c0}.

2.2. The category 7. Let ky be a perfect field with algebraic closure k, and S C ky any
subset with 0 € S. Let 2 be an affine space with system of coordinates x = (x1,...,z,). We
define a subcategory 7, o of Var as follows. The objects of 7, o are Uy for H hyperplane
arrangements in 2 which are defined over kg (as a closed subvariety of 2). The morphisms

in J%;, o are the inclusions Uy, — Up, whenever Hy C H;. We write 75 g for the smallest
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subcategory of Var containing %, g, the object P! \ {0,1, 00}, and the projections
T U — P~ {0,1,00}

for @ any function of the form x; —c for 1 <7 < n and ¢ € S, or of the form z; — x; for
1 <4 < j <n, whenever H contains the hyperplanes $, and $,_1. Note that the objects
and morphisms of J% ¢ are all defined over ky.

2.3. Fundamental groups. Let ¢ be a prime different from the characteristic of k, and A
any nontrivial quotient of Z,. Both ¢ and A will be fixed from now on, and we shall write
H'(—) instead of H(—,A). For a profinite group II, write II® for the left kernel of the
canonical pairing

IT x HY(IT) — A,
and put I1* = ITI/I1®®. Inflation provides a canonical isomorphism
H' (1) = H'(I1)
and so the usual five-term exact sequence restricts to an exact sequence of the form
0 — H'(IT®)T 25 H2(11%) — H2(II).

Let H*(I1%)4e denote the submodule of H*(I1?) generated by cup-products of elements of
H'(I1%), and let H'(IT?)Y denote its preimage in H'(IT®?)™. We shall write II® for the left
kernel of the canonical pairing

I x I — A

and put I1¢ := I1/T1®.

For a k-variety X, we write Ilx for the étale fundamental group of X with respect to
some base point, and I1§ resp. I1% for the quotients of IIx as defined above. For x € {a,c},
the object II% is functorial in X, taking values in the category Profo,;. Whenever V is a
subcategory of Var, we write II3, for the restriction of the functor X > II% to V. Note that
we have a natural surjective morphism II§, — IIf,, and any automorphism of IIj, induces a
compatible automorphism of II§,. We write

Aut®(Il5,) := image (Aut(Il},) — Aut(1I},))

for the group of automorphisms of II{, which lift to an automorphism of II,.

Note that A* acts on the functor II{;, canonically, namely ¢ € A* acts on II§ by multipli-
cation since it is, in particular, a A-module. We put PAut(Il§) := Aut(II},)/A*, and write
PAut‘(I15,) for the image of Aut®(Il§,) in PAut(II}).

Suppose now that kg is a perfect subfield of £ whose algebraic closure is k. If the objects
and morphisms in ) are all defined over kg, then functoriality provides us with a canonical
morphism

p: Gal(k|ko) — Aut®(Il5,) — PAut®(Il3).
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2.4. Main result. The Main Theorem stated in subsection 1.2 is the special case of the
following general result, where kg = Q, n =2, S = {0} and A = Z,.

Theorem A. Let ky be a perfect field of characteristic # ¢ with algebraic closure k, and S
a set of generators of ko as a field extension of its prime subfield, with 0 € S. Let A be an
affine space of dimension at least two with system of coordinates x = (xy,...,x,). Then the
canonical map

p : Gal(k|ko) — PAut®(Il%, ,)

18 an isomorphism.

3. COHOMOLOGY

Throughout this work, we write H'(—) := H'(—, A(7)) for the i-th (geometric) étale coho-
mology group (f-adic cohomology in the case A = Z;) with values in the Tate twist A(7).
We will specify the coefficients in cohomology if they differ from the convention above.

3.1. Kummer classes of hyperplanes. Let 2 be an affine space with system of coordinates
x = (21,...,2,). Let $ a hyperplane in 2l and @w € k[xy,...,z,] be a linear polynomial
whose zero-locus is $). Recall that @ can be considered as a morphism 7 : 2 — A! which
restricts to a morphism 7 : A\ $ — G,,. If U is any nonempty open subset of A! and V
any nonempty open subset of 7_!(U), then we denote by 7, : V' — U the morphism induced
by restricting 7, and

Ly HY(U) — HY(V)

the corresponding morphism on cohomology. These morphisms are of course compatible
with restriction along open sets.

In the case where U = G,, = A' \. {0}, hence H'(U) = H*(G,,) = A, we write [9] := 15(1)
and call [$)] the Kummer class associated to $. As the notation suggests, [$] € H'(V)
only depends on $), and not on the choice of x or @ whose zero-locus is §). The following
well-known fact follows from the rationality of 2I.

Fact 3.1. Let H be a hyperplane arrangement in A with distinct irreducible components
B, .., 9. Then the set {[H1], ..., [9n]} forms a basis for H (Uy). Furthermore, the residue
maps Oy, : H'(Ua) — H(Ug N H;) = A associated to §; satisfy Oy,[9;] = 6i; where &
denotes the Kronecker 0-function taking values in A.

