GENERALIZATIONS AND MINIMALISTIC REFINEMENTS OF THE
t -BIRATIONAL SECTION CONJECTURE

FLORIAN POP

ABSTRACT. In this note we give generalizations and present and prove “minimalistic” refinements
of the t-birational Section Conjecture (f-BSC), cf. [Be], by doing both: First, by extending the
class of base fields over which the #-BSC holds, and second, by proving refinements of the ¢-BSC
which involve much less, that is minimalistic, Galois theoretical information.

1. INTRODUCTION/MOTIVATION

For reader’s sake and to make the presentation self contained (to some extent), we begin by
recalling a few notations and Galois theoretical basics.

Notation/Definition 1.0. Throughout the paper, if not otherwise explicitly stated, we will use
the following notations and definitions:

- k isafield, k|k is a separable closure of k, and k|k < k|k is a Galois subextension.

- £ # char(k) is some odd prime number, fixed throughout.

- X is a complete geometrically integral normal k-curve.

- K = k(X) is its function field, hence K|k a regular field extension.

- X = X xk is the base change, thus X is normal integral.

- 7 (X):= m1(X) and 771 (K):= 711(Kk) are the geometric étale fundamental groups.

Hence get the canonical commutative diagram with exact rows:

Px pK

Ky - 1 — ﬁl(K) — 7T1(K) — 7T1(k) — 1
() & x 5  ax |
Xk 1> mxX) 5 o) B »qr -1

Let S(7tx,; ) and S(7g,, ) denote, respectively, the sets of 771 (X) -conjugacy classes of sections
s : (k) — m(X) of mx,, and 771 (K) -conjugacy classes of sections s : 711(k) — 711 (K)
of 7tg/ . Obviously, if sx € S(7tg; ), then sx:= g o sk liesin S(7Tx,.)-

Next let k;:= k(t) be the rational function field. For the base change X;:= X Xy k; and its
function field K;:= k;(X;) consider the resulting diagram (*), over k; for X; and K; below:
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nKt/kt: 1 — ﬁl (Kj) —t> 7T1(Kt) ﬂ) 71 (kt) — 1
(*)kt _$ th ?Xt $ 1x; Px, H
ﬂxt/kti 1 — 7T1(Xt) — 7'(1(Xt) — (kt) — 1

Let S(7rx,/s,) be the set of all the 771 (X;) -conjugacy classes of section s; : 711 (k¢) — 711 (X¢)
of 7x,r, * m(X¢) — mi(kt), and S(7k,/y, ) be the set of the 771 (K}) -conjugacy classes of
sections s¢ : 711 (k¢) — 711(K}) of 7tg,,  7T1(Kt) — 711(k) . One has a functorial identification
1 (Xe) = m1(X) X k) T1(ke), hence s € S(7rx/i ) <= S(7Txyp,) Via 8 8p1=8 X 1 () id.

Definition. Let pry : 1y(k;) — m1(k) and pry : m1(K¢) — 71(K) be the canonical projec-
tions, hence pr, o px, = pk o prg. Given a section s € 8(7rx,; ), we say that s is:

1) birationally liftable, if there is sx € S(7k;,) such that s = gx o sk.

2) t-birationally liftable, if there is s; € S(7k,/y, ) such that s o pr, = prg os;.

Since X is a complete normal k-curve, the points x € X are in bijection with the k-valuation
rings O, € Vali(K) of the k-valuations of K via Oy = Q. Hence x € X is closed if and only
if v € Valg(K) is non-trivial iff x(x) = x(v) is finite over k. Further, x € X(k) is k-rational iff
k(x) = k = x(v) iff v is a k -rational valuation. One has: By functoriality of 711, every x € X(k)
gives rise naturally to some sy € 8(7rx; ). Second, given a k-rational v € Vali(K), let T|v be
the prolongations of v to K |K, and T, < Z, < 7r1(K) be the inertia/decomposition groups.
Then all T|v are 771 (K) -conjugated, and so are Ty, < Z;, and the canonical exact sequence

(710) 15T 257, 75 Gy — 1 s split.

Hence the set of conjugacy classes of the sections s, € S(7k/;) defined by a k-rational v is in
bijection with the conjugacy classes of splittings of the exact sequece (71,) above, hence with
H! (G, Ty), the cohomology pointed set of Gy with valuesin T, . In particular, if char(k) = 0,

one has that T, = Z(l) , thus via Kummer Theory, one has H (G, Ty) = k.

cont
The section conjecture (SC) originates from GROTHENDIECK [G1], [G2], see [GGA], and asserts:

Grothendieck SC. Let k|Q be a finitely generated field and X be a projective hyperbolic k -curve.
Thenall s € S(7tx; ) arise form x € X (k) as described above and X (k) — S(7tx,,) is a bijection.

There are several variants of section conjectures as follows. The birational section conjec-
ture (BSC) asserts that in the context of SC, letting K = k(X) be the function field of X, all
sections s € 8(7g); ) arise from k-rational valuations v of K|k, thus from k-rational points
x € X(k) as explained above. The p-adic SC and p-adic BSC are obtained by replacing the
f.g. field k|Q by a p-adic field k, i.e., by a finite field extension k]Qp. Finally, in the context of
Grothendieck SC, the ¢ -BSC asserts that any section s € S(7rx,, ) whichis ¢ -birationally liftable
originates form a k-rational point x € X (k) as explained above, using the fact that x € X(k)
gives rise canonically to the k;-rational point x;:= x X k; € X¢(kt) of X; = X Xy k¢, etc.

Concerning results, conditional/weaker forms of the SC are part of the local theory in an-
abelian geometry by NAKAMURA [Na], TAMAGAWA [Ta], MocHIZUKI [Mz1], see e.g. the survey articles
FALTINGS [Fa], SzAMUELY [Sz]. One can say that SC is wide open, and there are only a few com-
plete unconditional results concerning forms of the BSC, precisely: The p-adic BSC is known,

see KoENIGSMANN [Ko1] for the case of curves and Stix [St1] for higher dimensional varieties. The
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BSC is known for the generic curve Cg over k(M) by HaN [Ha], and second, for the geomet-
rically integral hyperbolic curves over totally real number fields k by Stix [St2]. Finally, very
recently, the +-BSC was proved over all k|Q finitely generated by BRESCIANI [Be].

To complete this short list of results, recall that the p-adic BSC for curves (for all p) and higher
dimensional varieties (for p > 2) holds under Galois “minimalistic” hypotheses. For instance,
if the p-adic field k contains the pth roots of unity, then the Z/p -metabelian Galois theory
encodes already the rational points of proper smooth k-varieties. See Pop [P1], [P2] and LUDTKE
[Lu] for details and further more general facts.

The aim of this note is to both generalize the t-BSC in its initial form and define/introduce
and prove “Galois-minimalistic” type results for the ¢-BSC over quite general base fields k, thus
giving wide generalizations of the f-BSC over k|Q finitely generated.

An application/consequence of the methods developed in this note is the following.

Theorem 1.1 (Generalized ¢t -BSC). Let k be a perfect not {-closed field for some given odd prime
number ¢ # char(k). Let X be a complete integral normal k -curve, K = k(X). Then every t -
birationally liftable section s € S(7tx,; ) is defined by a unique k -rational point x; € X (k) in the
way explained above. That is, the t -BSC holds over k.

The above theorem is a relatively easy consequence of Theorem 1.5 below.
Notation 1.2. Let k, klk, e.g. k=k,¢and X, K = k(X) be as at Notation/Definition 1.0 above.
We set X=X xk, K:=kK= k(X;) and let k;:= k(t) be the rational function field. Define

X = X X ki, K, :K(t)ffct(f(t) correspondingly. Since K|K and K;|k; are Galois extensions,
both K|K¢|K?|K|K and K¢|K¢|K7|K¢|K; are Galois extensions of K, respectively K;.

Remark 1.3. Considering the commutative diagrams below:

St - _ff_\ . - _E?_\ -
i (Ke) 5% mi(ke) G(Kf|Ke) =5 G(kilke) G(K{|Ke) % G(kf|ke)
t t
gx lqk qc qc qu qa
m (K) =% m (k) G(KE[K) =% G(K[K) G(K?|K) *2 G(K[k)

with s € 8(7g; ) and s; € 8(7k,/y, ) being corresponding sections. The following hold:

(t) Every s € 8(mk,;) gives rise canonically to a section s¢ : 711 (k) — G(K|K) of p¢ and
s : m1(k) — G(K?|K) of p* as above such that s° is a lifting of s%.

(t): Every s; € e?(ﬂKt/kt) gives rise canonically to a sections sj : G(kS|kt) — G(KS|Ky) of p¢
and sf : G(kf|k;) — G(K}|K¢) of pf as above such that s{ is a lifting of sf.

() If s € S(7tk,y,) is a t-birational lifting of some given s € S(7tg;; ), then s; gives rise
canonically to sections s§ : G(kS|k;) — G(K¢|K;) of p§ and s7 : G(k?|k;) — G(K?|K;)
of pf{ which lift s© and s”, respectively, i.e., one has the following:

C C __ &C C a a . -~a a
gxosi =s"oq; and qx o sy =s"oqy.

Definition/Remark 1.4. Let s7: G(k%|k) — G(K?|K) be a section of p?:G(K*|K)— G(k|k).
1) We say that s% is k|k-a.b.c. liftable, if there is a section s° of p® which lifts s°.
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2) We say that s is k|k-t-a.b.c. liftable, if there is a section s§ of p$ which lifts s.

We notice that, in particular, if s%, s and s are sections as above, and pry, pr, prg,» Pr,
are the canonical projections, one has commutative diagrams as follows:
st
~ </—\ ~
G(Ki[K:) : % G(kilk:)

c Pt

qax | -
/ . 7

G(K°|K) ¥——————= G(k°|k)

Prktl p Pry,
S - s
pr G(KR?|K;) —— | —— G(k?|k;)
% pri| Pt y
s? Tk
G(K?|K) /p\ G(k|k)

The above Generalized f-BSC is a consequence of the following deeper fact.

Theorem 1.5 ( k|k-Minimalistic t-BSC). Let k be a perfect and not { -closed field for a fixed
¢ # char(k). Let X be a complete integral normal k-curve, K = k(X), and k = k, thus
G(k|k) = 71 (k) and K = Kk. Then every k|k -t -a.b.c. liftable section s : rr1(k) — G(K*|K) of
p* : G(K?|k) — mt1(k) is defined by a unique k -rational point x € X (k) as explained above.

