
LINE AND HYPERPLANE GT-VARIANTS
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Abstract. In this work, we introduce a variant of the Grothendieck-Teichmüller group,
defined in terms of complements of hyperplane arrangements and pro-ℓ two-step nilpotent
fundamental groups, and prove that it is isomorphic to the absolute Galois group of Q.
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1. Introduction

One of the primary themes in Grothendieck’s Esquisse d’un Programme was to study the
structure of the absolute Galois group of Q (and other fields) via its action on geometric ob-
jects, specifically (geometric étale) fundamental groups of algebraic varieties. In this paper,
we study this Galois action on certain natural quotients of the geometric étale fundamental
groups of complements of hyperplane arrangements. Our main result shows that the absolute
Galois group of Q itself can be determined entirely in terms of the (outer) automorphisms
of such fundamental groups.

The primary motivation for this work arises from the relationship between the absolute

Galois group of Q and the Grothendieck-Teichmüller group ĜT. Drinfel’d [6] described

ĜT explicitly as a subgroup of Aut(F̂2), where F̂2 denotes the free profinite group on two

letters, say x, y. Concretely, ĜT consists of elements σ ∈ Aut(F̂2) which act on x, y as

σ(x) = xλ, σ(y) = f−1yλf for some λ ∈ Ẑ× and f in the (closed) commutator subgroup of

F̂2, where the pair (λ, f) satisfies three explicit relations. Essentially as a consequence of

Belyi’s theorem [3], it is known that that Gal(Q|Q) has a canonical embedding into Aut(F̂2),

via the identification of F̂2 with πét
1 (P1 ∖ {0, 1,∞},−→01). The image of this embedding is
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contained in ĜT [3]. Arguably the most important open problem in this area is the so-called
Grothendieck-Teichmüller conjecture which predicts that the canonical map

Gal(Q|Q) ↪→ ĜT

discussed above is an isomorphism.

The work around ĜT is quite extensive, originating with Drinfel’d [6], Ihara [13–15],
Deligne [5], followed by many others, e.g. Hain-Matsumoto [9], Matsumoto [18], Harbater-
Schneps [10], Ihara-Matsumoto [16], Lochak-Schneps [17], Nakamura-Schneps [20], Hoshi-
Mochizuki [12], Enriquez [7], and including some very recent work due to Hoshi-Minamide-
Mochizuki [11] and Minamide-Nakamura [19]. Nevertheless, the precise relationship between

Gal(Q|Q) and ĜT, particularly whether the map Gal(Q|Q) → ĜT is surjective, remains
completely open to this day.

Let us now take a more functorial point of view. Write ProfOut for the category whose
objects are profinite groups and whose morphisms are continuous outer -homomorphisms. In
other words,

HomProfOut
(G,H) = Homcont(G,H)/ Inn(H),

where Homcont(G,H) is the set of continuous homomorphisms G → H and the inner auto-
morphism group Inn(H) acts by postcomposition.

For categories V of geometrically integral Q-varieties, let

πV : V −→ ProfOut, X 7→ πét
1 (X ⊗Q Q)

denote the geometric fundamental group functor. Since we consider this functor as taking
values in ProfOut, the choice of basepoints in the computation of the fundamental group is
irrelevant, and is therefore omitted from the notation above. One has a canonical represen-
tation ρV : Gal(Q|Q) → Aut(πV), and Grothendieck suggested studying Gal(Q|Q) via ρV
for categories V , such as the full Teichmüller modular tower T = {Mg,n}g,n, see [8]. If V
contains a hyperbolic curve, e.g.M0,4 = P1 ∖ {0, 1,∞}, then ρV is known to be injective by
work by Drinfel’d [6], Voevodski [25], Matsumoto [18] and Hoshi-Mochizuki [12].

In relation to ĜT, Harbater-Schneps [10] showed that ĜT = Aut∗(πV0), where V0 is the
full subcategory of T whose objects areM0,4 andM0,5, while Aut∗ refers to the collection
automorphisms σ ∈ Aut(πV0) which preserve the conjugacy classes of “inertia at infinity.”
On the other hand, there is recent quite significant progress on the relationship between

ĜT and Aut(πV) with V ⊂ T , arising from the work of Hoshi-Minamide-Mochizuki [11] and
Minamide-Nakamura [19]. Among other things, it follows from these works that

ĜT = Aut(πV0) = Aut(πT0),

where T0 is the genus zero part of T , while also ĜT ∼= Out
(
πét
1 (M1,2 ⊗Q Q)

)
. As mentioned

above, ρ : Gal(Q|Q)→ ĜT is known to be injective sinceM0,4 is contained in V0. However,
the surjectivity of this map, or equivalently, the question of whether this map is an isomor-
phism, is one of the most important open problems in modern Galois theory. This question
is an active area of research, and has been studied by many authors.

1.1. Connections with the I/OM. The issue of surjectivity mentioned above is related
to a conjecture due to Ihara/Oda-Matsumoto, the classical I/OM for short, asserting that
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ρV is an isomorphism in the case where V is the category of all geometrically integral Q-
varieties. The classical I/OM has a positive answer, see Pop [22], Introduction, for a short
historical note. However, the solution to the classical I/OM (and its refinements/extensions)
is obtained via completing Bogomolov’s Program in birational anabelian geometry (BP) [4]
under additional hypotheses which are satisfied in the context of the I/OM; see [22,24].

More precisely, BP, which is still essentially open in general, asserts that a function field
K|k, with trdeg(K|k) > 1 and k algebraically closed, can be recovered, in a suitable functorial
sense, from its pro-ℓ abelian-by-central Galois group Πc

K → Πa
K (see §2.3 below for notations).

In this context we consider the group

PAutc(Πa
K) := image(Aut(Πc

K)→ Aut(Πa
K))/Z×

ℓ

as well as the canonical map Aut(K)→ PAutc(Πa
K). We say that “BP holds” provided that

Aut(K) → PAutc(Πa
K) is an isomorphism. If BP also holds for all finite extensions L|K,

then it follows that the canonical map Aut(K)→ Out(Gal(Ksep|K)) is also an isomorphism.
This approach can be used to study Gal(Q|Q) in the case V = Vbir

0 , a birational variant
of V0 mentioned above, as follows. First, recall that

M0,4 = P1 ∖ {0, 1,∞}, M0,5 = (M0,4 ×M0,4)∖∆

were ∆ is the diagonal. In particular,M0,5 can be identified with the open affine subvariety
A2 ∖ L0 of A2 = SpecQ[x, y], where L0 is the zero-locus of the following function:

x · (1− x) · y · (1− y) · (x− y).

The objects of Vbir
0 consist ofM0,4,M0,5, and any nonempty open affine Q-subvariety U of

M0,5, while the morphisms of Vbir
0 are the identity morphisms, the inclusions among the U ,

and the projections

πt : U → P1 ∖ {0, 1,∞} =M0,4

defined by any one of the functions t ∈ Σ0 := {x, y, x − y} whenever U is disjoint from the
base locus of the rational map t.

Setting K0 = Q(x, y), k = Q, and K = k(x, y), the morphisms πt : SpecK0 → M0,4

for t ∈ Σ0 give rise to projections πt : Gal(K|K) → πét
1 (M0,4 ⊗Q Q) in ProfOut. Let

AutΣ0(K) ⊂ Aut(K) denote the subgroup of automorphisms which preserve the subring
k[t, 1/t, 1/(1−t)] for every t ∈ Σ0, and OutΣ0(Gal(K|K)) ⊂ Out(Gal(K|K)) be the subgroup
of all the automorphisms which preserve the kernels of the projections πt for t ∈ Σ0. One
obtains an embedding

Aut(πVbir
0
) ↪→ OutΣ0(Gal(K|K))

by taking limits along the various open subvarieties U . It turns out that endowing Gal(K|K)
with the additional data of the projections πt for t ∈ Σ0 is sufficient to complete BP for K
and its finite extensions. Using this, one deduces that AutΣ0(K) = OutΣ0(Gal(K|K)), while
the πt, t ∈ Σ0, rigidify the situation so that one has

Gal(Q|Q) ↪→ Aut(πVbir
0
) ↪→ OutΣ0(Gal(K|K)) = Gal(Q|Q).