Proof. 1dentify 2 with A", embed A™ into P™ in the usual way, and write £, for the hyper-
plane of P" at infinity. Write H for the closure of H in P* and U for the complement of

H. By cohomological purity, the inclusion Uy — A — P" induces an exact sequence of the
form

0 — H'(P") — H'(Us) — H (90 N ) & EDH(H Nlr) — HA(P", A(1)).

Now H?*(P", A(1)) = A, all the H° terms appearing in this sequence are also A, and the map

on the right is simply the sum. Since H'(P") = 0, the assertion follows. O
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3.2. Relations. We work with hyperplanes inside a fixed affine space 2 in this subsection.
Note that the intersection of two hyperplanes £, 2 in 2 is either empty or has codimension
two. A pair of hyperplanes (1, $2) will be called a parallel pair provided $; # $o and
$H1NHy = . A triple of hyperplanes (1, £, $3) will be called a dependent triple provided
1,92, H3 are distinct and $H, N H2 N H3 has codimension two in A.

Lemma 3.2. Let H be a hyperplane arrangement in A whose distinct irreducible components
are 91, ...,9,. Then the following relations hold in HQ(L{H):

(1) If (9:.9;) form a parallel pair, then [$;] U [$;] = 0.
(2) If (94,9, 9k) are a dependent triple, then one has ([9;] — [$x]) U ([9;] — [$x]) = 0.

Proof. To obtain (2), simply note that whenever ($;,$;, %) is a dependent triple and H' is
the hyperplane arrangement obtained from H as the closure in 2l of

H\ H;U$H; UNH,

then there exists a linear morphism f : Uy — P! such that §; is the fiber above 0, $; is
the fiber above 1 and $); is the fiber above oco. We thus obtain a restricted linear morphism
f:lUg — P {0,1,00} = A\ {0,1}. The pullbacks with respect to f of the Kummer
classes [0], [1] € H'(A! \. {0,1}) satisfy:
frI0] = [9:] = [9], f7[1] = [99;] — [$w]-

Assertion (2) follows since H?(P' \. {0, 1, 00}) vanishes.

Assertion (1) is obtained similarly by identifying 2 with A™ via some choice of coordinates
so that Uy can be identified as the complement of P" of HU$),, where £, is the (projective)

hyperplane at infinity. The argument for case (2) above goes through, mutatis mutandis,
with $., in place of ;. O

Remark 3.3. The relations appearing in Lemma [3.2] are well-known and are used in defining
Orlik-Solomon algebras associated to hyperplane arrangements.

3.3. The universal case. We now pass to colimits over certain Zariski open subsets. If
is any affine space, we define

H = lig H* (Uny)
Uy

where Uy varies over 4, o. If x := (21,...,2,) is a system of coordinate on 2, we will also
write H}, := H}. In the case where x = (w) is a singleton, we write H. := Hj.

We have an obvious notion of Kummer classes [)] € Hy associated to hyperplanes §) of
2(, and the discussion of shows that these Kummer classes form a basis for Hy. For H
as above, the canonical morphism H'(Ug) — Hy is injective and its image is generated by
(9] for $ varying over the irreducible components of H. The following relations involving
Kummer classes of hyperplanes in 2 hold true in Hgl by Lemma :

(1) [91] U [$2] = 0 for parallel pairs ($1, 92).
(2) ([91] — [93]) U ([92] — [$93]) = 0 for dependent triples (£1, 2, H3).

3.4. Linear projections. Let 2 be an affine space and z = (z1, ..., z,) a partial system
of coordinates on 2. Consider the induced morphism m, : 2 — AJ'. Restricting to the
appropriate open subsets, and passing to cohomology and the colimit, we obtain a canonical
morphism
L, H, — Hj.
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If § is a hyperplane in A™, then 7, '§) is a hyperplane in 2l and their Kummer classes are

compatible in the sense that one has ¢,[9] = [r,19]. It follows easily from this that ¢, is
injective and its image is generated by Kummer classes of the form [r,1$] for § varying
over the hyperplanes in A7".

3.5. Residue maps. Let 2 be an affine space and $) C 2 a hyperplane. We have a canonical
residue map

Oy Hyt' — Hy
obtained from the usual residue maps associated to $) by passing to the colimit. These
residue maps can be calculated using the following formulas:

(1) One has 0g[$] = 1.
(2) One has Jy[$'] = 0 for $ a hyperplane distinct from $.
(3) If $ is a hyperplane and $N H' is a hyperplane in 9, then 94 ([H] U [H']) = [H N H'].

We write
Uy, := ker(dy : Hy — HY).