Remark 1.6. We notice that Theorem 1.5 above implies the Generalized t-BSC above, hence
the t-BSC in the classical context, where k is of finite type over Q. Namely, let s € S(7tg,;)
be given and s; : 711(k;) — 7m1(K;) be a lifting of 5 : 711(k) — m1(K). Let Ks € K be
the fixed field of the image s(rt;(k)) C 711(K), and set Ks = UuK, with K,|K the inductive
system of finite subextensions of Ks|K. Then the normalization X, — X of X in the finite
field extension K,|K is a geometrically integral model of K, |k, and setting X, ; := X, Xy k¢,
Kyt = ki(Xat) = Ku(t), one has: The section s : 711(k) — 711(K) gives rise canonically to
sections s, : 711 (k) — 711(Ky), because s(rry(k)) C 7r1(Ky). Second, if K5, C K| is the fixed
field of the image sy(7t1(k;)) C 711(K¢), it follows that K,; C Ks,. Hence for every s,, the
section s; : 711 (k;) — 711(K}) gives rise canonically to a lifting s, ¢ : 711 (k) — 711 (Ka ) -

To conclude, for every K,, consider the resulting K, := K,k, and Ka,t = Ka,t%. Then
the section s, gives rise to a section s? : 71(k) — G(K%|K) of p% : G(K%|K) — m(k),
which by the discussion above, is obviously E|k-t-a.b.c. liftable. Hence by Theorem 1.5 above,
s is defined by a unique closed point unique x, € Xu(k). On the other hand, if K, C Kg,
and fg, : Xg — X, is the canonical projection, then sorting through the definitions, one has:
Xy = fpa(xp) € Xa(k) is a k-rational point of X, which defines the section s, as well. Hence
by the uniqueness of the point x, € Xy(k), one must have x;, = x4, ie, fpa(Xg) = Xa
Conclude that the compatible system (x, ), of rational points defines the unique k -rational point
xs € X(k) which defines the f-birationally liftable section s : 7r1(k) — 711(K) we started with.

Finally, we present a refinement of the above Theorem 1.5, which is as follows.

Hypothesis. For ¢ # char(k) odd, and k|k Galois extension, consider the hypotheses:
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(H) ¢ C k and k%|k is a infinite Galois extension.
(HO) Setting k:= k(y,), the field extension k|k satisfies hypothesis (H).
Example 1.7. For an odd prime number ¢ # char(k), one has the following:
1) If k is not £-closed, i.e., ¢ divides the degree [E:k] , then E!k satisfies hypothesis (H).

2) The hypothesis (H0) is quite general, e.g., the infinite finitely generated fields, and more
general, any Hilbertian field, etc., satisfy hypothesis (H0). And if k satisfies (H0), one has:
(x) k= Uyky inductively, where ky|k are finite Galois extensions with k|k satisfying (H).
3) Suppose that y, C k. Then by mere definition, TFAE:
(i) k satisfies hypothesis (H0). (i) k*/ ¢ is infinite.

Recalling the notions of k|k-a.b.c. liftable sections and k|k-t-a.b.c. liftable sections, and the
commutative diagram () Flk above, consider/define the following:

Definition 1.8. For closed points x € X, set ky:= x(x) Nk . For the k-valuation v, of K with
Oy, = Oy, let Z, C G(K?|K) be the decomposition groups of prolongations 7 of vy to K”.
Let a section s%: G(k?|l) — G(K“|K) of p*: G(K*|K) — G(k®|k) be given. We say that:
1) A closed point x € X defines s* if x € X (k) is k-rational, and s*(G(k“|k)) C Z, for some
decomposition group Z, C G(K|K) above vy .
2) A closed point x € X quasi-defines s* if ky:= x(x) Nk = k, and s*(G(k%|k)) C Z, for
some decomposition group Z, C G(K?|K) above vy.

In particular, for k = k, the notions “defines” and “quasi defines” are identical.

The above E|k-minimalistic t-BSC is a consequence of the following deeper fact.

Theorem 1.9 (k|k-Minimalistic t-BSC). In the above notation, let s": G(k"|k) — G(K*|K)
be a k|k - t-a.b.c. liftable section of p”: G(K?|K) — G(k%|k). If k|k satisfies hypothesis (H), then
the section s is quasi-defined by a unique closed point x5 € X, i.e, kNk(xg) =k.

Corollary 1.10. If k = k, then s% is defined by a unique k -rational point xs € X (k). Hence
Theorem 1.9 implies Theorem 1.5 (Minimalistic t -BSC ), hence Theorem 1.1 ( Generalized t-BSC).

2. REVIEWING FACTS ABOUT RECOVERING VALUATIONS

2.1. Basics of valuations theory.

For arbitrary fields A, let Val (A) be the set of (equivalence classes of) valuations v of A.
For v € Val (A), let m;, C O, be its valuation ideal/ring, Av = x(v) = O,/m, its residue
field, and vA = A/ O the (canonical) value group of v. Recall that Spec(Oy) is a chain w.r.t.
inclusion, and for each m; € Spec(O,), the localization O:= (Oy)m, is a valuation ring with
valuation ideal mj. And if v; € Val(A) is the corresponding valuation, then O = Oy, and
m; = my, . Moreover, the rings 01 C A with O, C O; are the valuation rings of the form
above, i.e, O1 = (Op)m, for some m; € Spec(Oy) and Oy = Op/my C Av; is a valuation
ring on Av; with valuation ideal mg = m/m;. Thus setting V,(A):= {v; € Val(A) | v; < v}
and Rp,:= {01 C F | Oy, C O1}, one has canonical bijections:

Vo(A) = Ro, — Spec(Oy), v1 — Oy, — my,.
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Finally, Val (A) carries a natural partial ordering < defined by the equivalent conditions:
U]_ < Uz lﬁ Ovl D 02)2 Iﬁ mz)l C m'z)z Iﬁ mvl C OUZ'

We say that vq is a coarsening of vy, respectively that v, is a refinement of v;. In particular,
if v1 < vy, then Oy, := Op/my, is a valuation ring of Ag:= Ev; having my, = my,/my, as
valuation ideal, and obviously, Agvg = Oy, /My, = Op/my, = Av. Further, one has a canonical
exact sequence of value groups 1 — vgAg — vA — v A — 1.

If v1 < vy, we denote vg = vp/v1 and call vy the (valuation theoretical) quotient of vy by
v1, and set v1 = v 0 vy and call v; the (valuation theoretical) composition of vy and vy .

We also recall that v; < v gives rise to the projection vA = A/ O — /\X/O;(1 = v1A,
which is order preserving, thus its kernel is a convex subgroup A, of vA. And conversely, if
A < vA is a convex subgroup, the vA — vA /A is order preserving, giving rise to a valuation
vp € Val(A) with va < v. Conclude that V;,(A) is in canonical bijective with the set of convex
subgroups {A < vA | convex subgroup}.

Last but not least, for v1,v, € Val (A) there is a well defined valuation v = min(vy,v;) in
Val (A) whose valuation ring O, is characterized as follows: (Oy,)m = Op = (Oyp,)m and
m, = m, where m € Spec(Oy,) N Spec(Oy,) is the unique maximal element w.r.t. inclusion.
Equivalently, m is maximal in Spec(Oy,) NSpec(Oy,) satisfying mN O = D = Oy, Nm.

Finally, every v € Val (A) defines a field topology T, on A (in which a basis of open neigh-
borhoods of 0 consists of the non-zero ideals of O,). Obviously, for v1,v; € Val(A) one
has that 7,, = T, iff ©v; and v, have a common non-trivial coarsening v < v1,7 and
if so, Ty, = Tw = Ty,. If this is the case, we say that v1,v, are dependent. Complemen-
tary, we say that v1,vy are independent, if T, # Ty, , or equivalently, the diagonal embedding
A — (A, Ty,) X (A, Tw,) has a dense image. Notice that for v1,v, € Val(A), and U, C A
non-empty v;-open, i = 1,2, the following are equivalent:

(i) v1, vy are independent; (ii) Uy, — Uy, = A;  (il)) A C Uy, Uy, .

Fact 2.1. In general, given v1,v; € Val(A) and v:= min(vy,v;), set Uy, =1+ m,,, i = 1,2
and U, = 1+ my. The following hold:

1) I]C’Ul < 02, one haS uUl' UZ)Z — uUz, Oyl' OUZ — Ovl, UUZ_ uUl — mvz.

2) If v < vq,vy strictly, then Uy,- Uy, = OF = (9;1- Op s Up— Uy, = Oy = Oy, — Oy,.

(%2

Proof. The assertions from 1) follow by mere definition.
To 2): By mere definitions, the quotient valuations v; = ©v;/v, on the residue field Av are
independent. Hence setting Ug, := 1 +mg, i = 1,2 one has that Av™ = Uy, - Uy, by the
discussion above. Further, the canonical exact sequence

(%) 1= U, — 0 15 Av* — 1
defines exact sequences 1 — U, — Uy, — Uy, — 1, thus an subsequence of (*) above:

(%) 1= Uy = Uy, Uy, > Up,- Up, — 1,

in which the the first map is injective, and the second one is surjective. On the other hand, sine
01,7y are independent on Av, one has Av* = Uz, - Uy, . Hence since Uy, - Uy, C O} and
ker(7r) = Uy, we conclude that (**) is exact, implying finally Uy, - Uy, = O .

The proof of the assertion Uy, — Uy, = O, is similar, being the additive variant. O
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Canonical v-valuation. Let QO|A be an arbitrary field extension and w € Val(Q)) and
v € Val(A) satisfy wp := w|n > v. Equivalently, by general valuation theory, one has:
OzumA:OwACOU, (1+mv)mA:1+mz¢;A31+mv, etc.

In particular, by the above discussion about coarsening, Oy = (Oy, )m is the localization of
Ouw, with respect to its prime ideal m, € Spec(Oy, ). Equivalently, setting >, := Oy, \ My,
one has that X, is a multiplicative system in Oy, defining O, as follows:

Oy = (Ow/\)mv = Z;,{Ow/\'
Lemma 2.2. Oy = 2@1\ Ow C Q is a valuation ring with valuation wy satisfying wo|\ = v.

Proof. Indeed, OgNA = {% € N |a € Oy, r € Ly, } andwe have to prove that OgNA = O,.
For the direct inclusion, let x = % € Awitha e Oy, r € Yw,- Then a = rx € A, thus

concluding that a € Oy N A = Oy, C Oy. Thus finally, x = ¢ € ZZ;}\ = O,. The converse
implication is clear, because O, = Z;U}\(’)w A C Z;i Ow = Op and Oy, = Oy NA. O
Let m; € Spec(Oy,) C Spec(Oy) be the (unique) prime ideal which is minimal satisfying

m; N A D my. Then one has my, C my N A C my, N A = my, thus my N A = m,. Hence we
conclude that the valuation w; of the valuation ring 01 = (Op)n, satisfies wy|p = v.

Definition 2.3. In the above notation and context, w, is the canonical v -valuation of (). Thus
W, is unique minimal with w, < w, wy|p = v, thatis, Oy, N A = Oy, my, N A = my,.

Finally, let (Q), @’ | (Q,w) and (A, v") | (A, v) be algebraic extensions of valued fields such

that A" € )/ and w’ > v/, thus obviously, w = w'| A = |, = v. For short, we denote this
situation by (Q'|A’, w'|v")|(Q|A, w|v). Obviously, w’ > v for the field extension Q'[A.

We conclude this discussion with the following (obvious) facts.

Fact 2.4. In the above notation, the following hold:
1) Oy NA =07 and (14+my,) NA =14 my,.
2) Let ('[N, w'|[0))|(Q|A, v|v) be as above, thus w' > v for the field extension (| A.
Then w;, = w,, and W,|q = Wy = w,,|q.
Proof. Assertion 1) follows by mere definitions, etc. For assertion 2), recall that for any valuations
@' of O and 7| of the algebraic extension A’|A one has: @'| \/ = 0" iff @[y =v,etc. [

2.2. Basics of Hilbert decomposition theory, especially in Gf.

Let F'|E be an algebraic field extension, v € Val E be a fixed valaution, and V,(F’) be the
set of prolongations w'|v of v to F|E. Recall that Val,(F’) is a profinite topological space in
the patch topology,' and moreover, if F’|E is normal algebraic, the profinite group G(F'|E) :=
Autg(F') acts transitively and continuously on Vy(F') via (w, ¢) — w8 := w' o g~ =:w".
Andif Ty, < Zyy, are the inertia/decomposition groups of w'|v, then Tyrjo= & Twjo ¢ !and
Zyiio= 8§ Zuw|o ¢~ ! and for any w’ € V,(F’') fixed have:

Vo(F') = G(F'|E)- w' = Zyy;,\G(F'|E) as G(F'|E) -spaces, canonically.