This finally shows that the canonical map Gal(Q|Q) → Aut(πVbir
0
) is an isomorphism. Re-

placing πét
1 by its pro-ℓ abelian-by-central quotient Πc → Πa, and Out(πV) with PAutc(Πa

V)
3



(again, see §2.3 for the notation), the analogous assertions hold in this setting as well, hence
the canonical map:

Gal(Q|Q)→ PAutc(Πa
Vbir
0
)

is an isomorphism. See [22] for more details.

1.2. The category L0. In this work, we consider the line-arrangement variant of Vbir
0 ,

and prove similar results in this new context which is much more restrictive in the Galois-
theoretic sense. Precisely, let L0 ⊂ Vbir

0 be the category of Q-varieties whose objects are
M0,4,M0,5 and all UL = A2∖L where L is a closed Q-subvariety which is (geometrically) a
finite union of affine lines, and whose morphisms are the identity morphisms, the inclusions
UL1 ↪→ UL2 for L2 ⊂ L1, and the projections πt : UL → P1 ∖ {0, 1,∞} for t ∈ Σ0 with Σ0

as above, whenever L is sufficiently large. A main consequence of our general result (see
Theorem A) is as follows.

Main Theorem. The canonical map ρ : Gal(Q|Q)→ PAutc(Πa
L0
) is an isomorphism.

Since L0 ⊂ Vbir
0 , the Main Theorem above could be seen as an intermediate step between

the category Vbir
0 which is of birational nature and yields Gal(Q|Q), and the category V0 which

is not of birational nature and yields ĜT. Therefore we view this work as a step toward

understanding the relationship between Gal(Q|Q) and ĜT, because there is no apparent
birational content to the categories of varieties used in defining the latter.

1.3. Strategy of proof. The general outline of the proof of the Main Theorem above is as
follows. See also the discussion in the next subsection for a comparison of the strategy and
techniques of this paper with the ones used to prove that Gal(Q|Q) = PAutc(Πa

Vbir
0
).

Most of the work takes place inside of the following limit object:

Π⋆ := lim←−
L

Π⋆
UL
, ⋆ ∈ {a, c},

where L ⊂ A2
Q varies over all line arrangements defined over Q. The argument proceeds

roughly as follows:

(1) First, we recover the inertia groups associated to all lines inside of Πa using Πc along
with some additional data arising from the structure of L0, thereby obtaining an
action of Autc(Πa

L0
) on the collection of lines.

(2) Second, we identify the collection of lines with points in the dual projective plane,
and show that this action is compatible with the lines in this projective space.

(3) Finally, we apply the fundamental theorem of projective geometry [2] and eventually
show that this action factors through Gal(Q|Q).

(4) To conclude, we prove that the kernel of the induced map Autc(Πa
L0
)→ Gal(Q|Q) is

contained in the image of the canonical map Z×
ℓ → Aut(Πa

L0
).

1.4. Comparison with the proof of Gal(Q|Q) = PAutc(Πa
Vbir
0
). The description of Gal(Q|Q)

arising from BP, proceeds roughtl as follows. For K0 = Q(x, y), k = Q and K = k(x, y) as

in §1.1, let K̂× denote the ℓ-adic completion of the multiplicative group K×. Using Kummer
theory and a fixed isomorphism Zℓ(1) ∼= Zℓ, one has an identification:

K̂× ∼= Hom(Πc
K ,Zℓ).
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Notice that the kernel of the ℓ-adic completion map K× → K̂× is k×, hence it induces an

embedding K×/k× ↪→ K̂×, while K×/k× can be identified with the projectivization of the
k-vector space (K,+). The strategy of BP now proceeds as follows:

(1) First, using the projections πt : Π
c
K → Πc

P1∖{0,1,∞}, one identifies the prime divisors

of K|k (among the quasi-prime divisors described via the local theory).

(2) Second, one recovers k(u)×/k× ↪→ K̂× for all u ∈ K ∖ k, thus K×/k× ↪→ K̂× as
a subgroup. One also recovers the projective lines lf,g := (kf + kg)×/k× ⊂ K×/k×,
where f, g ∈ K are k-linearly independent, as being lf,g = f · l1,u with u = g/f .

(3) Finally, apply the fundamental theorem of projective geometry [2] to obtain (K,+)
as a k-vector space, and use the compatibility with the multiplicative structure of
K×/k× to obtain the field structure of K.

Moreover, one shows that the recipes in steps (1), (2) and (3) are invariant under the action
of PAutc(Πa

Vbir
0
). Thus one obtains a morphism

PAutc(Πa
Vbir
0
)→ AutΣ0(K) = Gal(Q|Q)

which is then shown to be the inverse of the canonical map Gal(Q|Q)→ PAutc(Πa
Vbir
0
).

In practice, both steps (1) and (2) above rely on the so-called local theory whereby one
detects inertia and decomposition groups in Πa

K , associated to quasi-prime divisors of K|k.
This local theory builds on the theory of rigid elements [1] which exploits the field structure
of K; see [23]. Furthermore, in order to recover lf,g in step (2), one uses l1,u with u = g/f .
Hence in step (2) one also relies on the full field structure ofK, see [21] for more on the general
global theory. Thus, both the local and global parts of the BP strategy used to obtain the
equality Gal(Q|Q) = Autc(Πa

Vbir
0
) depend in an essential way on being in a birational context.

As outlined in §1.3, we still have a local and a global portion to the proof of our Main
Theorem, and we again eventually rely on the fundamental theorem of projective geome-
try [2]. However, if one mimics the BP strategy outlined in the steps above, then Kummer

Theory yields the subgroup of K̂× generated by Kummer classes of functions of the form
a+bx+cy ∈ K, a, b, c ∈ k. While this subgroup is contained in K×/k×, it is not a projective-
linear subspace, and thus the BP strategy breaks down. In other words, there is no (obvious
or non-obvious) candidate for a k-projective space arising from Kummer Theory that plays
the role of K×/k×. Therefore we had to develop some genuinely new techniques for both
the local and global portions of our argument which do not rely on the arithmetic structure
of function fields of any of the varieties involved, and which do not apply the fundamental
theorem of projective geometry on an object constructed using Kummer theory.

2. Preparation and results

We now introduce the notation and terminology necessary to state our main result.

2.1. Hyperplane arrangements. Let k be an algebraically closed field which will be fixed
throughout. By a variety, we mean a k-variety, i.e. an integral scheme which is separated
and of finite type over k. We will always omit k from the notation whenever possible. For
example, we write An for An

k , Pn for Pn
k , etc.

A morphism of varieties is a morphism of k-schemes and we denote by Var the category
of varieties. If k0 is a subfield of k, we say that a variety X resp. a morphism of varieties

5



X → Y is defined over k0 if it is the base-change of some k0-variety resp. some morphism of
k0-varieties. If X is a variety, then by a closed subvariety of X we mean a reduced closed
subscheme of X; in particular, our convention is that subvarieties may have many irreducible
components. If Z ⊂ X is a closed subvariety and X is the base-change of a k0-scheme X0,
then we say that Z is defined over k0 provided that Z is the base-change of some closed
subscheme Z0 ⊂ X0.
Let A be a variety and x1, . . . , xn ∈ O(A) be given. Put x := (x1, . . . , xn) and consider the

induced map A→ An defined by ti 7→ xi. We will say that the pair (A,x) is an affine space
provided that this map is an isomorphism, and in this case call x a system of coordinates
on A. We will usually omit x from the notation when referring to affine spaces, and simply
write A instead of (A,x).