We have a canonical specialization map sg : Ug — H% defined on the level of cohomology
by restriction. Explicitly, this specialization map satisfies s4[9'] = 95([$H] U [$']). We define

U% = ker(sy) : ij — H}j)

Clearly, sy is surjective and thus it induces an isomorphism Uy, / U}) = H}j The submodules
U}J C Uy can be described explicitly using the description of dy above, as follows.
Fact 3.4. The following hold:

(1) Uy, is generated by Kummer classes of the form [$1] for hyperplanes $1 # 9.
(2) Uy is generated by the following:

(a) Kummer classes [$1] where (9,91) is a parallel pair.

(b) Differences [91] — [$92] where (9,91, 92) is a dependent triple.

Proof. These properties follow from the explicit description of H' in terms of residue maps
appearing in Fact [3.1] O

4. FUNDAMENTAL GROUPS

For a variety X let Ily, Hg?), Hg?), I1$ and II be as defined in . We also put
% = Hg?) / Hg?). These groups fit in a central extension of the form

1 — 0% — 15 — 1% — 1,
with both I1% and II% being A-modules. The commutator in IS induces a A-bilinear map
[—, =]« APIT§ — 1O

defined as [0, 7] ;=0 -7-0 ' - 771, where 7,7 € [T denote lifts of o, 7 € 11%.
10



4.1. Duality. Let X be a smooth quasi-projective variety which is isomorphic to the com-
plement of finitely many hyperplanes in an affine space. There exists a well-known duality
between the 2-truncation of H*(X') and II, which we now summarize. Write R(X) for the
kernel of the cup-product map A2 H'(X) — H?(X). We have a perfect pairing of the form

(4.1) I x HY(X) — A.

Indeed, in the case where A is finite this is a consequence of Pontryagin duality, while the case
A = Z, follows by passing to the limit over the finite quotients of Z, and using the explicit
description of H'(X) from Note that both H'(X) and II% are finitely-generated free A-
modules of the same rank. The dual with respect to (4.1]) of the inclusion R(X) < A2H'(X)
factors through the commutator [—, —] : A?I1% — TI%. Thus we have a natural pairing

(4.2) I x R(X) = A
Which is compatible with (4.1]) as described above.

4.2. The universal case. We now pass to limits analogously to the discussion from §3.3
Let 21 be an affine space. We define

Iy := lim T, * € {a,c}, TTy = ker(Ily — IIg),
Uy

where Uy varies over 7, o. The pairing (4.1)) extends to a perfect pairing
(4.3) Mg x Hy — A.

If x = (x1,...,2,) is a system of coordinates on A, we may write IT} := IT}, x € {a,c,d},
and if x = (@) is a singleton, we write IT% := IT%, x € {a,c,§}. Given an element o € Hy
and o € ITy, we write ca € A for the image of (o, @) under the pairing (4.3]).

The commutator [—, —] : KQHS[ — TIy is not injective in general. Describing its kernel
boils down to dualizing the cup-product A2Hy — Hj and using the relations among cup-
products of Kummer classes discussed in §3.3] We will only need the following properties.

Lemma 4.1. Let 0,7 € II§ be given and assume that [o,7] = 0 in TI3.

(1) For all parallel pairs ($1,$2), one has
ol91] - 7[$H2] = o[H2] - 7[H4].
(2) For all dependent triples ($1,$2,$3), one has
(0[91] = o[$3]) - (7192] = 7[$93]) = (0[92] = oH3]) - (T[] — 7[s)).
Proof. This follows from the compatibility of the pairings and , and Lemma .

See the discussion of §3.3| O
4.3. Linear projections. Let z = (z1,...,2,) be a partial system of coordinates in an

affine space 2. Consider the morphism m, : 2 — A}'. By restricting to the appropriate
open subsets, applying the functor X +— IT%, x € {a, ¢}, and passing to the limit, we obtain
canonical morphisms

7, Iy — IT.

The map 7, : IT — II7 is easily seen to be dual to ¢, : H; — Hél with respect to (4.3)).
11



5. THE LOCAL THEORY

The primary goal of this section is to provide a characterization of hyperplanes in an affine
space 2 using decomposition theory within IT§.

5.1. Inertia and decomposition groups. Let $ be a hyperplane in an affine space 2
and recall that we have introduced two submodules U} C Uy C Hy in . We define
I resp. Dy as the orthogonal of Ug resp. Uy with respect to the pairing [“.3). Note
that Iy C Dy, and the quotient Dgy/Ig is canonically isomorphic to II§ because of the
specialization isomorphism Ug/U} = Hy and the duality described in (£:3). Note that
I = A since Hy /Uy =2 A.

Explicitly, Iy is the space of all o € ITj such that o[$);] = 0 for all hyperplanes $); distinct
from §). Similarly Dg is the space of all o € IT§ such that for all parallel pairs of the form
($,91), one has o[$);] = 0, and for all dependent triples of the form (£),1,52), one has
o[$1] = o[9s]. See Fact [3.4]

We call I resp. Dy, the inertia resp. decomposition groups associated to $). These sub-
groups of IT§ agree with the usual inertia resp. decomposition groups associated to the prime
Weil divisor §). The following is a well-known property of inertia/decomposition groups of
prime divisors.