T Actually, Val, (F") endowed with the patch topology is a profinite space even if F/|E is not algebraic.
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Further, the residue field extension F'w’|Ev is anormal extension, and setting G|, := Autg, (F'w'),
one has the canonical exact sequence 1 — Ty, = Zyrjy = Gyrpp — 1.

Next let v1 < v in Val (E). There is a prolongation w}|v; of v1 to F'|E such that w] < w’.
Further, for any such w)|v; the following hold: First, Zy|o C Zut|p, and both T ATy o

wh |y
and Ty, < Zy)p- Second, wj:= w'/w) prolongs vg:= v/v; to F'w’, and via the canonical
exact sequence 1 — Ty, — Zyt o, — Gyt o, — 1 the following hold:

zZ

i|7)1
= N(Zw’\v) = Zw’\v/Tw’1|vl and Tw(’)\vo = 7T<Tw’|v) = Tw’|v/Tw£\vl’

giving rise to a commutative diagram exact sequences of the form:

wj|vo

1 — Tw“vl — Zw’1|01 i) Gw“vl — 1
() H t
1 — Tw“vl — Zw’\v — Zw6|7)0 — 1.

Finally, recall that if @'|v is tame, i.e., T;y|, has order prime to char(Ev), one has that T,
is abelian, precisely, Ty, = Hom(w'F'/vE, ppry) with ppry C F'w' the group of roots of
unity in F'w’. Further, the conjugation action of Zyjp on Ty, factors Zyy, — Gyy, and
Gu|p acts on Ty, = Hom(w'F'/0E, ppry) via the cyclotomic character of Gyyiy, -

This being said, let £ > 2 be a prime number fixed throughout the remaining of this section,
and F|E be a Galois field extension with char(E) # ¢ and u, C F. Let F|F?|F be the (max-

imal) Z/{ abelian-by-central, respectively the (maximal) Z /¢ elementary abelian, extensions
of F, and for the corresponding exact sequence of Galois groups

1— Ap:= G(F*|E") — G := G(F°|F) — Gf := G(F|F) — 1,

denote Gf 3 & +— 0|p« =: ¢ € Gf the corresponding projection. Recall that by Kummer Theory,
one has that Gf = Hom (F* uy), and Af is the maximal Z /¢ elementary abelian quotient of
the absolute Galois group Gp« on which Gf acts trivially. Via Kummer Theory, one obtains

F¢|F as follows: Gf acts canonically on F* /0, and let A := (F? X/Z)gFa be the subgroup of
invariants; that is, u# € F” liesin A iff Vo € Gf Jr, € F* such that o(u) = urﬁ. Then one
has F¢ = F?[v/A]. From this discussion immediately follows the following.

Basic Fact. F°|E and F?|E are Galois extensions of E.

One has the following basic facts (well known to experts, but I cannot give a precise reference).

Fact 2.5. Let F be a arbitrary field with p, C F if char(F) # {. For a valuation w € Val (F),
let w*|w be a prolongation of w to F*|F, and F" be the Henselization. The following hold:

1) The compositum F'"F? equals the maximal { -elementary abelian extension (FM* of F".

2) The separable part of F*w”|Fw is the maximal ¢ -abelian extension of Fw .

Proof. We prove the assertion along the following two reductions steps:
Step 1. The valuation w has finite rank one. In particular, F is dense in F".

Case a). ¢ = char(F). Then the /-elementary abelian extension of both F and F" are are
composita of -cyclic extensions, all of which being Artin-Schreier extensions. Let F/(x)|F"

with x’¢ —x' = a’, a’ € F" by such an extension. Since v has rank 1, hence F is dense in F",
8



one can choose a € F such that 0" (a’ —a) > 0. Then setting a” = a’ —a € F", or equivalently,
a’ = a" + a, one has: First, the Artin-Schreier equation T® — T = 4" has a solution in x” € F"
(because v(a”) > 0). Second, x’ is a solution of T —T=4d"+a (by the additivity of T —T).
Hence we conclude that F"(x') ¢ F*(x" + x) C F'F*.

Similarly, if TY — T = 7 is an Artin-Schreier equations over Fw, and a € Oy, is a represen-
tative of @ € Fw and x is a solution of the equation T — T = a, it follows that the reduction
X of x isarootof T — T =17.

Case b). ¢ # char(Fw). Proceed as above, but using Kummer type equations Ul =a, etc.

Case c¢). char(F) = 0, char(Fw) = {. Assertion 1) follows in the same way as in Case b).
For assertion 2), recall that 77:= {; — 1 with {;, € p, primitive satisfies: £ = 71/~ e over Z[u,]
with € € 1+ Z[u,] C OF aprincipal v-unit. Then the Kummer equation (U + 1)’ = b has
roots u € F® for each b € F, and can rewritten as follows: u’ 4+ ¥y~ (f)ui +1 = b, thus
diving by 71’ = ¢71e and setting u = #77, the equation satisfied by ¢ is:

(u) T +e! Y0550 %(f)ﬂi_lﬁ = (b— 1)/7T£'

In particular, choosing b € F such that a = (b — 1)/7‘C£, ie, b = 7tla+ 1, it follows that
the displayed equation (1) above specializes to T — T = @. That is, if u € F* is a satisfies
(u+ 1)Z = b, then t = u/ 7t is specializes to a solution of T — T =a.

Step 2. The valuation w has finite rank d = rk(v) = Kr. dim(O,) < co. We make induction
on d. Namely, let wq < w be the minimal non-trivial coarsening of w, and wyg = w/wq the
resulting valuation of the residue field Fy = Fw;. Then w; has rank one and wy has rank
d —1 < d. Hence by the induction hypothesis and Step 1, the assertions 1), 2) hold for both w;
and wy . From this instantly follows the same for w ( by the fuctoriality of Hilbert Decomposition
for valuations).

Step 3. Let F = UyF, be the inductive union of its finitely generated subfields with yy C F,
provided char(F) # ¢. Then considering F|F,, it follows that F? = U,F? and the extension
of valued fields F?|F,w"|w is the inductive limit of the system of valued fields F?|F,, w?|w,.
And since F' = U F' and F'w® = U,Ffw?, by mere definitions one has that assertions 1), 2)
from the Fact hold iff they hold for each F?|F, endowed with w?|w, .

On the other hand, since F, is finitely generated, the valuation w, has finite rank (bounded by
the Krull dimension of F,). Hence assertions 1), 2) hold for each F?|F, w®|w by the discussion
at Step 1. Hence conclude that assertions 1), 2) hold for F*|F, w*|w. O

Recall that via the canonical exact sequence 1 — Gf — G(F?|E) = G(F|E) — 1 the
group G(F|E) acts canonically (by “conjugation”) on subsets ¥ of the three groups above by

g(X):=g¢Xg ! for ¢ € G(F|E) and £ C G(F*|F), G(F*|E), G(F|E),
compatibly with the morphisms 2, 7. We fix the above notation for this action throughout.

Let V C Val (E) be a non-empty set. For v € V, let w?|w|v be the prolongations of v € V
to F?|F|E, and V,(F) C V(F) denote the prolongations of v € V and of V to F. And to fix
notation, recall that G(F|E) acts on V,(F) by g¢(w):=wo g ! =: ws&

By Hilbert decomposition theory for valuations, one has: Since G(F?|F) is abelian, it follows
that T, := Ty < Zyajw =: 2y and Tyup < Zyap, depend on w only and not on the concrete
prolongation w”|w. And for w € V,(F), ¢ € G(F|E) one has:
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Zg(w) =8Zy gil = g(Z"ZJ> and Zg(w)|v = ng\v gil = g(Zw|v)'
Further, one has a canonical projection of topological G(F|E) -spaces:
ZH(F) == {Zg|w € Vo(F)} = {Zyplw € Vo(F)} =: Zo(F), Zi = Zyjo-

Definition/Remark 2.6. In the above context and notation consider/define:

1) If Z§, # 1 for some w € Vy(F), hence Z%, # 1 for all w’ € V,(F), and indicate this by
writing Z7(F) # 1. And if Z§(F) # 1 forall v € V, we write ZJ,(F) # 1.

2) We say that v € V equals its F -/ -abelian core if for any proper coarsening v; < v, the
valuations w{ € Val,, (F”) satisfy: The separable part of F*w{ | Fw; is non-trivial.
Further, we say that V) equals its F-{-abelian core if each v € V does so. For instance,
this is the case is all v € V have rank one and F* # F.

e We notice that for every v € Val (F) there is a valuation v° € Val (F) which is maximal
with the properties: v < v and ©° equals it F -/ -abelian core.

Let V be as above in Definition/Remark 2.6, and v1,v, € Val (E) be given, and w?|w;|v; be
prolongations of v; to F*|F|E, i = 1,2. Setting v = min(vy,v;) and w = min(wq, wy), it
follows that w|v prolongs v to F|E, and setting 7; := v;/v, W;:= w;/w, W; := w?/w, one
has: W |w;|?; prolong U; to F*w?|Fw;|Ev; and further, v; = 7; 00, w; = w; ow, wf = W; o w*
for i = 1,2. And one has a commutative diagram of exact sequences:

1 — Tw“|v — Zwa|v L) qu|v — 1

(1) | 0 4

7T
1 = Ty — Zw?‘vi — L

i

-1, 1i=1,2

|v;

Fact 2.7. In the above notation, suppose that V equals its F -{ -abelian core, Z{,(F) # 1, and any
two distinct valuations v1,vy € V are not comparable. Then for any valuations v, v1, v € V and

w € Vy(F), w; € Vy,(F), w] € Vy,(F?), i = 1,2, the following hold:
1) Suppose that w1, wy are not comparable, and set w:= min (w1, w;) < wq,w;. Then one has
that ZW‘{IW N Zya|w, = Taw» and in particular, Zwﬂwl # Zyalw, - Therefore,

5lw2 3lwe
Vo(F) — Z3(F), w > Z& is an isomorphism of topological G(F|E) -spaces.
2) For g € G(F|E) one has: g € Zy,, iff §(Z3,) = Zg,.
Hence items 1), 2) above give a group theoretical recipe to recover the G(F|E) -space isomorphism
V(F) = Zy(F|E):= {(Z% Zyjo,) |v € V(E),w € Vo(F)}, w v (25, Zyyjo)
from G(F?|E) — G(F|E) endowed with ZY,(F).
Proof. We begin by proving the Lemma below, in which v, v, are abitrary valuations.

Lemma 2.8. Let N be a field with yiy C N provided { # char(N) and G{:= G(N*®|N) be the
Galois group of the maximal { -elementary abelian extension N*|N. If v; € Val (N), i = 1,2 are
independent valuations, their decomposition groups Zg. C G satisfy Zg NZy = 1.