A partial system of coordinates z = (z1, . . . , zm) on a variety A is a tuple which can be
extended to a system of coordinates. If x = (x1, . . . , xm) is a (partial) system of coordinates,
we write Am

x for Spec[x1, . . . , xm] with the xi considered as indeterminant variables, and write
πx : A → Am

x for the associated projection which sends the element xi ∈ k[x1, . . . , xm] to
xi ∈ O(A). If x = (ϖ) consists of a single element, we abbreviate the notation as A1

ϖ := A1
x

and πϖ : A→ A1
ϖ for the associated projection.

Let A be an affine space with system of coordinates x = (x1, . . . , xn). By a hyperplane we
mean a closed subvariety of A which is the zero-locus of a function of the form

a0 + a1 · x1 + · · ·+ an · xn, ai ∈ k, (a1, . . . , an) ̸= 0.

Note that the notion of a hyperplane in A depends implicitly on a choice of system of
coordinates x, and we will ensure that x is clear from context whenever we speak about
hyperplanes.

Such hyperplanes will usually be denoted using the letter H possibly decorated in some
way. If ϖ := a0 + a1 · x1 + · · · + an · xn is a function as above, we will write Hϖ for the
associated hyperplane obtained as the zero-locus of ϖ. The collection of all hyperplanes
in an affine space A will be denoted by PlanesA, or just Planes if A is understood from
context.

A hyperplane arrangement in an affine space A is a finite union of the form

H1 ∪ · · · ∪ Hn, Hi ∈ PlanesA,

considered as a reduced closed subvariety of A. Hyperplane arrangements will usually be
denoted using the letter H possibly decorated in some way. Given a hyperplane arrangement
H in A, we write UH := A∖H for its complement.
If x = (x1, . . . , xn) is a system of coordinates for an affine space A, ϖ ∈ k[x1, . . . , xn] is a

linear polynomial whose zero-locus is a hyperplane Hϖ, and H is a hyperplane arrangement
in A which contains Hϖ, then πϖ : A → A1

ϖ restricts to a morphism πϖ : UH → Gm. If H
also contains H1−ϖ, then we may restrict further to obtain πϖ : UH → P1 ∖ {0, 1,∞}.

2.2. The category H . Let k0 be a perfect field with algebraic closure k, and S ⊂ k0 any
subset with 0 ∈ S. Let A be an affine space with system of coordinates x = (x1, . . . , xn). We
define a subcategory Hk0,A of Var as follows. The objects of Hk0,A are UH for H hyperplane
arrangements in A which are defined over k0 (as a closed subvariety of A). The morphisms
in Hk0,A are the inclusions UH1 ↪→ UH2 whenever H2 ⊂ H1. We write Hx,S for the smallest
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subcategory of Var containing Hk0,A, the object P1 ∖ {0, 1,∞}, and the projections

πϖ : UH → P1
k ∖ {0, 1,∞}

for ϖ any function of the form xi − c for 1 ≤ i ≤ n and c ∈ S, or of the form xi − xj for
1 ≤ i < j ≤ n, whenever H contains the hyperplanes Hϖ and Hϖ−1. Note that the objects
and morphisms of Hx,S are all defined over k0.

2.3. Fundamental groups. Let ℓ be a prime different from the characteristic of k, and Λ
any nontrivial quotient of Zℓ. Both ℓ and Λ will be fixed from now on, and we shall write
Hi(−) instead of Hi(−,Λ). For a profinite group Π, write Π(2) for the left kernel of the
canonical pairing

Π× H1(Π)→ Λ,

and put Πa = Π/Π(2). Inflation provides a canonical isomorphism

H1(Πa) ∼= H1(Π)

and so the usual five-term exact sequence restricts to an exact sequence of the form

0→ H1(Π(2))Π
d2−→ H2(Πa)→ H2(Π).

Let H2(Πa)dec denote the submodule of H2(Πa) generated by cup-products of elements of
H1(Πa), and let H1(Π2)Π0 denote its preimage in H1(Π(2))Π. We shall write Π(3) for the left
kernel of the canonical pairing

Π(2) × H1(Π(2))Π0 → Λ

and put Πc := Π/Π(3).
For a k-variety X, we write ΠX for the étale fundamental group of X with respect to

some base point, and Πc
X resp. Πa

X for the quotients of ΠX as defined above. For ⋆ ∈ {a, c},
the object Π⋆

X is functorial in X, taking values in the category ProfOut. Whenever V is a
subcategory of Var, we write Π⋆

V for the restriction of the functor X 7→ Π⋆
X to V . Note that

we have a natural surjective morphism Πc
V ↠ Πa

V , and any automorphism of Πc
V induces a

compatible automorphism of Πa
V . We write

Autc(Πa
V) := image (Aut(Πc

V)→ Aut(Πa
V))

for the group of automorphisms of Πa
V which lift to an automorphism of Πc

V .
Note that Λ× acts on the functor Πa

V canonically, namely ε ∈ Λ× acts on Πa
X by multipli-

cation since it is, in particular, a Λ-module. We put PAut(Πa
V) := Aut(Πa

V)/Λ
×, and write

PAutc(Πa
V) for the image of Autc(Πa

V) in PAut(Πa
V).

Suppose now that k0 is a perfect subfield of k whose algebraic closure is k. If the objects
and morphisms in V are all defined over k0, then functoriality provides us with a canonical
morphism

ρ : Gal(k|k0)→ Autc(Πa
V) ↠ PAutc(Πa

V).
7



2.4. Main result. The Main Theorem stated in subsection 1.2 is the special case of the
following general result, where k0 = Q, n = 2, S = {0} and Λ = Zℓ.

Theorem A. Let k0 be a perfect field of characteristic ̸= ℓ with algebraic closure k, and S
a set of generators of k0 as a field extension of its prime subfield, with 0 ∈ S. Let A be an
affine space of dimension at least two with system of coordinates x = (x1, . . . , xn). Then the
canonical map

ρ : Gal(k|k0)→ PAutc(Πa
Hx,S

)

is an isomorphism.

3. Cohomology

Throughout this work, we write Hi(−) := Hi(−,Λ(i)) for the i-th (geometric) étale coho-
mology group (ℓ-adic cohomology in the case Λ = Zℓ) with values in the Tate twist Λ(i).
We will specify the coefficients in cohomology if they differ from the convention above.

3.1. Kummer classes of hyperplanes. Let A be an affine space with system of coordinates
x = (x1, . . . , xn). Let H a hyperplane in A and ϖ ∈ k[x1, . . . , xn] be a linear polynomial
whose zero-locus is H. Recall that ϖ can be considered as a morphism πϖ : A → A1 which
restricts to a morphism πϖ : A∖ H→ Gm. If U is any nonempty open subset of A1 and V
any nonempty open subset of π−1

ϖ (U), then we denote by πϖ : V → U the morphism induced
by restricting πϖ and

ιH : H1(U)→ H1(V )

the corresponding morphism on cohomology. These morphisms are of course compatible
with restriction along open sets.

In the case where U = Gm = A1∖{0}, hence H1(U) = H1(Gm) = Λ, we write [H] := ιH(1)
and call [H] the Kummer class associated to H. As the notation suggests, [H] ∈ H1(V )
only depends on H, and not on the choice of x or ϖ whose zero-locus is H. The following
well-known fact follows from the rationality of A.