Fact 5.1. Let $ be a hyperplane in an affine space A, and let 0 € 1y and 7 € Dg be given.
Then [o, 7] = 0.

We will also need a converse to this assertion.

Lemma 5.2. Let §) be a hyperplane in an affine space U, and o a generator of 1. Suppose
T € II satisfies [0, 7] = 0. Then 7 € Dg.

Proof. This follows from the explicit description of Ujl3 along with Lemma . Indeed, note
first that o[$] € A* and o[$)] = 0 for all §’ # $, since o generates Iy. If (9, $1) is a parallel
pair, then one has

ol9] - T[] = o] - 7[H] =0
by Lemma , and as o[ is a unit it follows that 7[$;] = 0. If (£, 91, 92) is a dependent
triple then the same lemma implies similarly that

o] - (7([(91] = [92])) = (a[91] = [$2]) - (7[H] — 7[$H2]) = 0,

hence 7([$1] — [$2]) = 0. As Uy is generated by [$);] for parallel pairs (), $1) and [$);] — [$)2]
for dependent triples (£, 1, $2), we find that 7 € Dy as contended. O

5.2. The main local theorem. Our task is to prove the following result which will be used
to parameterize hyperplanes in the proof of the main theorem.

Theorem 5.3. Let A be an affine space of dimension > 2 with coordinates x = (x1,...,Ty).
Let T C D be submodules of IIy and let i € {1,...,n} be given, and let z be the partial
system of coordinates obtained from x by deleting x;. Then there exists a hyperplane £
which dominates A" via w,, such that I = I, and D = Dy, if and only if there exists
some o € I with o ¢ € -II§ such thatI=A- o,

D=C(o):={rell*| [o,7] =0},

and the following additional conditions hold:
12
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FIGURE 1. Configuration for proof of Theorem [5.3]

(1) There exists some hyperplane $' which dominates A" via 7, such that o[$)'] = 0.
(2) The element o maps trivially under 7, : IIg — TIJ.
(3) The map D/I — II; induced by 7, is an isomorphism.

The rest of this section will be devoted to proving this key result.

5.3. The implication “=-". Suppose first that ¢ € {1,...,n} is given, z is as in the
statement of the theorem, and that there exists a hyperplane §), dominating A?~! such
that Iy, = I and Dg, = D. Then I = I, has a generator o satisfying o[$)] = 1 hence
o ¢ (-IIy. Also o[$] = 0 for all hyperplanes § # o, by the explicit description of I, and
so condition (1) clearly holds true for any hyperplane )’ dominating A?~! which is distinct
from $). Condition (2) follows from the fact that $)o dominates A?~'. As for condition (3),
recall that Dyg, /I, = II¢ , and the induced map IIg  — IIj is simply the map obtained by
functoriality (and taking limits) from the composition

Ho — A = AT

which is an isomorphism of varieties. This map Dy, /I, — II is thus also an isomorphism,
so condition (3) follows. Lastly, we have Dg, = C(0) by Fact |5.1] and Lemma

5.4. The implication “<”. Suppose now that z and o are as in the statement of the
theorem so that conditions (1), (2) and (3) hold true and I = A-o, D = C(¢). Since o is not
a multiple of ¢ by assumption, there is a hyperplane £ such that o[$)o] € A*. Condition
(2) implies that £y dominates A?~1, for otherwise its image would be a hyperplane in A7~
and thus the image of ¢ in II; would have to be nontrivial. Our goal is thus to show that
A-o =1, and C(0) = Dg,. We will use the explicit descriptions of I, and Dy, to do this.

Let us show that o[)] = 0 for all hyperplanes $) # $,. Suppose first that $; is a
hyperplane such that (£, ;) form a parallel pair. Choose a distinct hyperplane )2 which
dominates Ag_l and which meets $y. Note that £, necessarily meets £, as well. There exist
two distinct hyperplanes which are vertical over A1 say $}, £, such that (£, 92, $}) and
(91, 92, 9H,) are dependent triples, see Figure (1| for a picture in the two-dimensional case.
Explicitly, ) = 7, }(7,($0 N $H2)) and H) = 7, H(7,(H: N H)).

By condition (3), there exists some 7 € C(o) such that 7[$}] = 0 and 7[$),] = 1. And by
condition (2), we have o[$)}] = o[$,] = 0. Put a; := o[$9;] and ; := 7[$;]. Since (9o, H1) is

13



a parallel pair and [0, 7] = 0, by Lemma [4.1] we have
(5.1) ao - 1 = az - Po.