Proof of Lemma. Set U; =1+ m,, i = 1,2. We analyze separately the cases:

Case 1. char(N) # /. By Hensel Lemma, for all u; € U;, i = 1,2 one has: T’ — u; € N|[T]

splits in linear factors over the Henselization of N with respect to v;. Therefore, v; is totally
10



splitin N;:= N [W ;] and equivalently, N; is contained in the fixed field of Zgi C gﬁ in N“
On the other hand, since v1, v, are independent, one has U - Uy = N*, hence N* = N1N;.
Conclude by Kummer theory that Z§ NZ{ =1.

Case 2. char(N) = ¢. By Hensel Lemma, for all u; € m;, i = 1,2 the Artin-Schreier
polynomial T — T — u; € N|[T] splits in linear factors over the Henselization of N w.r.t. v;.
Hence Nj := N[p~'(m;)] is contained in the fixed field of Z{ C G{ in N” On the other
hand, since b1, vy are independent, one has my, +my, = N, hence N* = N1 N,. Conclude by
Artin-Schreier theory that Zg N Z7 =1.

This concludes the proof of Lemma 2.8. Returning to the proof of Fact 2.7, proceed as follows.

To 1): Since wj, wy are not comparable, one has w < wy, w; strictly, and w; = w;/w are
two independent valuations on the residue field Fw. Further, by Fact 2.5, Fw" \F w is the max-
imal /-elementary abelian extension of Fw, hence Gya|,, := G(F'w’|Fw) = G((Fw)?|Fw).
Further, by the commutative diagram () above, Zw;‘\w,- = Zw?‘wi/ Topajw € Gypajy is the decom-
position group of W; |w; in Gyap, = G((Fw)?|Fw) for i = 1,2. In particular, since Wy, W, are
independent valuations of Fw, it follows that by Lemma 2.8 above that ZW{\@ N Zeggjw, = 1.
=T

w?w:

Hence since Ty, = ker(Zwﬂwi — Zw?@), finally get Zya(sp, N Zys o,

To 2): By mere definitions one has that ¢ € Z,,|, iff w” = w. First, for the direct implication,
if ¢ € Zy|y, then w = w’, thus Zj, = Zj, = 0(Z3,). For the converse implication, suppose
that w1 := w # w” =:w;. Then by assertion 1) above one has Zj, # Z7, , thatis Z, # Z,.
Finally, the last assertion is an immediate consequence of the discussion above. U

2.3. Commuting liftability. See Toraz [To1] (and Pop[P1], section 3) for more details.

Let F be a field with char(F) # ¢, puy C F, and F?|F be the maximal Z/{ elementary

abelian extension. For a valuation w of F, set FP := F[{/T+my], F! := F[\/O;]. The
groups I, < Dy, below are called the minimized inertia and decomposition groups of w:

Iy == G(FY|F") = Hom(F*/ Oy, uy) < Hom (F*/ (1 + my), t¢) = G(F*|FP) =: Dy,

We notice that the minimized inertia/decomposition groups behave under valued field exten-
sion as follows. Let (F,w) | (N, w) is an extension of valued fields, py C N, thus Oy = O NN
and 1+ my = (1 + my) N N. Then by mere definitions one has:

Fact 2.9 (Functoriality). The canonical projection p® : Gf — G gives rise canonically to em-
beddings p*(Iy) C I and p*(Dyw) C Dy . Moreover, if F and N* are linearly disjoint over N,
ie, FNON® = N, then p*(Iy) = Ip and p*(Dy) = Dh.

Fact 2.10. In the above notation, the following hold:
1) Iy, = Hom(wF /¢, up) and Dy /Iy, = Hom(Fw */¢, i) . Hence one has:
I, =1 iff wF is {-divisible, and I, = Dy, iff Fw™ is {-divisible.
2) If char(Fw)#Y, then Tj,=1, C Dy = Z§,. Further, (Fw)" = F'w", thus Gf = Z§,/Ty.
3) If char(Fw)=/, then I, CTZ and D, CZ%.

Proof. Everything follows by mere definitions, Pontryagin duality, and Kummer theory from the

exact sequences 1 — O} — F*— wF - 0and 1 — (14+my)— O — Fw™ — 1. O
1



In the above notation, for o € Gf', let & € Gf denote preimages of ¢, and for £ C G, let
2. C Gf denote the preimage of X. Recall the following canonical maps in this context:
- The bilinear map ¢ : Gf x Gf — A, defined by (o, T) — [7, T].
- The linear map B : Gf — Af, 0 +— P .= g’
Definition/Remarks 2.11. We next recall basics about commuting liftability, see Toraz [To1] for
details. First 0, T € G? are called independent, if (0, T) = (Z/{)?. We say that / define:
1) Independent o, T are commuting liftable (c.l) if o, T satisfy the equivalent conditions:
(i) 3 &, such that [, %] € (0f 1P); (ii) V & % one has [7, %] € (7P ©F).
2) An independent pair ¢, T € Gf is called c.l pair, if 0, T satisfy the equivalent conditions:
(i) 3 &, T such that [7,%] € (¢Ff); (i) V &,7% one has [7,T] € (FP).
Note the following: Let 0, T € G¢ be independent and c.1. Then the following hold:
a) If o, 1 € (0, 7) are independent, then (0, T) = (01, 71), and 0, 7y iscl.
b) There exists 1 # 07 € (0, T) such that [07, 7] € (Uf) forall i € (0, T).
¢) For k € Z with (k,£) = 1 one has: ¢, ¥ are c.l. (pair, provided o, T is c.l. pair).
d) One has: ¢, T and 7,0 are both c.l. pairs if and only if [7, T] = 1.
3) Subgroups I <D of QI? is a c.L (group) pair, if I # 1, D is non-cyclic, and all independent
pairs 0, T with ¢ € I, T € D define c.l. pairs.
In particular, if ¢, T € I are independent, then by item d) above, one has that [, 7] = 1.
Note thatif 0, T € QI_@ define a c.L pair, then in the notation from 2), b) above, one has:
[:=(01) < (o, T):=D iscl pair.
4) For I <D c.l pair, the following hold:
a) There exists a unique maximal Ip C Gf such that Ip <DIp is c.l. pair, hence I C Ip.
b) There exists a unique maximal D; C Gf such that I <Dy is cl. pair, hence D C Dj.
e Finally, a cl. pair I <D is called maximal, if I = Ip, D = Dj. We notice the following:
Starting with a c.1. pair I < D, one has: Ip <Dy, and Ip, <D are maximal.
5) Let ¢* € Aut(Gf) be the automorphism which lifts to an automorphism ¢ € Aut(Gf).
Then for every pair of subgroups I C D C Gf one has:
a) I<D is a maximal cl. pairin G¢ iff p(I<D):= (¢(I)<¢(D)) is so.
b) If I<D is a maximal c.l. pair, then ¢(I<D) = (I<D) iff ¢(I) =1 iff ¢(D) = D.
(Indeed, I <D is a maximal cl. pair iff ¢(I)<¢$(D) is a maximal c.l. pair, etc.)

The essential property of commuting liftability is that it is related in an intimate way to (arith-
metically significant) valuations of F, see Theorem 2.15 below. But first recall the following basic
fact, see e.g. the discussion in Pop [P1], Section 3, and Toraz [To1] for details:

Fact 2.12. In the above notation, suppose that wF not { -divisible, and F*/ (1 4+ my,) non-cyclic,
or equivalently, I, # 1 and Dy, non-cyclic. The following hold:

1) Iy <Dy isc.l, hence I, <Ip, and Dy, <Dy, .

2) Moreover, if w has rank one, then Ip < Dy, is a maximal c.l. pair. In particular, in this case,

every group automorphism of Dy, defined by some o € G maps Ip,, into itself.
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By work of WARE, JacoB, ARASON-ELMAN-JAacOoB, BogomoLov, KOENIGSMANN, BoGoMoOLOV—
TSCHINKEL, culminating with contributions of Toraz, [To1], where more literature can be found,
one has the following fundamental facts. Recall that the set of (equivalence classes of) valuations
of F is partially ordered by w; < w, if the following equivalent conditions are satisfied:

Equivalently, the kernel Ay, /4, := ker (woF = F*/ Oy, — F*/ O = w1 F ) is a convex sub-
group of w1 F, which is equals actually value group of wy = wy/w; € Val (Fw;). In particular,
one has the following obvious facts on the behavior of reduced inertia/decomposition groups:

Fact 2.13. In the above context, let wy < wy be as above. Then I, C Iy, and Dy, O Dy, .

Notations/Remark 2.14 (cf. Toraz [To1], §1.2 for some details). In the above context, consider
the following:
1) Let Wr be the set of valuations w € Val (F) which for all wy € Val(F) satisfy:
(i) Let wq < w strictly. Then the value group of w/w; is not £-divisible, i.e., I/, 7 1.
(ii) Let w < wy strictly. Then Dy, = Dy, implies Iy, = Iy, i.e., L,/ = 1.
e Notice that every w € Wy equals its F -0 -abelian core. Indeed, if w € Wr and w; < w
strictly, then I, /5, 7 1, implying that F*wy|Fw; is not purely inseparable.
2) Let Pr be the set of maximalc.l. pairs I < D in Gf with I # 1, D not cyclic, and denote:
IFZ:{ICQI?|E|I<DinDF}, DFIZ{DCQI_E|HI<DHIDF}.
e Notice that given I < D in Pr, each I and D individually determine the c.l. pair [ <D.
Indeed, by by Definition/Remarks 2.11, 4), one has both D = Dy and I = Ip.
e In particular, both projection maps Pr — Zr, Dp, I<D + I, D are bijective.

Theorem 2.15 (cf. Toraz [Tol], Thm 1, (1) & Thm 6, for N = n = 1 =R(1)). The following
hold:
1) For w in Wk, thereis [I<D in Pr suchthat D = Dy, 1 # I, C I, and if so, I/, is
cyclic. Moreover, if Fw™/{ is not cyclic, then D = Dy,, 1 = I,.
2) For I<D in Pg, thereis w € W satisfying the condition from 1) above.
Remark 2.16. Note that in Theorem 2.15 above, both w in Wy and [ < D in Pr are unique
corresponding to each other. Notation: w ~» (I < D)% ~» I% D% resp. <D ~ I, D ~ w!,wP.
Uniqueness of [ <D: Let w ~~ [;<D;,i=1,2. Then D; = Dy, and [; <Dy, i = 1,2 are
both c.l. pairs, hence so is [1I, <Dy,. And [; <Dy, being maximal implies Iy = 11, = I,.
Uniqueness of w: By contradiction, let (I<D) ~» wq,wy, w1 # wp. Then Dy, = D,
Iy, C I, and wy,w; are not comparable by Notations/Remark 2.14, 1). Set wy = min(wq, w»),
hence and W; = w;/wy are non-trivial. Thus letting 7 : Zj, — ng|w0 be the canonical

projection, one has 1 # Iy, = I, /Iy, = 7(Iw,), i = 1,2. On the other hand, one has
1# Iy, C n(I) C (D) = Dy, C 75 C Gutluw, » hence 1 # n(l) C Z& nzs .

w1

Since w1, Wy are independent, this is a contradiction by Fact 2.7.