Fact 3.1. Let H be a hyperplane arrangement in A with distinct irreducible components
H1, . . . ,Hn. Then the set {[H1], . . . , [Hn]} forms a basis for H1(UH). Furthermore, the residue
maps ∂Hi

: H1(UH) → H0(UH ∩ Hi) = Λ associated to Hi satisfy ∂Hi
[Hj] = δi,j where δi,j

denotes the Kronecker δ-function taking values in Λ.

Proof. Identify A with An, embed An into Pn in the usual way, and write H∞ for the hyper-

plane of Pn at infinity. Write H̃ for the closure of H in Pn and ŨH for the complement of

H̃. By cohomological purity, the inclusion UH ↪→ A ↪→ Pn induces an exact sequence of the
form

0→ H1(Pn)→ H1(UH)→ H0(H∞ ∩ ŨH)⊕
⊕
i

H0(H ∩ UH)→ H2(Pn,Λ(1)).

Now H2(Pn,Λ(1)) = Λ, all the H0 terms appearing in this sequence are also Λ, and the map
on the right is simply the sum. Since H1(Pn) = 0, the assertion follows. □
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3.2. Relations. We work with hyperplanes inside a fixed affine space A in this subsection.
Note that the intersection of two hyperplanes H1,H2 in A is either empty or has codimension
two. A pair of hyperplanes (H1,H2) will be called a parallel pair provided H1 ̸= H2 and
H1 ∩H2 = ∅. A triple of hyperplanes (H1,H2,H3) will be called a dependent triple provided
H1,H2,H3 are distinct and H1 ∩ H2 ∩ H3 has codimension two in A.

Lemma 3.2. Let H be a hyperplane arrangement in A whose distinct irreducible components
are H1, . . . ,Hn. Then the following relations hold in H2(UH):

(1) If (Hi,Hj) form a parallel pair, then [Hi] ∪ [Hj] = 0.
(2) If (Hi,Hj,Hk) are a dependent triple, then one has ([Hi]− [Hk]) ∪ ([Hj]− [Hk]) = 0.

Proof. To obtain (2), simply note that whenever (Hi,Hj,Hk) is a dependent triple and H′ is
the hyperplane arrangement obtained from H as the closure in A of

H∖ Hi ∪ Hj ∪ Hk,

then there exists a linear morphism f : UH′ → P1 such that Hi is the fiber above 0, Hj is
the fiber above 1 and Hk is the fiber above ∞. We thus obtain a restricted linear morphism
f : UH → P1 ∖ {0, 1,∞} = A1 ∖ {0, 1}. The pullbacks with respect to f of the Kummer
classes [0], [1] ∈ H1(A1 ∖ {0, 1}) satisfy:

f ∗[0] = [Hi]− [Hk], f ∗[1] = [Hj]− [Hk].

Assertion (2) follows since H2(P1 ∖ {0, 1,∞}) vanishes.
Assertion (1) is obtained similarly by identifying A with An via some choice of coordinates

so that UH can be identified as the complement of Pn of H∪H∞ where H∞ is the (projective)
hyperplane at infinity. The argument for case (2) above goes through, mutatis mutandis,
with H∞ in place of Hk. □

Remark 3.3. The relations appearing in Lemma 3.2 are well-known and are used in defining
Orlik-Solomon algebras associated to hyperplane arrangements.

3.3. The universal case. We now pass to colimits over certain Zariski open subsets. If A
is any affine space, we define

H∗
A := lim−→

UH

H∗(UH)

where UH varies over Hk0,A. If x := (x1, . . . , xn) is a system of coordinate on A, we will also
write H∗

x := H∗
A. In the case where x = (ϖ) is a singleton, we write H∗

ϖ := H∗
x.

We have an obvious notion of Kummer classes [H] ∈ H1
A associated to hyperplanes H of

A, and the discussion of §3.1 shows that these Kummer classes form a basis for H1
A. For H

as above, the canonical morphism H1(UH) → H1
A is injective and its image is generated by

[H] for H varying over the irreducible components of H. The following relations involving
Kummer classes of hyperplanes in A hold true in H2

A by Lemma 3.2:

(1) [H1] ∪ [H2] = 0 for parallel pairs (H1,H2).
(2) ([H1]− [H3]) ∪ ([H2]− [H3]) = 0 for dependent triples (H1,H2,H3).

3.4. Linear projections. Let A be an affine space and z = (z1, . . . , zm) a partial system
of coordinates on A. Consider the induced morphism πz : A → Am

z . Restricting to the
appropriate open subsets, and passing to cohomology and the colimit, we obtain a canonical
morphism

ιz : H
∗
z → H∗

A.
9



If H is a hyperplane in Am
z , then π−1

z H is a hyperplane in A and their Kummer classes are
compatible in the sense that one has ιz[H] = [π−1

z H]. It follows easily from this that ιz is
injective and its image is generated by Kummer classes of the form [π−1

z H] for H varying
over the hyperplanes in Am

z .

3.5. Residue maps. Let A be an affine space and H ⊂ A a hyperplane. We have a canonical
residue map

∂H : Hi+1
A → Hi

H

obtained from the usual residue maps associated to H by passing to the colimit. These
residue maps can be calculated using the following formulas:

(1) One has ∂H[H] = 1.
(2) One has ∂H[H

′] = 0 for H′ a hyperplane distinct from H.
(3) If H′ is a hyperplane and H ∩H′ is a hyperplane in H, then ∂H([H] ∪ [H′]) = [H ∩H′].

We write

UH := ker(∂H : H1
A → H0

H).

We have a canonical specialization map sH : UH → H1
H defined on the level of cohomology

by restriction. Explicitly, this specialization map satisfies sH[H
′] = ∂H([H] ∪ [H′]). We define

U1
H := ker(sH : UH → H1

H).

Clearly, sH is surjective and thus it induces an isomorphism UH/U
1
H
∼= H1

H. The submodules
U1

H ⊂ UH can be described explicitly using the description of ∂H above, as follows.

Fact 3.4. The following hold:

(1) UH is generated by Kummer classes of the form [H1] for hyperplanes H1 ̸= H.
(2) U1

H is generated by the following:
(a) Kummer classes [H1] where (H,H1) is a parallel pair.
(b) Differences [H1]− [H2] where (H,H1,H2) is a dependent triple.

Proof. These properties follow from the explicit description of H1 in terms of residue maps
appearing in Fact 3.1. □

4. Fundamental groups

For a variety X let ΠX , Π
(2)
X , Π

(3)
X , Πa

X and Πc
X be as defined in §2.3. We also put

Πδ
X := Π

(2)
X /Π

(3)
X . These groups fit in a central extension of the form

1→ Πδ
X → Πc

X → Πa
X → 1,

with both Πa
X and Πδ

X being Λ-modules. The commutator in Πc
X induces a Λ-bilinear map

[−,−] : ∧2Πa
X → Πδ

X

defined as [σ, τ ] := σ̃ · τ̃ · σ̃−1 · τ̃−1, where σ̃, τ̃ ∈ Πc
X denote lifts of σ, τ ∈ Πa

X .
10



4.1. Duality. Let X be a smooth quasi-projective variety which is isomorphic to the com-
plement of finitely many hyperplanes in an affine space. There exists a well-known duality
between the 2-truncation of H∗(X) and Πc

X , which we now summarize. Write R(X) for the
kernel of the cup-product map ∧2H1(X)→ H2(X). We have a perfect pairing of the form

(4.1) Πa
X × H1(X)→ Λ.