Also, since (99, H2,9)) is a dependent triple with 7[$)}] = 0 and o[$)}] = 0, we have again
from Lemma [£L.1] that

(5.2) Qg - P2 = g - Po.
Recall that ag € A*, so we may solve for 31, By as follows:
o - Qs -
(5.3) =t g _02h
(7)) (&%)

Next, since (£1, 2, %) is a dependent triple, with 7[$),] = 1 and o[$)}] = 0, we have from
Lemma [.1] that

(5.4) - (B —1) =az- (B —1).
Substituting equation ({5.3)), we find

(5'5) a1'<a2-50_1):a2‘<041-ﬁ0_1)'
Qg Qo

Subtracting a term of the form (ay - as - fy)/ap from both sides and negating, we find that
a1 = ay. To summarize, we have obtained the following.

Lemma 5.4. In the above context, suppose that (o, 1) is a parallel pair, and that $), is a
distinct hyperplane which dominates A1 and which meets 9. Then o[$H1] = o[9s].

Let ' be as in condition (1), so that ) dominates AZ! and o[$)’] = 0. As o[$] # 0,
we have 9y # 9'. If (9, $’) is not a parallel pair, then we choose a distinct hyperplane £,
such that (9o,1) is a parallel pair, while Lemma [5.4] ensures that o[$);] = ¢[$] = 0. In
any case, we deduce the following.

Lemma 5.5. There exists a parallel pair of the form (o, $1) such that o[$:] = 0.

Let $; be as in Lemma[5.5] Now suppose that $), is any hyperplane distinct from $),. We
wish to show that o[$);] = 0. If H, = $H; then we are done, and if ), is vertical over A?!
then we are done by condition (2). If (£9, $2) is a parallel pair and £ # $;, then we may
choose a distinct hyperplane $)3 which dominates A”~! and which meets £, hence it also
meets $; and $,. Applying Lemma [5.4] we see that

o[92) = o[$H3] = o[H:] = 0.

Finally, if £, meets $)y and is not vertical over A?~!, then it must dominate A?~! and thus
by Lemma we have o[$);] = o[$;] = 0. This indeed shows that o[$)s] = 0 whenever
2 # 9o, as contended. By the explicit description of Iy, it follows that A - o0 = I,, while
Fact [5.1] and Lemma [5.2) imply that C(c) = Dyg,. This concludes the proof of Theorem [5.3]

6. THE PROOF OF THE MAIN THEOREM

We now consider the context of Theorem . Put & := Aut‘(Il5, ). We start by con-
structing actions of & on various objects, all of which have a natural Gal(k|ky) action. As
always, when working with profinite groups we consider them as objects in the category with

outer morphisms.
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6.1. The action on fundamental groups. Merely by definition, & acts naturally on II%
for all objects X in J% g, in a way compatible with all of the morphisms arising from

morphisms in J% ¢ and with the relation [—, —] = 0 on II% in the sense that for 7 € & and
o,7 € I1%, one has [0, 7] = 0 if and only if [yo,y7] = 0. In particular, & acts naturally on
IT5, compatibly with the relation [—, —] = 0, and the canonical maps

. a a
s s My = e 0,100

are B-equivariant for all z of the form x; — s where 1 < i < n and s € S, or of the form
x; —xj; where 1 <i < j <mn.

For every object X of J% g, we may also define an action of & on H'(X) by identifying it
with Hom(I1%, A) via ([£.1). Note that & acts trivially on A in this formula.

Passing to the colimit, we obtain a natural action of & on Hél, and the maps

t,: HY(P' N {0,1,00}) — Hy,

are B-equivariant as well for the z as above.

6.2. Linear projections. The goal of this subsection is to prove the following technical
proposition.

Proposition 6.1. Let z be any partial system of coordinates contained in x. The action of
® on Hy restricts to an action on the image of the embedding t, : H. — Hy.

Proof. We proceed by induction on the length of z with the base-case where z is empty is
vacuously true. Write z = (z1,...,2,) and w = (21,..., 2y, w) with both z and w being
contained in x, and assume the result holds true for z. We will characterize the image of
Lty : HY, — Hj using the following data:

(1) The image of ¢, : H} — Hy.

(2) The image of ¢,, : H'(P' . {0,1,00}) — Hy.
3) The pairing TT§ x Hy — A.

(3) The pairing TI x Hy

(4) The relation [—, —] = 0 on ITj,.

This suffices since the action & is compatible with items (2), (3) and (4) by definition, and
is compatible with (1) by the inductive hypothesis. Precisely, we claim that a € Hy is in
the image of ¢,, : Hy, — Hy if and only if it satisfies the following condition.

Condition 6.2.1. For all 3 in the image of 1, : H'(P' \ {0,1,00}) — Hy and for all
o,7 € II§ which pair trivially with the image of ¢, : H. — Hy and which satisfy [0, 7] = 0,
one has ca- 78 = 0f - Tau.