2.4. Commuting liftability and Galois action. In the above context, let F \ E be a Galois ex-
tension with pty C F and Galois group G(F|E). Recall that G(F|E) acts on W by g(w) =
wog~ L ¢ € G(F|E) and on the spaces Pr, Dr, Zr by conjugation ¢(I<D) = (g(I)<g(D)).
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Further, the G(F|E)-actions are compatible with the previous constructions and introduced ob-
jects in the following sense:

- If g(w) = w, then ¢(Iy <Dw) = (¢(In) <g(Dw)) and g(Ip, <Dw) = (g(Ip, ) <g(Dw)).
-If I<D ~ w, then g(I<D) = (g(I)<g(D)) ~ g(w).

Further, by mere definitions one has that Dy < Z |, and Iy, Ip,, < Zya,. In particular, there is

a unique maximal (normal) subgroup D, 9 Zy, satistying the following two conditions:

(1) Dyjo N Zy = Du; (ii) Dyjo/Dw = Zy|y -
And obviously, Iy, Ip,, < Dy, and Dy, fits in the exact sequence
1 = Dw = Dyjy = Zyjp = 1,
which is in an obvious way a subsequence of 1 — Zj, — Zya, = Z,, — 1. Further, if
char(Fw) # ¢, then Dy, = Zya|, and Dy = Z3,, Iy = Ty,
Definition/Notations 2.17. In the above notation, we define and consider notation as follows:
1) We say that Dy, is the (relative) minimized decomposition group of w?|v in F?|E.
2) Recalling Remark/Notation 2.14, we denote:
a) Weip:= {wlv|w € Wr, v = w|g}.
b) DF‘E:: {Dw|v C G(F”E) ’ZU|U € WF|E}'

In the above notation and context, let F’|F|E be Galois extensions with F'|F finite and y;, C F,
and pr : G(F'|E) — G(F|E) be the projection of Galois groups. For I<D from Pr and
I<D ~» w € Wr relating to each other as in Theorem 2.15, set v := w|g, thus w|v € WrIE,
and let w'|w be a prolongation of w to F”|F.

Proposition 2.18. In the above notation, the following hold:
1) (Fact 2.7 revisited). For g € G(F|E) and I<D ~ w|v ~ Dy, the following hold:

g(I):I iff g(D):D iff g(Dw\v):th} iff g(ZZJ):Z?U iff g(w):w iff gezw\v'
2) (Galois action). Wr, Wr g, Dpg, Pr, Dr, Zr are G(F|E) -spaces, and the maps

W — Wrig = Dpg — Pr— Dp,Ir W = w[v = Dyypp > Ip<D +— Ip, D
are G(F|E) -isomorphisms, where the last two projections are as defined in Remark/Notation 2.14, 2).

Proof. To 1): First, <D € Pr and w € Wr relate to each otheriff D = Dy, and I = Ip . Next,
by Remark 2.16, since w € Wr equals its F-{-abelian core, the last three equivalences follow
from Fact 2.7. Further, g(w) = w iff ¢(Oy) = O iff g(1+ my) = 1+ my,. Hence by the
definitions of I, C Dy, and Kummer theory one has: ¢(w) = w = g(F!) = F, ¢(FP) = FP,
and therefore, ¢(w) = w = ¢(ly) = lw, §(Dw) = Dy. And further, by mere definitions,
this implies g(Ip,) = Ip,. Hence it is left to show that g(I) = I and/or ¢(D) = D implies
g(w) = w. First, since both [ and D individually define I <D uniquely, it is sufficient to prove
one of the assertions, e.g., that g(I) = I implies ¢(w) = w. This is more-or-less a reformulation
of the last part of the proof of the Remark 2.16 above, along the following lines: First, we notice
that Wr is invariant under automorphisms of F (by mere definitions). Hence wy:= w € Wr
iff wy:= g(w) € Wr. And if so, by mere definitions on has Dy, = g(D) = D = Dy, hence
Ip,, = g(I)=1= Ip,, - Conclude that wy = wy by arguing as at the end of Remark 2.16.
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To 2): Recall that by Remark 2.16, for [ € Zf given, there is a unique D C gFa with I<D
in Pp. Hence the stabilizer Stg(pp(I) of I in G(F|E) stabilizes D, ie., stabilizes I < D.
Since w € Wr with D = Dy, is unique, we conclude: Stg (1) = Stg(r|p)(w) = Zy), for
the unique w|v € WF|E with Dy, = D, I, C I and I/, cyclic. Similarly, starting with
w|v € Wrig and setting D = Dy, N Gf € T, it follows that Stg(p|py = Zy|,, et

0

This being said, we notice though that Theorem 2.15 and Fact 2.18 above do not give conditions
to ensure that the valuation w has char(Fw) # {. In the next section we discuss —among other
things— this issue, which is essential for the proof of the main results of the paper.

3. COMMUTING LIFTABILITY, FIELD EXTENSIONS, AND SECTIONS

Let E|L be a regular field extension, E|L be a Galois extension, and E := EL be the com-
positum of E and L over L (which is well defined up to L-isomorphism, because E|L was
a regular field extension). In particular, E|E is Galois such that the canonical projection map
i: G(E|E) — G(L|L) is an isomorphism. For valuations v € Val(E), let |v denote prolon-
gations of v to E|E, and vy := v|; and ¥y := 0|; be the corresponding restrictions, thus in
particular, v; = (;)|L. Next suppose that char(L) # ¢ and p, C L. Recall that L¢|L?|L|L
and E°|E?|E|E are Galois extensions, and one has a commutative diagram with exact rows and
surjective vertical morphisms, 7 : G(E|E) — G(L|L) being an isomorphism, where e stays for
either a or c (similar to the ones in the Introduction):

1 - G <= G(E’JE) — G(E|E) — 1
(*)gir ¢ ¥ b
1 — G <= G(L*|IL) —» G(LIL) — 1

Next let s* : G(L*|L) — G(E?|E) be a section of p* : G(E?|E) — G(L|L), which is
ab.c.-liftable, i.e., s? lifts to a section s of p¢ : G(E|E) — G(LF|L). Consider the diagram:

1 — gt — G(E*|E) ™5 G(E|E) — 1

e b

1— g8 — G(L*|L) ™ G(L|L) — 1

Claim. The restriction s°®

Gs Is a section of p* and pgos®o p[l is the inverse map of 1.

Indeed, let im(s*) C G(E®|E) be the image of s®. Then o pg = p; o #* and 7 being an
isomorphism implies that pg(s*(g)) =1 iff pr(g) = 1. Hence s°(g) € G2 iff pe (s*(g) =1
iff pe(g) = 1iff g € G7, concluding that s® is a section of pr®. For the last assertions, one has:
h = pe(g) € G(LIL) iff i"1(h) = pg 0s*(g). Thus the Claim is proved. (Note that p; ! is a

multi-valued correspondence, but pg 0s® o pgl is indeed single valued, hence a map.)

3.1. s*-valuations arising from Val'(L).

In the above context, let N|L < L|L be a finite Galois subextension of L|L with y; C N

and setting F = NE, consider F|[E < E|E and the resulting projections of Galois groups
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qy : G(E*|E) - G(F°*|E), q% : G(E*|F) — G(F*|F) and ¢? : G(L*|L) — G(N°®|L),
q% : G(L*|L) - G(N*|N), and finally p* : G(F*|E) - G(N*®|L), hence p* : G — G}

In particular, given the a.b.c.-liftable section s% : G(L?|L) — G(E“|L), for ¢ = a,c one has
a commutative diagrams of the form:

g- ——— G E'|E Ly G(EIE)

N

s.
/ G(F*|E) — ™ s G(F|E)

ﬁ.F\

o Pt
e L G(LIL) l
F" p® qL
q{v\ . % . o \
Gy, . G(N*|L) » G(NIL)

in which all maps are the canonical projections and 7 and 1 are isomorphisms.

Finally, let L1|L < N|L < L|L be a finite Galois subextensions of L|L such that p, C Ly,
and for v € Val(L), denote by ©|ro|v;|v the prolongations of v to L|N|L1|L.

Notations/Remark 3.1. . Let Val!(L) C Val(L) be the set of valuations v € Val(L) satisfying:
(i) bL = Z; (ii) char(Lv) # ¢; (iii) Lyv1*/€ # 1; (iv) B|v are unramified.

We notice that if v € Val'(L), then wN = Z = vL and Nw*// # 1 for all N|L as above.

[Proof. Since [Nt : Livy] < [N : Lj] < oo, by basic Galois theory, L1y */¢ # 1 implies

Nro*/¢ # 1 (because £ > 2). Since #|v unramified, vL C woN C 6L = vL, thus vL = wN.]

For v € Vall(L), L|N|L as above, let °|tw®|v be the prolongations of &|w|v to L*|N*®|L.
Since char(L8) = char(Nw) = char(Lv) # £ and Z = vL = wN = &L, by functoriality and
basics of Hilbert decomposition theory, the following hold:

1) Tgepp = Too)s = Z/ L= Togajny = Tpapy and Tgepp = Tge s 2/ 02 = Tyey = Tiye|y- Further,
denoting by Gge|, and Gye|, the Galois group of the residue field extensions L°*6°|Lv, respec-
tively N°ro®|Lo, one has Zge|, = Tge|y X Gge|p and Zyely = Tiye|y X Gpye |y » the action being in
both cases by the £-adic cyclotomic character of Ggs, , respectively Gpe|,.

2) g3 : G(L*|L) — G(N°®|L) maps Tge|, isomorphically onto Ty, and defines a surjective
morphism of the residue Galois groups qg| wlo Gge|p = Gpe|p Which is obviously compatible
with the £-adic characters. Finally, the restriction ] : Zge|, = Zyse|, is defined canonically by
its restrictions to the inertia groups and the residue Galois groups.

Conclude: First, iy C N = Ggajpp and Gy, act trivially on Tgaj, = Z/€ = Tya)y,. Hence
Ziajr and Zyya)y, are abelian and Iy = Tyyajp < Zya|y = Di is a ¢l pair in G(N?|N). Second,
for & € Tye| and T € Zge|, one has [0, 7] € (5%). Hence by abuse of language, we will say:

Terminology. Ty < Zg|y is a generalized-commuting c.l pair of subgroups of G(L*|N).