Indeed, in the case where Λ is finite this is a consequence of Pontryagin duality, while the case
Λ = Zℓ follows by passing to the limit over the finite quotients of Zℓ and using the explicit
description of H1(X) from §3.1. Note that both H1(X) and Πa

X are finitely-generated free Λ-
modules of the same rank. The dual with respect to (4.1) of the inclusion R(X) ↪→ ∧2H1(X)
factors through the commutator [−,−] : ∧2Πa

X → Πδ
X . Thus we have a natural pairing

(4.2) Πδ
X ×R(X)→ Λ

Which is compatible with (4.1) as described above.

4.2. The universal case. We now pass to limits analogously to the discussion from §3.3.
Let A be an affine space. We define

Π⋆
A := lim←−

UH

Π⋆
UH

, ⋆ ∈ {a, c}, Πδ
A := ker(Πc

A → Πa
A),

where UH varies over Hk0,A. The pairing (4.1) extends to a perfect pairing

(4.3) Πa
A ×H1

A → Λ.

If x = (x1, . . . , xn) is a system of coordinates on A, we may write Π⋆
x := Π⋆

A, ⋆ ∈ {a, c, δ},
and if x = (ϖ) is a singleton, we write Π⋆

ϖ := Π⋆
x, ⋆ ∈ {a, c, δ}. Given an element α ∈ H1

A

and σ ∈ Πa
A, we write σα ∈ Λ for the image of (σ, α) under the pairing (4.3).

The commutator [−,−] : ∧̂2Πa
A → Πδ

A is not injective in general. Describing its kernel
boils down to dualizing the cup-product ∧2H1

A → H2
A and using the relations among cup-

products of Kummer classes discussed in §3.3. We will only need the following properties.

Lemma 4.1. Let σ, τ ∈ Πa
A be given and assume that [σ, τ ] = 0 in Πδ

A.

(1) For all parallel pairs (H1,H2), one has

σ[H1] · τ [H2] = σ[H2] · τ [H1].

(2) For all dependent triples (H1,H2,H3), one has

(σ[H1]− σ[H3]) · (τ [H2]− τ [H3]) = (σ[H2]− σ[H3]) · (τ [H1]− τ [H3]).

Proof. This follows from the compatibility of the pairings (4.1) and (4.2), and Lemma 3.2.
See the discussion of §3.3. □

4.3. Linear projections. Let z = (z1, . . . , zm) be a partial system of coordinates in an
affine space A. Consider the morphism πz : A → Am

z . By restricting to the appropriate
open subsets, applying the functor X 7→ Π⋆

X , ⋆ ∈ {a, c}, and passing to the limit, we obtain
canonical morphisms

πz : Π
⋆
A → Π⋆

z.

The map πz : Π
a
A → Πa

z is easily seen to be dual to ιz : H
1
z → H1

A with respect to (4.3).
11



5. The local theory

The primary goal of this section is to provide a characterization of hyperplanes in an affine
space A using decomposition theory within Πa

A.

5.1. Inertia and decomposition groups. Let H be a hyperplane in an affine space A
and recall that we have introduced two submodules U1

H ⊂ UH ⊂ H1
A in §3.5. We define

IH resp. DH as the orthogonal of UH resp. U1
H with respect to the pairing (4.3). Note

that IH ⊂ DH, and the quotient DH/IH is canonically isomorphic to Πa
H because of the

specialization isomorphism UH/U
1
H
∼= H1

H and the duality described in (4.3). Note that
IH ∼= Λ since H1

A/UH
∼= Λ.

Explicitly, IH is the space of all σ ∈ Πa
A such that σ[H1] = 0 for all hyperplanes H1 distinct

from H. Similarly DH is the space of all σ ∈ Πa
A such that for all parallel pairs of the form

(H,H1), one has σ[H1] = 0, and for all dependent triples of the form (H,H1,H2), one has
σ[H1] = σ[H2]. See Fact 3.4.

We call IH resp. DH the inertia resp. decomposition groups associated to H. These sub-
groups of Πa

A agree with the usual inertia resp. decomposition groups associated to the prime
Weil divisor H. The following is a well-known property of inertia/decomposition groups of
prime divisors.

Fact 5.1. Let H be a hyperplane in an affine space A, and let σ ∈ IH and τ ∈ DH be given.
Then [σ, τ ] = 0.

We will also need a converse to this assertion.

Lemma 5.2. Let H be a hyperplane in an affine space A, and σ a generator of IH. Suppose
τ ∈ Πa

A satisfies [σ, τ ] = 0. Then τ ∈ DH.

Proof. This follows from the explicit description of U1
H along with Lemma 4.1. Indeed, note

first that σ[H] ∈ Λ× and σ[H′] = 0 for all H′ ̸= H, since σ generates IH. If (H,H1) is a parallel
pair, then one has

σ[H] · τ [H1] = σ[H1] · τ [H] = 0

by Lemma 4.1, and as σ[H] is a unit it follows that τ [H1] = 0. If (H,H1,H2) is a dependent
triple then the same lemma implies similarly that

σ[H] · (τ([H1]− [H2])) = (σ[H1]− σ[H2]) · (τ [H]− τ [H2]) = 0,

hence τ([H1]− [H2]) = 0. As U1
H is generated by [H1] for parallel pairs (H,H1) and [H1]− [H2]

for dependent triples (H,H1,H2), we find that τ ∈ D1
H as contended. □

5.2. The main local theorem. Our task is to prove the following result which will be used
to parameterize hyperplanes in the proof of the main theorem.

Theorem 5.3. Let A be an affine space of dimension ≥ 2 with coordinates x = (x1, . . . , xn).
Let I ⊂ D be submodules of Πa

A and let i ∈ {1, . . . , n} be given, and let z be the partial
system of coordinates obtained from x by deleting xi. Then there exists a hyperplane H0

which dominates An−1
z via πz, such that I = IH0 and D = DH0, if and only if there exists

some σ ∈ I with σ /∈ ℓ ·Πa
A such that I = Λ · σ,

D = C(σ) := {τ ∈ Πa | [σ, τ ] = 0},
and the following additional conditions hold:

12



An−1
z

H0

H1

H2

H′
2 H′

1

Figure 1. Configuration for proof of Theorem 5.3.

(1) There exists some hyperplane H′ which dominates An−1
z via πz such that σ[H′] = 0.

(2) The element σ maps trivially under πz : Π
a
A → Πa

z.
(3) The map D/I→ Πa

z induced by πz is an isomorphism.

The rest of this section will be devoted to proving this key result.

5.3. The implication “⇒”. Suppose first that i ∈ {1, . . . , n} is given, z is as in the
statement of the theorem, and that there exists a hyperplane H0 dominating An−1

z such
that IH0 = I and DH0 = D. Then I = IH0 has a generator σ satisfying σ[H0] = 1 hence
σ /∈ ℓ ·Πa

A. Also σ[H] = 0 for all hyperplanes H ̸= H0, by the explicit description of IH0 , and
so condition (1) clearly holds true for any hyperplane H′ dominating An−1

z which is distinct
from H0. Condition (2) follows from the fact that H0 dominates An−1

z . As for condition (3),
recall that DH0/IH0

∼= Πa
H0
, and the induced map Πa

H0
→ Πa

z is simply the map obtained by
functoriality (and taking limits) from the composition

H0 ↪→ A
πz−→ An−1

z

which is an isomorphism of varieties. This map DH0/IH0 → Πa
z is thus also an isomorphism,

so condition (3) follows. Lastly, we have DH0 = C(σ) by Fact 5.1 and Lemma 5.2.