First let us show that any element in the image of ¢y, : HL, — Hj satisfies this condition.
As this condition is clearly linear in «, it suffices to show that the Kummer classes [$)], with
$) a hyperplane vertical over AT satisfy this condition. So let $) be such a hyperplane,
and let 8, o and 7 be as in the condition. Write 5 = a - [9,] + b+ [$1-4] with a,b € A. If
$ is vertical over A", then the assertion is clear as one has o[$)] = 7[$)] = 0. Otherwise,

$ dominates A", hence there exist two hyperplanes £, $2 which are vertical over A" such

that (£, 9, H1) and (9, H1_.,, H2) are dependent triples. As o[$;] = 7[$;] = 0, the assertion
15



follows from Lemma [4.1] as follows:

o] -8 =0[H] - (a- 7[Hu] + b T[H1-w])
=a-ol9] - 7[Hy] +b-o[H] - T[H1 W]
=a- (0[] = o[H]) - (7[He] = 7[9]) + b (0[H] — o[92]) - (7[H1-0] — 7[92])
=a- (0[] = o[]) - (7[9] = 7[9]) + b (0[H1-0] — [H2]) - (T[H] — 7[$2])
=a-0lHu] 7O +b o[H1-w] - TIH)]
=of-71[9)].

As for the converse, let a € Hy be given and write a as a linear combination of the form
a=> cy-[9)]
9

where §) varies over all hyperplanes in 2 and ¢ € A. Assume « satisfies Condition [6.2.1]
We must show that ¢y = 0 for any $ which is not vertical over A”W"b“. Let $ be such a
hyperplane, and take § = [$),]. Let o be the unique element of ITj acting on Kummer
classes of hyperplanes as the indicator function of [$)], and note that o generates Iy. Note
that $ N £, is a hyperplane in ) which is not of the form $ N $’ for any hyperplane £’
which is vertical over A'. Let 7 € II§ be an element which satisfies 7[$) N $,,] = 1 and
T[HNH'] = 0 for all §' vertical over A'. Choose 7 € Dy mapping to 7 under the projection
Dy, — II{. Recall that [o,7] = 0 by Fact 5.1 while both ¢ and 7 pair trivially with the
image of ¢, : H. — Hy. Condition can therefore be applied with this 3, ¢ and 7, and
the equation appearing in this condition reduces to cs = 0, as required. 0

Proposition shows that the image of ¢, : H. < Hj is invariant under the action of
& for any partial system of coordinates z contained in x. We define an action of & on H,
via this inclusion, and this allows us to define an action of & on II by identifying it with
Hom(H}, A) via (#.3). The canonical projection 7, : Iy — IT% is then ®-equivariant by
definition.

6.3. The action on hyperplanes. We now construct an action of & on the hyperplanes
in 2 which is compatible with decomposition theory. For the rest of the proof, we write
Planes := Planesy.

Proposition 6.2. There is an action of & on Planes which is uniquely determined by the
condition that for v € & and a hyperplane §, one has 71y = L4, and yDg = D, .

Proof. Let $ be a hyperplane in 2 and v € & be given. Since two hyperplanes are equal if
and only if their inertia groups are equal, it suffices to show that there exists a hyperplane
$Ho such that 71y = Iy, and 7yDg = Dy,

We will use Theorem to do this. Let ¢’ € I be a generator and put o := yo’. Let z
be a partial system of coordinates obtained by deleting one of the x; such that $ dominates
Ar~!. By Theorem , we have Dy = C(0’), and the following conditions hold:

(1) For every hyperplane $' # $), one has ¢’[$'] = 0.

(2) The element ¢’ maps trivially under =, : Iy — IT.

(3) The map C(0’)/A - o' — Il induced by 7, is an isomorphism.
16



Since the action of v is compatible with [—,—] = 0, we have YDy = C(o). Also, since
7, : IIy — II; is G-equivariant as noted above, we see that ¢ maps trivially under 7, and
that the induced map C(o)/A - o — Il is an isomorphism.

To conclude using Theorem [5.3] we must therefore show that there exists some hyperplane
$) dominating A”~! such that o[§)'] = 0. If § has the form e, or .1, then o’ pairs trivially
with both [$,,_,.] and [$,,_..1] for every 1 <r < s < n, hence the same is true for o since

Lay—a, - HY (PP {0,1,00}) — Hy,

is y-equivariant with image ([, -s.], [9z,-2.-1]). Otherwise ¢’ pairs trivially with [),,],
[92;-1], so the same argument shows that o pairs trivially with [§,,] and [$),, 1] as

Ly H' (P N {0,1,00}) — Hyy

is also y-equivariant. In any case, there exists some hyperplane £’ dominating A?~! such
that o[$)’] = 0, and this concludes the proof using Theorem [5.3] O

Recall that the pairing (4.3) is ®-equivariant, where & acts trivially on A, while the
orthogonal of I resp. Dy with respect to this pairing is Ug resp. U}J. We therefore deduce
the following lemma as well.