Key Lemma 3.2. In the above notation/context, set I? := q' (Sa(Tﬁa|m)), D" := g% (Sa(Zf)a|m)).
Then I* < D" isac.l pairin Gf C G(F*|E) which is mapped by p® : G(F*|E) — G(N*®|L) onto
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the c.l. pair Iy = Tyajp < Zyyajy = D in G C G(N®|L). And the same holds, correspondingly,
for the maximal c.l. pair Ip, < Dy, in GY.
Proof. In the above notation, recalling the remarks at 1) above, one has: The canonical projection
G(E®|F) — G(L"|F) maps the subgroups s°(Tc|y ) <5(Zge|) of G(E®|F) onto the subgroups
5 (Tyap) <8*(Zgap) of G(E?|F). Hence recalling that [7, %] € (7') for all & € Tye| and
T € Zge|w, one has [s9(7),s(T)] € (s(#)") forall & € Ty and T € Zge|y,. Hence since the
canonical projections G(E®|F) — G(F*|F) are surjective and that g% = p® o g} o s* it follows
that the subgroups I°®:= g} (s'(Tﬁ.‘m)), D*® =g} (S.(Zﬁo‘m)) of Gp = G(F°*|F) satisfy:
a) I" C D" are subgroups of Gf. Further, g% = p*® o g% os® implies p*(I*) = Ty, and
p" (D) = Zyya|,- Hence I? # 1 and D? is not cyclic.
b) I¢ C D¢ are subgroups of Gf which project onto I” C D” under G(F¢|F)
and Vo € I% T € D* and any preimages & € I, T € D¢ one has [5, ] € (¢).
<

the assertion of Lemma follows along the same lines, so we omit the details. O

Construction 3.3 (w|v ~» Ip, <Dy ~ w|v € Wgg).
In notation from Lemma 3.2, let [ D S Dipa be the maximal c.l. pair in QZ? attached to the c.l. pair
I:=1"<D" =:D as in Definition/Remark 2.11, 4. Further, consider Ip <Dy ~» tv € Wy and
Ip,, <Dpa ~ w € Wr as defined in Remark 2.16. Hence since v = w|; and v = w|g, in the
context of Remark/Notation 2.17, one has w|o € Wy, and w|v € Wrg, and further:

1) Zm“|n = Dm|n < DN|L/ Zm“|n - Zm\u and Dw|v S DF|E/ Dw|v — Zw|v'

2) By Fact 2.18 applied to tv|v and w|v, for g € G(F|E), h € G(N|L) the following hold:

(*)ro h(IDm):IDm iff h(Dy) =Dy iff h(Dm|n):Dm|n iff h(Zﬁa):Zga iff h(w) =1 iff he Zm|n-
(*)w g<ID1a):ID1a iff g(Dl“):DI” iff g(Dw\v) = Dw\v iff g(ZZ)):ZZ} iff g(w):w iff g € Zw\v'

Proposition 3.4 (Fact 2.7 re-revisited). In the above notations, the following hold:
1) Setting wy = w|n, one has: w < wy, Z§ = Dy = p*(Dw), T§ = p*(1?) C Ly = Ip,,-
2) 1(Zw|v) = Zm|n and Z(Dw|v) = Zm”|n-
3) For for g € G(F|E) one has:

g(la):Ia iffg(DI“):DI“ lﬁrg(thJ) = Dw|v lﬁrg(w):w iff § € Zw|v'

Proof. To 1): We first notice that the surjectivity of p? and p° imply that for every c.l. pair
I'<D" in Gf with p*(I') # 1 and p*(D’) non-cyclic, the image p?(I') <p?(D’) of I'<D’
under p? is ac.l. pairin GY. (Actually, by mere definitions one has: If g, T isa c.l. pairin G£, then
p*(g), p*(7) is a cl. pair in Gj, provided p“(g), p*(7T) are independent in Gy.) In particular,
since both I* C Ip,, p*(I*) = Iy = T, and D* C Dy, p*(D?) = Dy = Zy,, one has:
In:= p*(Ip,,) < p*(Dp«) =: Dy is a cl. pair in G such that I, C Iy, Dy C Dy. Thus
wN = w|N is non-trivial, because Iy # 1. Further, since char(Nw) # ¢, one has Dy, = Z{,
(and T§ = Iy, provided Nw’/¢ non-cyclic), and since tv has rank one, one has that either
o < wy, or tv and wy are independent. By contradiction, suppose that wq := to and wy:= wy
are independent. Then by Lemma 2.8, it follows that Zj, N Zj, =1, hence Dy, N Dy, =1 as
well, because Dy, C Z?Ui, i = 1,2. This is a contradiction, because w1 = to discrete implies
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1 # Dy,, hence 1 # Dy, = Dy = pr*(D") C Dy, . Conclude that w;, w;, are comparable,
hence v = w; < wy = wy, because w; = v has rank one. Therefore, see e.g., Toraz [Tol],
Lemma 4.1, one has: Since w; < wp, i.e, wy is a refinement of w;, one has Dy, C Dy,
Iy, D I, , etc. On the other hand, by functoriality of (reduced) Hilbert decomposition theory,
p*(Dw) C Dy, = Dy, . Hence since Dy, = p?(D?), putting everything together, we get:
Dy, = Dy = p*(D*) C Dyy = Dy, C Dy = Dy,

concluding that Dy, = Dy, = Dy, = p?(Dy) = Dy,. Concerning the last assertion about
(reduced) inertia, as mentioned above, one has that p”(I,) < p*(Dy) isacl pairin GY. Recalling
that p?(D?) = Dy, = Dy, let Ip,, C Dy = p?(D") be maximal such that Ip <Dy isacl
pairin GY. Since p*(I”) < p*(D?), thatis, p?(I") < Dy isac.l. pair, it follows that p®(I?) C Ip,,
by the maximality of Ip,, C Dy such that Ip, <Dy, is a cl. pair in Gy.

To 2): Since pr?(Dy) = Dy, taking into account assertions (*)y and (%), above, by mere
definitions one has 1(Zy|,) C Zy|,- For the converse inclusion, proceed as follows: By asser-
tion (x)w, one has that h € Zy, iff h(Ip,,) = Ip,,. Let ' +— h under G(N®|L) - G(N|L),
and denote ¢’ = s%(h’). Then by mere definitions one has: T € D iff Vo € I* = s%(Ip,,)
have: 0, T is a cl. pair in G#. Obviously, since the inner conjugation by ¢’ is an automorphism
of Gf which lifts to the inner conjugation in Gf, the latter assertion is equivalent to ¢, T’ being
acl pairin G7, where 0’ = ¢o¢/~! and 7' = ¢’tg 1. On the other hand, ¢ — ¢’ := ¢g'og'~
is an automorphism of Ip_ (because ¢'Ip_ ¢! = ¢'(Ip,) = Ip,). Hence T € Dy iff
/= ¢'tg’"! € Dpa. Thus ¢'Dpg’~! = Dpa, thatis, /(D) = Dpa. Since g € Zylp Was
arbitrary and ¢’(Dje) = Dje, conclude by Fact 2.18 that 1~ 1(7) € Zy|p under the isomorphism

G(F|E) — G(N|L). Thus 1(Zy|,) = Zy|, as claimed.

Finally, the assertion p”(Dw|U) = Dyyajy = Zpye)y follows by mere definitions from functori-
ality of Hilbert decomposition theory, using assertions 1) and the fact that z(Zw‘v) = Zy)o-

To 3): By assertion (), above, it is enough to show that for ¢ € G(F|E) one has: ¢(I?)=1"
iff ¢(Dp) = Dpa. To fix notation, for every ¢ € G(F|E), set h := 1(g), and for preimages
h®* € G(N*®|L) of h,let g* = s*(h®) € G(F*|E) be the corresponding preimages of g.

- For the direct implication, let ¢(I?) = I” for some ¢ € G(F|E), and g* be the liftings as
defined above. Let 0y, € Iy = T}, = Z /¥ be a generator and 0, € Ty = Z./¢? be a lifting of
0w . In particular, 0 = s%(0y,) generates [* = s?(Iy,) and 0:= s°(0y) generates [€:= s°(T).
Further, & and I° C Gf are liftings of o, respectively I under Gf — Gf. This being said, the
action of g* on I* = s(Ty) is induced by the action of /#*® on I3. In particular, if T € D and
% € Gf is a lifting, then by the definition of D; one has: [#, T] = &' for some n € IN, thus:

[, 78] = ()8 = (68)" = (
On the other hand, g (I”) = I* and " = (o) implies ¢g*(0) = o™ for some m € N with
(¢,m) = 1. Therefore, 78 = &0y for some 0y € G(F°|F?), hence finally:
(*) — (5.gf)€n — (&mo.o)fn — 6.€mn0.£n — 5.€mn c <5,€>’

because (Tg = 1 by the fact that G(F¢|F?) is an ¢ -elementary abelian group. Hence we conclude

that ¢“(c),g"(7) is a cl. pair in Gf. Thus since T € Dy« was arbitrary, and g*(I?) = I it

follows that I <g?(Dj«) is a c.l. pairin Gf. Since D« C Gf is (the unique) maximal such that
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I"< Dy is cl.in Gf, one has ¢*(Dpe) C Dja. Let 3" be the inverse of g”. Then g%(I%) = I*
and reasoning as above, one has that §’(Dj«) C Dje. Conclude that ¢?(Dja) = Dja.

- For the converse implication, let Ipw <Dpa ~ wlv € Wpg and ¢ € G(F|E) satisfy
g(Dys) = Dpa. Then by assertion (), before Proposition 3.4, one has that ¢ € Z,,. In
particular, h = 1(g) € G(N|L) lies in Z,,, hence by functoriality of Hilbert decomposition
theory one has h(T%) = T}, and h(Z{) = Z{. Hence taking into account that I, = T%, we
get ¢(I) = (TE) = T = Iy. Therefore, since by definition we have I? = s%(I,) and
g = 11 (h) as well, it follows instantly by mere definitions of 1, s* and p” that

g(1%) = g(5"(In)) = 8" (1" (I)) = (L) = I

3.2. Canonical s®-valuations and their functorial behavior.

In the context of Proposition 3.4 above, recall that given valuations w|v of N|L, v € Val*(L),
via the section s® of p® one gets valuations w|v of F|E satisfying wy := w|y > w and
vr:= w|L > v. In particular, the general Fact 2.4 above applies in this context, leads to:

1) The canonical to-valuations and/or v-valuations of F, which turn out to be equal wy, = w,.
Indeed, this follows by Fact 2.4, 3), because N|L is an algebraic extension.

2) The canonical tv?- and tv- and b -valuations of F? are equal wy, = wy, = wy and prolong
Wy = Wy to F?. Indeed, this follows from Fact 2.4, 3), because F”|F is algebraic.
And since F?|F|E are algebraic, the above valuations all have the same restriction to E,
denoted vy:= (wi.)|g = (wh)|E = (Ww)|E, ete.

Definition 3.5. In the above context, the valuations wy, = wy, = wy of F* and wy = w, of
F and v, of E are called canonical s*-valuations of F?|F|E (defined by tv”|w|v via s°*).
e We notice the following: Since char(Nw) = char(Lv) # ¢, v € Val'(L) and (wy)|n = 1,

one has that Fwy, # (. In particular, one also has Dy, = Zy,, and Iy, = Ty, , etc.

Fact 3.6. The s*-canonical valuations wy,|v, arising from wlv, v € Val' (L) satisfy:

(i) Op, 2 Op, 14+ my, Cl4my; (i) Oy NN =0y, (1+mgp,) "N =1+ my,.
Therefore, by mere definitions one has:

1) s*(Iv) C L, C Iw, Dw, = Dy D 8"(Dw), and Dy, |5, = Dyjy D 8" (Dyy|o)-

2) p*(Lwy) = I, pP"(Duw,) = Dw, and p*(Dy, o,) = Dy|o- Thus t(Zy, |0,) = Zio|o-

Proof. To 1): The inclusions s%(Iy) C Iy, C Iy and Dy, O Dy D s%(Dy) are clear by mere
definitions. For the converse inclusion Dy, C Dy, one has: Since I* C I, and Dy, acts on
Iy, via the cyclotomic character, one has: Vo € I and VD, one has: ¢, T is a c.l. pair in
G¢. Hence by definition one has Dy, = Dy, one finally has Dy, C Dy, as claimed.