5.4. The implication “⇐”. Suppose now that z and σ are as in the statement of the
theorem so that conditions (1), (2) and (3) hold true and I = Λ ·σ, D = C(σ). Since σ is not
a multiple of ℓ by assumption, there is a hyperplane H0 such that σ[H0] ∈ Λ×. Condition
(2) implies that H0 dominates An−1

z , for otherwise its image would be a hyperplane in An−1
z

and thus the image of σ in Πa
z would have to be nontrivial. Our goal is thus to show that

Λ · σ = IH0 and C(σ) = DH0 . We will use the explicit descriptions of IH0 and DH0 to do this.
Let us show that σ[H] = 0 for all hyperplanes H ̸= H0. Suppose first that H1 is a

hyperplane such that (H0,H1) form a parallel pair. Choose a distinct hyperplane H2 which
dominates An−1

z and which meets H0. Note that H2 necessarily meets H1 as well. There exist
two distinct hyperplanes which are vertical over An−1

z say H′
1, H

′
2, such that (H0,H2,H

′
1) and

(H1,H2,H
′
2) are dependent triples, see Figure 1 for a picture in the two-dimensional case.

Explicitly, H′
1 = π−1

z (πz(H0 ∩ H2)) and H′
2 = π−1

z (πz(H1 ∩ H2)).
By condition (3), there exists some τ ∈ C(σ) such that τ [H′

1] = 0 and τ [H′
2] = 1. And by

condition (2), we have σ[H′
1] = σ[H′

2] = 0. Put αi := σ[Hi] and βi := τ [Hi]. Since (H0,H1) is
13



a parallel pair and [σ, τ ] = 0, by Lemma 4.1, we have

(5.1) α0 · β1 = α1 · β0.

Also, since (H0,H2,H
′
1) is a dependent triple with τ [H′

1] = 0 and σ[H′
1] = 0, we have again

from Lemma 4.1 that

(5.2) α0 · β2 = α2 · β0.

Recall that α0 ∈ Λ×, so we may solve for β1, β2 as follows:

(5.3) β1 =
α1 · β0

α0

, β2 =
α2 · β0

α0

.

Next, since (H1,H2,H
′
2) is a dependent triple, with τ [H′

2] = 1 and σ[H′
2] = 0, we have from

Lemma 4.1 that

(5.4) α1 · (β2 − 1) = α2 · (β1 − 1).

Substituting equation (5.3), we find

(5.5) α1 ·
(
α2 · β0

α0

− 1

)
= α2 ·

(
α1 · β0

α0

− 1

)
.

Subtracting a term of the form (α1 · α2 · β0)/α0 from both sides and negating, we find that
α1 = α2. To summarize, we have obtained the following.

Lemma 5.4. In the above context, suppose that (H0,H1) is a parallel pair, and that H2 is a
distinct hyperplane which dominates An−1

z and which meets H0. Then σ[H1] = σ[H2].

Let H′ be as in condition (1), so that H′ dominates An−1
z and σ[H′] = 0. As σ[H0] ̸= 0,

we have H0 ̸= H′. If (H0,H
′) is not a parallel pair, then we choose a distinct hyperplane H1

such that (H0,H1) is a parallel pair, while Lemma 5.4 ensures that σ[H1] = σ[H′] = 0. In
any case, we deduce the following.

Lemma 5.5. There exists a parallel pair of the form (H0,H1) such that σ[H1] = 0.

Let H1 be as in Lemma 5.5. Now suppose that H2 is any hyperplane distinct from H0. We
wish to show that σ[H2] = 0. If H2 = H1 then we are done, and if H2 is vertical over An−1

z

then we are done by condition (2). If (H0,H2) is a parallel pair and H2 ̸= H1, then we may
choose a distinct hyperplane H3 which dominates An−1

z and which meets H0, hence it also
meets H1 and H2. Applying Lemma 5.4, we see that

σ[H2] = σ[H3] = σ[H1] = 0.

Finally, if H2 meets H0 and is not vertical over An−1
z , then it must dominate An−1

z , and thus
by Lemma 5.4 we have σ[H2] = σ[H1] = 0. This indeed shows that σ[H2] = 0 whenever
H2 ̸= H0, as contended. By the explicit description of IH0 , it follows that Λ · σ = IH0 , while
Fact 5.1 and Lemma 5.2 imply that C(σ) = DH0 . This concludes the proof of Theorem 5.3.

6. The proof of the main theorem

We now consider the context of Theorem A. Put G := Autc(Πa
Hx,S

). We start by con-

structing actions of G on various objects, all of which have a natural Gal(k|k0) action. As
always, when working with profinite groups we consider them as objects in the category with
outer morphisms.

14



6.1. The action on fundamental groups. Merely by definition, G acts naturally on Πa
X

for all objects X in Hx,S, in a way compatible with all of the morphisms arising from
morphisms in Hx,S and with the relation [−,−] = 0 on Πa

X in the sense that for γ ∈ G and
σ, τ ∈ Πa

X , one has [σ, τ ] = 0 if and only if [γσ, γτ ] = 0. In particular, G acts naturally on
Πa

A, compatibly with the relation [−,−] = 0, and the canonical maps

πz : Π
a
A → Πa

P1∖{0,1,∞},

are G-equivariant for all z of the form xi − s where 1 ≤ i ≤ n and s ∈ S, or of the form
xi − xj where 1 ≤ i < j ≤ n.

For every object X of Hx,S, we may also define an action of G on H1(X) by identifying it
with Hom(Πa

X ,Λ) via (4.1). Note that G acts trivially on Λ in this formula.
Passing to the colimit, we obtain a natural action of G on H1

A, and the maps

ιz : H
1(P1 ∖ {0, 1,∞})→ H1

A

are G-equivariant as well for the z as above.

6.2. Linear projections. The goal of this subsection is to prove the following technical
proposition.

Proposition 6.1. Let z be any partial system of coordinates contained in x. The action of
G on H1

A restricts to an action on the image of the embedding ιz : H
1
z ↪→ H1

A.

Proof. We proceed by induction on the length of z with the base-case where z is empty is
vacuously true. Write z = (z1, . . . , zm) and w = (z1, . . . , zm, w) with both z and w being
contained in x, and assume the result holds true for z. We will characterize the image of
ιw : H1

w → H1
A using the following data:

(1) The image of ιz : H
1
z → H1

A.
(2) The image of ιw : H1(P1 ∖ {0, 1,∞})→ H1

A.
(3) The pairing Πa

A ×H1
A → Λ.

(4) The relation [−,−] = 0 on Πa
A.

This suffices since the action G is compatible with items (2), (3) and (4) by definition, and
is compatible with (1) by the inductive hypothesis. Precisely, we claim that α ∈ H1

A is in
the image of ιw : H1

w → H1
A if and only if it satisfies the following condition.

Condition 6.2.1. For all β in the image of ιw : H1(P1 ∖ {0, 1,∞}) → H1
A and for all

σ, τ ∈ Πa
A which pair trivially with the image of ιz : H

1
z → H1

A and which satisfy [σ, τ ] = 0,
one has σα · τβ = σβ · τα.

First let us show that any element in the image of ιw : H1
w → H1

A satisfies this condition.
As this condition is clearly linear in α, it suffices to show that the Kummer classes [H], with
H a hyperplane vertical over Am+1

w , satisfy this condition. So let H be such a hyperplane,
and let β, σ and τ be as in the condition. Write β = a · [Hw] + b · [H1−w] with a, b ∈ Λ. If
H is vertical over Am

z , then the assertion is clear as one has σ[H] = τ [H] = 0. Otherwise,
H dominates Am

z , hence there exist two hyperplanes H1, H2 which are vertical over Am
z such

that (H,Hw,H1) and (H,H1−w,H2) are dependent triples. As σ[Hi] = τ [Hi] = 0, the assertion
15



follows from Lemma 4.1 as follows:

σ[H] · τβ = σ[H] · (a · τ [Hw] + b · τ [H1−w])

= a · σ[H] · τ [Hw] + b · σ[H] · τ [H1−w]

= a · (σ[H]− σ[H1]) · (τ [Hw]− τ [H1]) + b · (σ[H]− σ[H2]) · (τ [H1−w]− τ [H2])

= a · (σ[Hw]− σ[H1]) · (τ [H]− τ [H1]) + b · (σ[H1−w]− σ[H2]) · (τ [H]− τ [H2])

= a · σ[Hw] · τ [H] + b · σ[H1−w] · τ [H]
= σβ · τ [H].