Lemma 6.3. Let v € &, §) € Planes be given. One has YUy = U5 and YUy = Ul
We will also need the following variant involving Kummer classes.
Lemma 6.4. Let v € & and $ € Planes be given. Then one has A - y[H] = A - [v$].

Proof. Note that
A9 =) Us.
H'#H
The lemma therefore follows from Lemma [6.3 O

And finally, we will need the following lemma showing compatibility with parallel pairs
and dependent triples.

Lemma 6.5. Let v € & and 1, 92,93 € Planes be given. The following hold:

(1) If ($1,92) is a parallel pair then so is (v$1,7$s2).
(2) If (91,92, 93) is a dependent triple then so is (Y91, 792, ¥93).

Proof. Both assertions follow from Lemmas and the explicit descriptions of Ug and
U}?, and the explicit description of s, using the following characterizations. First, a pair of
distinct hyperplanes (£)1,%2) is a parallel pair if and only of A -[$);] C Uy, . Second, a triple
of distinct hyperplanes ($1, 2, $3) is a dependent triple if and only if the images of A - [$);]
and of A - [§);] are nontrivial and agree in the quotient Ug, /Uy . O

6.4. The dual projective space. Given $ € Planes, let p($) = (ap : --- : a,) € P"(k)
denote the unique point, written in homogeneous coordinates, where $) is the zero-locus of
ap+ay -1+ -+ ay, -, Note that p : Planes — P"(k) is a well-defined embedding whose
image consists of every point of P"(k), except for the point pg := (1:0:---:0). We define
an action of & on P"(k) in such a way so that v € & acts as ypg = po and vp($H) = p(19)

for every $) € Planes.
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FIGURE 2. Dependent triples in proof of Proposition

In other words, if we identify 21 with A} via our choice of coordinates, and further embed
A? in P? in the usual way, then we are identifying the hyperplanes in P} with the points
in the dual projective space, and po corresponds to the hyperplane at infinity. Note that
the lines in this dual projective space correspond to pencils of hyperplanes in P}. The
following proposition shows that the action of & on this dual projective space respects such
lines. Recall that a bijection v : P"(k) — P"(k) is called a collineation provided that for all
projective lines [ in P"(k), the image ~y(I) is another projective line.

Proposition 6.6. The action of & on P"(k) defined above acts by collineations.

Proof. This follows directly from Lemma [6.5, as follows. A triple of points of the form
(Po, p($1), p($2)) is colinear in P*(k) if and only if (94, $2) is a parallel pair. Thus elements
of & send any line passing through po to another line passing through py. On the other hand,
a triple of points of the form (p($1), p(H2), p(H3)), no two of which are colinear with py, are
colinear in P™(k) if and only if (1, 92, 93) is a dependent triple. Thus, elements of & send
any line not passing through py to another line which does not pass through pg. 0

6.5. Rigidification. We now prove the following proposition which will allow us to rigidify
the action of & on P"(k).

Proposition 6.7. Let (z,¢) € {x1,...,2,} xS and 1 <i < j < n be given. The hyperplanes
Neer Nee15 Naja; and Nyy ;1 are all fized by the action of &.

Proof. For v € & and $ € Planes, note that v is the unique hyperplane such that vIy
pairs nontrivially with A - [y$)], while A - [y$] = A - v[$] by Lemma [6.4 For any ¢ € S
and any 1 < i < j < n, the maps ¢, : H' (P! \ {0,1,00}) — Hy are G-equivariant for
we{r; —¢,...,x, —c,x; —x;}, with image spanned by [$),,] and [$),_1]. Hence 7 acts as
a permutation of {$,, 9,1} for all such w.

Note that for every ¢ € S and 1 <1 < j < n, the following are all dependent triples:

(g):vi—sa ﬁxj—sa fjmi—xj)a (ﬁxi—s—l ) Sja:j—s—ly g)azi—xj)a (ﬁxi—s—l ) fja:j—sa g)a:i—a:j—l)a

while (5512.,3,.6%,3,1,53%,%,1) is not a dependent triple. See Figure [2. The assertions all
follow from these observations and Lemma [6.5]

6.6. Compatibility with the field structure. Recall that the general semilinear group

of k"1, denoted I'L(k"™!), is the group of semilinear automorphisms of k™! as a k-module.
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There is a natural map k* — TL(k™™) sending x € k* to the associated homothety, with
normal image, and we denote the quotient by the image of this map by PTL(k"*1).

In light of Proposition the fundamental theorem of projective geometry [2] applied to
this context be rephared as the assertion that that there exists a unique morphism

n:® — PTL(K"M),

such that for all ¢ = (cg,...,c,) € k"™ and all v € &, the element 7(7)(c) represents v(cg :

-1 ¢,). We will show that i factors through the obvious inclusion Gal(k|ky) < PTL(k"1).
Fix an element v € & for the rest of this subsection and let ' € TL(k"™!) be a representative
of n(v). We also write ey, ..., e, for the standard basis of the k-module k"

Lemma 6.8. For alli=0,1,...,n, there exists some €; € k™ such that I'e; = ¢; - e;.