To 2): The equality p?(Dy,, ) = Dy follows from p?(Dy,) = Dy cf. Proposition 3.4, 1) and
the other equalities follow along the same lines using loc.cit. 2) and 3). U

Next, in the notation from the previous subsections, let L|Ny|L1|L, & € I, be the family of
finite Galois subextensions of L|L with L; C N,. We notice that I is (filtered partially) ordered

by i < jifft Ny C Nﬁ. And for each i € I consider the resulting F, := EN,, thus the filtered
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family of finite Galois subextensions E|F,|E1|E if E|E. Let p} : G(ES|E) — G(NZ2|L) be the
resulting projections, and s} : G(N$|L) — G(F¢|E) be the resulting sections.

For v € Val'(L) and its prolongations &|wg|v to L|N|L, i € I, let wy|v, € WE,|E be the
valuation defined via s® and v € Vall(L). In particular, the valuations w, > tv, give rise to
the canonical tv, -valuation wy,, of F,. Further, for N, C Nﬁ and the resulting F, C Fﬁ, etc.,
let pg, : G(F§|E) — G(F|E) be the resulting canonical projections, thus pz = pg o p3,.
And recalling the notation introduced in Construction 3.3, set I?:= s,(Iyy), D% = s4(Dy) and
notice that pé = py o p/’M implies:

(%) Ppa(lg) = I, Ppa(Dp) = Dy
Key Lemma 3.7 (Functoriality of s®-canonical valuations).

For Fy C Fp, let wy, Val(Fy) and wy, € Val(Fg) be the corresponding s*-canonical valuations.
Then wmﬁ\pa = Wy, . In particular, v, = Wy, |E is independent of & € I and v = vy|L.

Proof. Let W, := Wr,|p, and set w® = min(w), wy, ) € Val(F,).

Step 1. We claim that w® is non-trivial, or equivalently, w} and wy, are not independent.
Indeed, by Fact 3.6, 1), one has Ij = s§(Iyv,) C Iy, . and by assertion (*) right before Key
Lemma 3.7, one has p”ﬁ“(lg) =1l C p%a(lwmﬁ). Thus since w, = Wi, |, , by Fact 2.9, one has
P%a(lwmﬁ) C Iy . Hence 1 # Ij C Iy NIy, , hence by Fact 2.7, 1), it follows that wj and wy,
are not independent, as claimed.

Step 2. First, w" := wV|y, is non-trivial. Indeed, by Fact 2.9, one has p? (L) C I 0. Thus
Lo D I% implies o D p%(Lyo) D po(I%) = In, # 1, and therefore, w is non-trivial.
Second, since w? < W, » one has 0 = w0|Na < wma‘Na = tv,. Thus since tv, is discrete and
0 < v, is nontrivial, one must have w° = tv,,. Finally, since wd < Wy, and w0|Na = tv,, by
the definition of the canonical tv, valuation wy, one must have w0| N, = W,. Therefore, one
finally must have w® = min(w/, Wy,) = Wy, , concluding that (Wrop) | F, = W = Wi,

Step 3. Finally, given that Wy, |r, = W) > W, , let w'ﬁ < Wy, be the minimal coarsening of

Wp. such that w% |p, = w),, that is, w;& |F, = Wy,. Then by the discussion above and Fact 2.4, 2)

B
one has both: First, w;5| N, is the prolongation is wj = ww, to Fg, thus w;%| N, = g, and
second, wr'B < wg. Thus by the definition of the canonical g -valuation Wro; ONE has that

Wrog < w%, thus finally concluding that w% = Wy » hence Wy, = Wy P |E,- ]

In order to avoid overloaded notation, we introduce the following:
Notation 3.8. Given N,|L — F,|E, we denote @, := Wy, thus @, |g = v, forall a € I.
An important consequence of the Key Lemma 3.7 above is as follows.
o O:= UxOg, C E is a valuation ring satisfying ONF, = Oy, forall i € 1.
In particular, if @ denotes the valuation of (5 ie., 0= Owﬁ, the following hold: First, since

L = UyNy, E = U,F, and 1, = @,|N,, one has & = @3|; , and further, @5|p = v, = @4 £,
Ws|1 = @Wa|L = tou|p = b, & € I. Moreover, by Fact 3.6, 2) one has:

st (In,) =11 C Ip,, and Sa(Dw,) C Dg,), &y € 1.
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Therefore, taking into account that G(L?|L) = ]#G N?|L) and G(E?|E) = = limG (F2|E)
and further, s?([;) = lim I, s7(Ds) = lim Dy, etc., by “taking limits” and taking into account
that Iy, = Ty, Dn, = Zﬁ,a and Dga |y, = Zga|o, on gets the following:

Fact 3.9 (Fact 3.6 revisited). The s°-canonical valuations Wg arising from v € Vall(L) in the
way explained above have char(F@g) # { and further satisfy the following:

1) @Ws|p, = Wa, D5|g = Uy, V5|N, = W4, Ws|L = v. Hence char(Edg) # ¢, thus concluding:

Igy = Tzabf, » Dgy = Zz%f, , Dwg|vn = Zw‘g|vn-

2) s"(Tg) C Tg,, s"(Z5) C 23, and s"(Zgap,) C Zw%|vn) and further,

p*(Tg,) = Tg’ p"(Zy,) = Zg and p"(Zaajp,) = Zay- Thus 1(Zgpp,) = Zsjy-

Proof. Beweis klar! 0

4. PrROOF OF THEOREM 1.9 ( Hk-MINIMALISTIC t-BSC)

4.1. Preparation for the proof of Main Theorem 1.9.

Let k|k be a field extension satisfying Hypothesis (H), K = k(X) be the function field of a
geometrically integral k-curve X. This gives rise to a concrete case of the more general situation
from Section 3 as follows. Let L:= k(t) =:k; the rational function field in the variable t over k
and E:= K(t) =:K; be the compositum of K = k(X) and L = k(t) over k. Then E|L, that is,
Ki|k; is a regular field extension (because K|k was so). Thus setting ki := k(t) and K:= Kk,
K;:= K(t), one has E = EL = K;, etc. For the resulting embeddings of Galois field extensions
Kt|Kt — kt‘kt — k‘k and Ka|Kf <~ ka‘kt (Kt|Kf) —) G(kt’kt) — G(k‘k) be
the canonical isomorphisms of Galois groups, respectively G(K?|K;) — G(kf|k¢) — k°|k the
resulting surjective morphisms of Galois groups, where e stays for a or c.

Finally, setting kq := k¢ (tp),
of k|k with ki C ky, partially ordered by: « < B iff k, C kg . We are in the context if Section 3
with Ny = kys:= ky(t) C kt = L and F, = EN, = ky; C ki, getting isomorphic projective
systems of finite groups G(kglk) — G(ky|k), G(Ng|L) = G(Nx|L), G(Fg|E) — G(F4|E) for
a < B, having the canonical isomorphisms G(E|E) - G(L|L) — G(k|k) as limit.

Concerning valuations: Recall that all k-valuations v € Vali(k;) are discrete, being either
the p(t)-adic valuations v = Uk,p with p = p(t) € k[t] the monic irreducible polynomials,
Or ¥ = U with uniformizing parameter 7, = % Further, ktU]k is a finite field extension,
hence char(k;v) # £, and therefore, Vali(k;) C Val'(k;). For v € Valg(k;) consider the
prolongations 1%[tw,|v of b to k%, |ka|k; with limit 57|6v as prolongations of v to k¥ |k¢|k;.
Similarly, with F, := Kyt := Kk, and v € Valg(K}), consider its prolongations w4 |w,|v to
K2 ,|Kyt|K; and 9°|]v prolonging v to Kf|K;|K;. This being said, L|L = klk:, E|E = K;|K;
introduced/defined above are as in the previous section.

Next, let s” : G(k7|k;) — G(K?|K;) be aliftable section of the canonical (surjective) projection
p" : G(R|K;) — G(k#|ky), ie., there is a section s : G(kS|k;) — G(KS|K;) of the canonical
(surjective) projection p : G(K§|K¢) — G(k¢|k;). Then recalling the canonical isomorphism

G(Kt|Kt) — G(Et|kf) defined by Ktht — I~(f|kt,
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one has the following:

Fact 4.1 (Fact 3.9 revisited). In the above context, for v € Vali(k;) and its prolongation d|v to
ke|kt, consider the corresponding inertia/decomposition groups Tg C Z§ C Zga, C G(k{|kt). Then
there is a unique valuation Wz € Val(K;) such that the following hold:
1) @5z, =, thus @ is trivial on k, i.e, W5 € Valg(K¢) and vy:= @5k, € Valg(Ky).
2) s"(Tg) C Tg,. s"(Z5) C Zg, . and s"(Zsay) C Zga|y. and further,
p (Tg)f)) = Tg, PH(Z%ﬁ) Za, and pa(Zw%|vU) = Zﬁ"|n' Thus Z(Zwﬁ‘vn) = Zﬁ\n'
In particular, every liftable section s* : G(k|k;) — G(K?|K;) of the canonical (surjective)
projection p* : G(K?|K¢) — G(k?|k¢) gives rise to an injective map
Q: Valk(Et) — Valk(Kt), 0 — W,
such that the k -valuations ® and Wy satisfy the conditions 1), 2) above.
Proof. Beweis, klar! O

4.2. Places via k|k-t-a.b.c. liftable sections.

If not otherwise explicitly stated, through out this subsection, the notation is that from Theo-
rem 1.9, that is: s% : G(k[k) — G(K|K) is a k|k-t-ab.c. liftable section of the canonical
projection p% : G(K?|K) — G(k%|k), and s} : G(kp|k) — G(K?|K;) be k|k-t-ab.c. liftings of
s to sections of py : G(K?|K;) — G(k?|k;) for @ equalto a and c. In particular, recalling the
notations and the commutative diagram introduced before Theorem 1.9, one has the following:

Pk Pk c
GKSK) —> Glklk) —> G GKEK) < G(k[ke)
(i) $ q%t p”Kt $ qit pit QL 9% Jﬁ q%t s 4? qkt

G(K{|K;) — Gl(kilke) — G(K"[k) G(K{|K;) <~ G(Ki|ke)
Here, s{ is the section of p?(t liftable to sf,ie., sfo ql‘zt = q%t os;.

Notation/Remark. Denote by Uk o> vli,oo the %-adic valuations of l~<t, K;, thus Voo = vK,ooJlEt .
We notice the following: Let v € Val(K;) be a given valuation. Then v = vg , with p € k[t]
monic irreducible iff vg:= v|g is trivial, v is non-trivial, and v # vg .

[For reader’s sake we present the quite obvious proof. First, the direct implication is clear, because

k=kNK implies: p € k[t] is irreducible iff p is irreducible over K. For the covers implication
proceed as follows: Since v|x is trivial, v is a K-valuation of K; = K(t),and v # vg ., implies

that v = vg . is the g-adic K -valuation for some monic irreducible polynomial g € K[t]. Since
vlf, is nontrivial, there exists a unique monic irreducible p € k[t] such that 9| F, = Ufp-and
since k = kN K by hypothesis, one has that p € K[t] is irreducible. On the other hand, since
Upp = Ug 4lf, » one must have vg (p) = U,;’p(p) > 0. Hence g|p in K[t], thus p = g (because
both p, g are irreducible monic).]

Key Lemma 4.2. In the above notation from Fact 4.1, denote K = Kk and for & € Valy(k;) and
Wy € Valg(Ky) set 0 := Ws|g € Valg(K). Then there is ¥|v such that 10 := Ws|p € Val(K) is
non-trivial, and non-trivial ® and w:= 10|g = Ws|x satisfy:
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1) t € Valy(K) depends on s% only and not on the specific & € Valy(k;) used to define it.
2) Kto|k is algebraic, Ko Nk = k;o Nk, and Kw|k and k|k are linearly disjoint over k.