As for the converse, let α ∈ H1
A be given and write α as a linear combination of the form

α =
∑
H

cH · [H]

where H varies over all hyperplanes in A and cH ∈ Λ. Assume α satisfies Condition 6.2.1.
We must show that cH = 0 for any H which is not vertical over Am+1

w . Let H be such a
hyperplane, and take β = [Hw]. Let σ be the unique element of Πa

A acting on Kummer
classes of hyperplanes as the indicator function of [H], and note that σ generates IH. Note
that H ∩ Hw is a hyperplane in H which is not of the form H ∩ H′ for any hyperplane H′

which is vertical over Am
z . Let τ ∈ Πa

H be an element which satisfies τ [H ∩ Hw] = 1 and
τ [H∩H′] = 0 for all H′ vertical over Am

z . Choose τ ∈ DH mapping to τ under the projection
DH ↠ Πa

H. Recall that [σ, τ ] = 0 by Fact 5.1, while both σ and τ pair trivially with the
image of ιz : H

1
z → H1

A. Condition 6.2.1 can therefore be applied with this β, σ and τ , and
the equation appearing in this condition reduces to cH = 0, as required. □

Proposition 6.1 shows that the image of ιz : H1
z ↪→ H1

A is invariant under the action of
G for any partial system of coordinates z contained in x. We define an action of G on H1

z

via this inclusion, and this allows us to define an action of G on Πa
z by identifying it with

Hom(H1
z,Λ) via (4.3). The canonical projection πz : Πa

A → Πa
z is then G-equivariant by

definition.

6.3. The action on hyperplanes. We now construct an action of G on the hyperplanes
in A which is compatible with decomposition theory. For the rest of the proof, we write
Planes := PlanesA.

Proposition 6.2. There is an action of G on Planes which is uniquely determined by the
condition that for γ ∈ G and a hyperplane H, one has γIH = IγH, and γDH = DγH.

Proof. Let H be a hyperplane in A and γ ∈ G be given. Since two hyperplanes are equal if
and only if their inertia groups are equal, it suffices to show that there exists a hyperplane
H0 such that γIH = IH0 and γDH = DH0 .
We will use Theorem 5.3 to do this. Let σ′ ∈ IH be a generator and put σ := γσ′. Let z

be a partial system of coordinates obtained by deleting one of the xi such that H dominates
An−1

z . By Theorem 5.3, we have DH = C(σ′), and the following conditions hold:

(1) For every hyperplane H′ ̸= H, one has σ′[H′] = 0.
(2) The element σ′ maps trivially under πz : Π

a
A → Πa

z.
(3) The map C(σ′)/Λ · σ′ → Πa

z induced by πz is an isomorphism.
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Since the action of γ is compatible with [−,−] = 0, we have γDH = C(σ). Also, since
πz : Πa

A → Πa
z is G-equivariant as noted above, we see that σ maps trivially under πz and

that the induced map C(σ)/Λ · σ → Πa
z is an isomorphism.

To conclude using Theorem 5.3, we must therefore show that there exists some hyperplane
H′ dominating An−1

z such that σ[H′] = 0. If H has the form Hxj
or Hxj−1, then σ′ pairs trivially

with both [Hxr−xs ] and [Hxr−xs−1] for every 1 ≤ r < s ≤ n, hence the same is true for σ since

ιxr−xs : H
1(P1 ∖ {0, 1,∞})→ H1

A

is γ-equivariant with image ⟨[Hxr−xs ], [Hxr−xs−1]⟩. Otherwise σ′ pairs trivially with [Hxj
],

[Hxj−1], so the same argument shows that σ pairs trivially with [Hxj
] and [Hxj−1] as

ιxj
: H1(P1 ∖ {0, 1,∞})→ H1

A

is also γ-equivariant. In any case, there exists some hyperplane H′ dominating An−1
z such

that σ[H′] = 0, and this concludes the proof using Theorem 5.3. □

Recall that the pairing (4.3) is G-equivariant, where G acts trivially on Λ, while the
orthogonal of IH resp. DH with respect to this pairing is UH resp. U1

H. We therefore deduce
the following lemma as well.

Lemma 6.3. Let γ ∈ G, H ∈ Planes be given. One has γUH = UγH and γU1
H = U1

γH.

We will also need the following variant involving Kummer classes.

Lemma 6.4. Let γ ∈ G and H ∈ Planes be given. Then one has Λ · γ[H] = Λ · [γH].

Proof. Note that

Λ · [H] =
⋂
H′ ̸=H

UH′ .

The lemma therefore follows from Lemma 6.3. □

And finally, we will need the following lemma showing compatibility with parallel pairs
and dependent triples.

Lemma 6.5. Let γ ∈ G and H1,H2,H3 ∈ Planes be given. The following hold:

(1) If (H1,H2) is a parallel pair then so is (γH1, γH2).
(2) If (H1,H2,H3) is a dependent triple then so is (γH1, γH2, γH3).

Proof. Both assertions follow from Lemmas 6.3 and 6.4, the explicit descriptions of UH and
U1

H, and the explicit description of sH, using the following characterizations. First, a pair of
distinct hyperplanes (H1,H2) is a parallel pair if and only of Λ · [H1] ⊂ U1

H2
. Second, a triple

of distinct hyperplanes (H1,H2,H3) is a dependent triple if and only if the images of Λ · [H1]
and of Λ · [H2] are nontrivial and agree in the quotient UH3/U

1
H3
. □

6.4. The dual projective space. Given H ∈ Planes, let p(H) = (a0 : · · · : an) ∈ Pn(k)
denote the unique point, written in homogeneous coordinates, where H is the zero-locus of
a0 + a1 · x1 + · · ·+ an · xn. Note that p : Planes→ Pn(k) is a well-defined embedding whose
image consists of every point of Pn(k), except for the point p0 := (1 : 0 : · · · : 0). We define
an action of G on Pn(k) in such a way so that γ ∈ G acts as γp0 = p0 and γp(H) = p(γH)
for every H ∈ Planes.
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xi = s xi = s+ 1

xj = s

xj = s+ 1

xi = xj

xi = xj + 1

Figure 2. Dependent triples in proof of Proposition 6.7

In other words, if we identify A with An
x via our choice of coordinates, and further embed

An
x in Pn

x in the usual way, then we are identifying the hyperplanes in Pn
x with the points

in the dual projective space, and p0 corresponds to the hyperplane at infinity. Note that
the lines in this dual projective space correspond to pencils of hyperplanes in Pn

x. The
following proposition shows that the action of G on this dual projective space respects such
lines. Recall that a bijection γ : Pn(k)→ Pn(k) is called a collineation provided that for all
projective lines l in Pn(k), the image γ(l) is another projective line.

Proposition 6.6. The action of G on Pn(k) defined above acts by collineations.