Proof. Note that eq represents po while, for i > 0, the element e; represents p($,,). The
assertion follows from the fact that 7 fixes po and p($,,), which follows from the definition
and from Proposition [6.7] O

Lemma 6.9. Let ¢; be as in Lemmal6.8. Then one has eg =e1 =+ = &,.

Proof. Let 0 < i < n be given. Since ey — e; represents p($,,—1), Proposition 6.7 ensures that
exists some € such that I'(eg—e;) = e-e9—e-¢;. But I'is additive so I'(eg—e;) = £¢-e0—e1 €5,
while eq is linearly independent from e;, hence gy = ¢;. [

At this point we deduce from Lemmas and that n factors through the obvious
inclusion Aut(k) — PT'L(k™*'). Replace n with the corresponding map 7 : & — Aut(k),
and replace I with the element of TL(k""!) obtained as the image of n(y) € Aut(k). This
means that

D(ag €0+ -+ ay - en) =n(y)(ao) - €0 + -+ +n(7)(an) - €n.
Lemma 6.10. For all s € S, one has n(y)(s) = s.

Proof. Let 0 < ¢ < n be given. Since s - ey — e; represents p(9,,_s), Proposition again
shows that one has I'(s - eg — €;) = ¢+ (s- ey — ¢;), for some € € k*. On the other hand, we
have ['(s - eg — €;) = n(y)(s) - eo — €;. Since ey and e; are linearly independent, we find ¢ = 1
and n(y)(s) = s, as claimed. O

As S generates ko, the image of n : & — Aut(k) lands in Gal(k|ky). Note that when ~
is the image of o € Gal(k|kg), one has v9),, « = Hs,—oc for alli = 1,...,n and all ¢ € k.
Unfolding the definitions, this in turn implies that, in this case, one has n(vy) = 0. In other
words, the morphism 7 : & — Gal(k|ko) just constructed is a section to the canonical map
p . Gal(k|lkg) — &. Since it will come up in the following section, we note that for all
(ag :-+-:a,) € P"(k) and v € & with image o € Gal(k|ky), that one has

Y(ag: -+ :an) = (0ag: -+ :oay).

6.7. Conclusion. To conclude, we prove that any element in the kernel of  : & — Gal(k|ko)
is contained in the image of the canonical map A* — Aut(Il%, ). Suppose 7 is in the kernel
of . By the observation from the last subsection, it follows that ~y fixes every point of P"(k),
hence 7 fixes every hyperplane §, and hence
L5 =1Is, 7Dy = Djy
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for all hyperplanes §). As Iy = A, it follows that there exists some g5 € A* such that v acts
as multiplication by eg on I. Since A -y[$] = A - [$)] as well, we find that there exists e
such that y[$)] = €} - [$]. The pairing induces a duality between I and Hy/Ug which
is compatible with the action of 7. As Hy /Uy, is generated by [$)], we deduce that e = e

Lemma 6.11. Suppose that (91,92, 93) is a dependent triple. Then e, = £g, = €.

Proof. Put €; := e4,. Let 7 € II¢ be an element satisfying 7[$; N $2] = 1, and let 0 € Dy,
be an element mapping to @ under the canonical projection Dy, — II§ . Hence o[$)s] = 1
and thus o[$)3] = 1 as well. Note that yo is an element of Dy, as well, since v$; = $;.
Hence:

(10)[92] = o (v [$92]) = 2 o [$Da] = &,
and similarly (yo)[$)3] = €3. But since yo € Dg,, it follows that (yo)[$2] = (y0)[$3], hence
€9 = 3. Repeating the argument with )i, 5 interchanged, we deduce the claim. 0

By Lemma [6.11], we deduce that £ does not depend on $). Indeed, if 1,2 meet, then
they are part of a dependent triple hence €5, = €5,. If $1,$2 do not meet, then we find a
third $3 which meets both to again deduce that e, = €5, = €5,. As Iy is generated by the
I as $ € Planes varies, it follows that there exists an ¢ such that v acts on the whole IT§
as multiplication by €. For every Uy in J% g, the canonical map

Iy — 1l
is surjective and ~y-equivariant, hence v acts as multiplication by ¢ on IIf, = as well. And
finally, since w, : Iy — H]%l\{moo} is surjective for any one of the z € {xy,...,z,}, it

follows again that 7 acts as multiplication by e on IIg; (0,1,00}" In other words, v acts as
multiplication by ¢ on II§ for any object X of JZ g, which shows that, indeed, «y is in the
image of the canonical map A* — Aut(Il%, ). This concludes the proof of Theorem .
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