Proof. First, if § € Valk(fct) , then either & = v or v = vy, = v} is the p-adic valuation for a
unique p € k[t] monic irreducible and the degree d; is dg:= [k:D : k]. Obviously, and one has:
dy,, = 1 and dyy, = [kivp : k] = deg(p) is the degree of p € k[t].

And the same holds, correspondingly, for the K -valuations ¢ € Valg(K}).
Let ¥ := Vali(k;), £’ := {ve} U{v, € Valg(k;) | (.dy,) = 1} and " := E\¥', thus
obviously, £ = ¥/ UX” = Vali(k;) as a disjoint union. And define 4, ¥ C Valg(K;)

correspondingly. We notice that since k C K is relatively algebraically closed, it follows that
every monic irreducible polynomial p € k[t] is monic irreducible in K[t]. Hence if Ug,p is the

prolongation of v, € Val (ki) to K;, then one has:
(%) dy, = [kivp : k] = deg(p) = [Kth,p K] = dog,
implying that £’ C X} and £” C Y. Further, let p € K[t]\k[t] be monic irreducible. Then
Ug,p is trivial on ke, implying that ¥/ = Vali(k;) N 2y and &/ = Vali(k;) N 2.
Further, given p € k[t] monic irreducible, and «, € k¢ with ocf; = p, the following hold:
a) vp is ramified in k¢[a,] | k;, and & € Valg(k;), 6 # vp, Voo, are unramified in k[a,] | k;.
b) Ve is ramified in k;[a,) | ki iff £1d,,.
Recall the exact sequence 1 — k —k* ®gey 0k 8 7 — 0 with 1(f) = af @5 B(f),

ay the leading coefficient of f and deg = } 5 d5, and tensoring with Z//, on gets an exact the
exact sequence 1 — INCtX/f — k*/ 0 @gex 6kt /0 — Z /¢ — 0. Using the latter exact sequence,
by Hilbert decomposition theory and Kummer theory the following hold:
Fact 4.3. The following hold:
(1) In the above notation, setting k? = kk;, k= k; [ocvp]vpezl , kY= ki [“vp]vpez” , one has:
1) The fields K9, ki, ki’ are linearly disjoint over ks, and lzﬂfct is the compositum 12;1 = k?k;ki’.
Hence the Galois groups G°= G(k9|k;) = g, G'= G(ki|k;) and G"= G(k/'|k;) satisfy:
The canonical projection Gff — GY x G' x G" is an isomorphism.
2) Concerning generation of G’ and G’ one has:
a) Given a fix generator To, € Ty there are unique inertia generators (T, € Ty )ycys which

topologically generate G' and satisfy the unique prorelation [J,cx) T = 1.
b) G" is profinite-freely generated by any system of inertia generators (T, € T?)yesr -

(I) The same holds, correspondingly, for Ky, and the sets of K-valuations X3, X% C Valg(Ky).
Further since ¥ = Valy(k;) N X% and " = Valy(k;) N X¥, and one has:

K cK® ki CKj, k/ CK/, and K> =K°Nké, k; =K Nk?, k =K/ Nnks.
Proceed along the following steps:

Claim 1. In the above notation, there is € ¥/ with tv:= @Wg|g not-trivial.
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Indeed, by contradiction, suppose that the assertion of Claim 1 does not l;lold, that is, for every
p € ¥/ the resulting @; is trivial on K. Thus the map ¢ : ¥ — Val(K};), & — @; defined
in Fact 4.1 has image Vj C Valg(K;) such that, by Fact 4.1, 1), @Ws|z, = © forall & € Val(k:).
Therefore, if § = e, then W5 = vg ., and if 6 = v, with p € k[t] monic irreducible, then
Wy = g, is the p-adic valuation of K;. Thus by (x) above, [k : k] = d, = [Izth,p : K],
concluding that Vj C X%. Hence the map below is a bijection

¢ : X = Ve CZg, B W5 with Vi C I stictly,

which via s7 : G(kf|k;) — G(K?|K;) and pk, : G(KP|K;) — G(k?|k;), is compatible with
inertia and decomposition groups, that is: For & <> @ one has s{(Tg) = T, s{(Z5) C Zg,_,
p?(t(ZfDﬁ) Z%, and the residue fields satisfy Ky = Kkio. Let T € Ty, be a fixed
generator, hence Ty ., := s"(Te) € Ty, generates Ty, and pg (Tg o) = Teo. Further, let
(76 € Tg)sex and (75 € Tg)sexr and (To € T)geyx, - (Ta € T)gexy be systems of inertia
generators as in Fact 4.3, 2) with T, = Two, Tog o = TK,00-

Conclude that (5*(75))._ s, = (Twg)w;ew is a proper subsystem of (Tw)wex;, such that

(¥
[asewTa, = [Toessst (t5) = st (ITsexy ™) = si(1) = 1.

Hence we reached a contradiction, and Claim 1 is proved.

Claim 2. The non-trivial valuation 0:= @g|g from Claim 1 does not dependent of &.

Indeed, recall the inclusion ¢ : Val (k) — Valk(Kt) ® — W from Fact 4.1, and by loc.cit,, 2),
one has p*(Z3 ) = Z§ C g and p*(Zgao,) = Zgojy C G(k{|kt). That implies in terms of

decomposition fields kg ZT)f, Nk* = kd Nk? =:k;y as finite extension of k. Next recall the
commutative diagrams.
GRilK) o Gk Gk T GGk
) Lk, s
G(RIK) - G(Rk) G(RIK) <~ G(k[k)
which give rise to commutative diagrams for the inertia/decomposition groups:
Zogo  —>  Zeal Zago, + Zsl
Lk, ) L, Lk, Lk,
G(R'K) > G(kk) G(RIK) <~ Gk k)

Let Z§ C Gg be the decomposition group of a non-trivial k-valuation o = Ws | . Then by
Hilbert decomposition theory one has that g, (ng vs) C Zip|r - Hence since qk, © St = 5" oy,

and taking into account that g} (Zg,) = G(k%|ks), one has finally commutative diagrams:

P sf
Zagro, —  Zatl Zigro, € Lo
U9 4k, Tk, s
p” ~ a ~
Zigajy — G(K"[ks) Zgap — G(k"[ks)
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that is, s*(G(k%|k;)) C Zgav - In particular, since k?|k satisfies Hypothesis (H), i.e., k%|k has
infinite degree, and kg |k has finite degree by the discussion above, one has the following:

() im(s”) N Zgajp O s7(G(k%|ks) N Zygaly are open subgroups of im(s?).

In particular, if & € Vali(k;) and the resulting @}, € Vali(K;) is such that ®' := @ |¢

is non-trivial, then the corresponding kg|k is finite. Hence G(ky k) C G(7~<|l~<) is open and

s(G(k?|kg)) = im(s?) N Zgsa|y- Therefore, Gg g := G(k|ks) N G(ky|k) C G(k[k) is an open

subgroup as well, and we conclude: s?(Ggg) C im(s?) is open, thus infinite, and one has:
s"(Ge5) C s*(G(k"ks)) N (G (K |ks) € Zigajro N Ziya o

is an infinite group. On the other hand, the k-valuations of K are discrete, because K = k(X)
is the function field of a k-curve X. Therefore, the non-equivalent k-valuation of K are inde-
pendent. Thus we conclude that to = ' by Lemma 2.8.

Hence Claim 2 is proved.
Claim 3. Kw|k and k|k are linearly disjoint over k.

Indeed, identify G(K|K) =:G:= G(k|k) under G(K|K) - G(k|k), and recall that kz|k — k|k
is a finite subextension, where kg := Kio N k. By Hilbert decomposition theory, G acts transi-
tively on the set Vy of prolongation #0'[ro of tvo to K|K by 97 =0 00, and Zg|y, is the stabi-

lizer of 10. Setting tf)’:: 07 and ~ﬁ/ := 97 one has: First, if ¢? — ¢ under G(Iz“|k) — G, then
(k) = kg, thus G(k|ks) = G(k|ks)"" is open subgroup of G(k|k). Second, if 0% — ¢ under
G(K*k) — G, then Zigalp = Z:;%m inside G(K“|K). In particular, choosing 0% = s(c”), thus
og € im(s”), the following hold:

a) im(s”) C G(K”|K) is invariant under the ¢ -conjugation.

b) s*(G(k*|kg)) C im(s?) is open, and so is s*(G (k%|k;)) C im(s?).

C) Sa(G(k”kﬁl) = S%G(f(ﬂkﬁ))gu C Zgj’\m = Zfo/a‘m, because s“(G(Tc"|kﬁ)) C ZﬁJa|m.
Conclude: Gg g := s*(G(k?|ks)) Ns*(G(k?|ks)) C im(s?) is open in im(s?), hence infinite, and
1# Gy Cs(G(Kkyr)) N s*(G (K [Ks)) C Zigrajo N Zigaro -

Hence arguing as in the proof of Claim 2, one gets tv = 0’. Equivalently, ¢ € Z | » thus finally,
implying that Ko Nk = k, as claimed.
This concludes the proof of Key Lemma 4.2. U

4.3. Concluding the proof of Theorem 1.5.

In the context/notation of Theorem 1.5, let s* : G(k“|k) — G(K|K) be a t-bitationally liftable
section of p* : G(K?|K) — G(k|k). Then by Key Lemma 4.2, there is a unique non-trivial
valuation 1 € Valg(K) which together with its restriction to:= v|g satisfy:

(¥) Kwlk and k|k are linearly disjoint over k.

Since K = k(X) with X a complete k-curve and to € Vali(K), it follows that tv has a center
Xp € X such that Oy = Oy, and my = my,, and similarly, o has a center x5z € X = X;
such that xg — Xxp under the canonical projection X -5 X. In particular, xy, = Ktv, and

therefore, by () above, it follows that xy,, |k and k|k are linearly disjoint over k. And 1|t are
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defined by the points xg|xy as required in Theorem 1.5. Finally, the points X |Xy, are unique
with the property that im(s%) N z% e # 1 by the uniqueness part of the Key Lemma 4.2.
1o

This concludes the proof of Theorem 1.5.

5. FINAL COMMENTS/OPEN QUESTIONS

Naturally, the elephant in the room is whether the Section Conjecture holds in the geometric
case, i.e., form geometrically integral normal k-curves X, where k is a not ¢-closed for some
¢ # char(k). Here is a short list of questions which might be addressed with methods similar to
the ones developed in this manuscript. Here, the notations are as in sections 3 and 4 above.

0) Prove all the above results for ¢ = 2, provided char # 2 (after replacing py by pa).

1) Suppose that 15, C k and k*/¢ infinite. Does the k|k-¢-BSC hold?

2) Replacing P} (in the ¢-BST) by a k-curve or a k-variety Z, formulate & prove the Z-BSC.
3) Let k be Hilbertian, X be proper smooth k-variety. Does the f-BSC hold for K = k(X) ?
4) Let k be as above. Does the BSC hold for K; |k, e.g., for k = ko(u), ko = ko ?

e This would sharpen BocoMoLov-RovINsSKY-TscHINKEL [BRT] over k:= ko(t,u), ko = ko.
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