Proof. This follows directly from Lemma 6.5, as follows. A triple of points of the form
(p0, p(H1), p(H2)) is colinear in Pn(k) if and only if (H1,H2) is a parallel pair. Thus elements
of G send any line passing through p0 to another line passing through p0. On the other hand,
a triple of points of the form (p(H1), p(H2), p(H3)), no two of which are colinear with p0, are
colinear in Pn(k) if and only if (H1,H2,H3) is a dependent triple. Thus, elements of G send
any line not passing through p0 to another line which does not pass through p0. □

6.5. Rigidification. We now prove the following proposition which will allow us to rigidify
the action of G on Pn(k).

Proposition 6.7. Let (z, c) ∈ {x1, . . . , xn}×S and 1 ≤ i < j ≤ n be given. The hyperplanes
Hz−c, Hz−c−1, Hxi−xj

and Hxi−xj−1 are all fixed by the action of G.

Proof. For γ ∈ G and H ∈ Planes, note that γH is the unique hyperplane such that γIH
pairs nontrivially with Λ · [γH], while Λ · [γH] = Λ · γ[H] by Lemma 6.4. For any c ∈ S
and any 1 ≤ i < j ≤ n, the maps ιw : H1(P1 ∖ {0, 1,∞}) → H1

A are G-equivariant for
w ∈ {x1 − c, . . . , xn − c, xi − xj}, with image spanned by [Hw] and [Hw−1]. Hence γ acts as
a permutation of {Hw,Hw−1} for all such w.

Note that for every c ∈ S and 1 ≤ i < j ≤ n, the following are all dependent triples:

(Hxi−s,Hxj−s,Hxi−xj
), (Hxi−s−1,Hxj−s−1,Hxi−xj

), (Hxi−s−1,Hxj−s,Hxi−xj−1),

while (Hxi−s,Hxj−s−1,Hxi−xj−1) is not a dependent triple. See Figure 2. The assertions all
follow from these observations and Lemma 6.5. □

6.6. Compatibility with the field structure. Recall that the general semilinear group
of kn+1, denoted ΓL(kn+1), is the group of semilinear automorphisms of kn+1 as a k-module.
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There is a natural map k× → ΓL(kn+1) sending x ∈ k× to the associated homothety, with
normal image, and we denote the quotient by the image of this map by PΓL(kn+1).

In light of Proposition 6.6, the fundamental theorem of projective geometry [2] applied to
this context be rephared as the assertion that that there exists a unique morphism

η : G→ PΓL(kn+1),

such that for all c = (c0, . . . , cn) ∈ kn+1 and all γ ∈ G, the element η(γ)(c) represents γ(c0 :
· · · : cn). We will show that η factors through the obvious inclusion Gal(k|k0) ↪→ PΓL(kn+1).
Fix an element γ ∈ G for the rest of this subsection and let Γ ∈ ΓL(kn+1) be a representative
of η(γ). We also write e0, . . . , en for the standard basis of the k-module kn+1.

Lemma 6.8. For all i = 0, 1, . . . , n, there exists some εi ∈ k× such that Γei = εi · ei.

Proof. Note that e0 represents p0 while, for i > 0, the element ei represents p(Hxi
). The

assertion follows from the fact that γ fixes p0 and p(Hxi
), which follows from the definition

and from Proposition 6.7. □

Lemma 6.9. Let εi be as in Lemma 6.8. Then one has ε0 = ε1 = · · · = εn.

Proof. Let 0 < i ≤ n be given. Since e0−ei represents p(Hxi−1), Proposition 6.7 ensures that
exists some ε such that Γ(e0−ei) = ε·e0−ε·ei. But Γ is additive so Γ(e0−ei) = ε0 ·e0−ε1 ·ei,
while e0 is linearly independent from ei, hence ε0 = εi. □

At this point we deduce from Lemmas 6.8 and 6.9 that η factors through the obvious
inclusion Aut(k) ↪→ PΓL(kn+1). Replace η with the corresponding map η : G → Aut(k),
and replace Γ with the element of ΓL(kn+1) obtained as the image of η(γ) ∈ Aut(k). This
means that

Γ(a0 · e0 + · · ·+ an · en) = η(γ)(a0) · e0 + · · ·+ η(γ)(an) · en.

Lemma 6.10. For all s ∈ S, one has η(γ)(s) = s.

Proof. Let 0 < i ≤ n be given. Since s · e0 − ei represents p(Hxi−s), Proposition 6.7 again
shows that one has Γ(s · e0 − ei) = ε · (s · e0 − ei), for some ε ∈ k×. On the other hand, we
have Γ(s · e0− ei) = η(γ)(s) · e0− ei. Since e0 and ei are linearly independent, we find ε = 1
and η(γ)(s) = s, as claimed. □

As S generates k0, the image of η : G → Aut(k) lands in Gal(k|k0). Note that when γ
is the image of σ ∈ Gal(k|k0), one has γHxi−c = Hxi−σc for all i = 1, . . . , n and all c ∈ k.
Unfolding the definitions, this in turn implies that, in this case, one has η(γ) = σ. In other
words, the morphism η : G → Gal(k|k0) just constructed is a section to the canonical map
ρ : Gal(k|k0) → G. Since it will come up in the following section, we note that for all
(a0 : · · · : an) ∈ Pn(k) and γ ∈ G with image σ ∈ Gal(k|k0), that one has

γ(a0 : · · · : an) = (σa0 : · · · : σan).

6.7. Conclusion. To conclude, we prove that any element in the kernel of η : G→ Gal(k|k0)
is contained in the image of the canonical map Λ× → Aut(Πa

Hx,S
). Suppose γ is in the kernel

of η. By the observation from the last subsection, it follows that γ fixes every point of Pn(k),
hence γ fixes every hyperplane H, and hence

γIH = IH, γDH = DH
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for all hyperplanes H. As IH ∼= Λ, it follows that there exists some εH ∈ Λ× such that γ acts
as multiplication by εH on IH. Since Λ · γ[H] = Λ · [H] as well, we find that there exists ε′H
such that γ[H] = ε′H · [H]. The pairing (4.3) induces a duality between IL and H1

A/UH which
is compatible with the action of γ. As H1

A/UH is generated by [H], we deduce that ε′H = ε−1
H .

Lemma 6.11. Suppose that (H1,H2,H3) is a dependent triple. Then εH1 = εH2 = εH3.

Proof. Put εi := εHi
. Let σ ∈ Πa

H1
be an element satisfying σ[H1 ∩H2] = 1, and let σ ∈ DH1

be an element mapping to σ under the canonical projection DH1 ↠ Πa
H1
. Hence σ[H2] = 1

and thus σ[H3] = 1 as well. Note that γσ is an element of DH1 as well, since γH1 = H1.
Hence:

(γσ)[H2] = σ(γ−1[H2]) = ε2 · σ[H2] = ε2,

and similarly (γσ)[H3] = ε3. But since γσ ∈ DH1 , it follows that (γσ)[H2] = (γσ)[H3], hence
ε2 = ε3. Repeating the argument with H1,H2 interchanged, we deduce the claim. □

By Lemma 6.11, we deduce that εH does not depend on H. Indeed, if H1,H2 meet, then
they are part of a dependent triple hence εH1 = εH2 . If H1,H2 do not meet, then we find a
third H3 which meets both to again deduce that εH1 = εH3 = εH2 . As Π

a
A is generated by the

IH as H ∈ Planes varies, it follows that there exists an ε such that γ acts on the whole Πa
A

as multiplication by ε. For every UH in Hx,S, the canonical map

Πa
A → Πa

UH

is surjective and γ-equivariant, hence γ acts as multiplication by ε on Πa
UH

as well. And
finally, since πz : Πa

A → Πa
P1∖{0,1,∞} is surjective for any one of the z ∈ {x1, . . . , xn}, it

follows again that γ acts as multiplication by ε on Πa
P1∖{0,1,∞}. In other words, γ acts as

multiplication by ε on Πa
X for any object X of Hx,S, which shows that, indeed, γ is in the

image of the canonical map Λ× → Aut(Πa
Hx,S

). This concludes the proof of Theorem A.
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