

GENERALIZATIONS AND MINIMALISTIC REFINEMENTS OF THE t -BIRATIONAL SECTION CONJECTURE

FLORIAN POP

ABSTRACT. In this note we give generalizations and present and prove “minimalistic” refinements of the t -birational Section Conjecture (t -BSC), cf. [Be], by doing both: First, by extending the class of base fields over which the t -BSC holds, and second, by proving refinements of the t -BSC which involve much less, that is *minimalistic*, Galois theoretical information.

1. INTRODUCTION/MOTIVATION

For reader’s sake and to make the presentation self contained (to some extent), we begin by recalling a few notations and Galois theoretical basics.

Notation/Definition 1.0. Throughout the paper, if not otherwise explicitly stated, we will use the following notations and definitions:

- k is a field, $\bar{k}|k$ is a separable closure of k , and $\tilde{k}|k \hookrightarrow \bar{k}|k$ is a Galois subextension.
- $\ell \neq \text{char}(k)$ is some odd prime number, fixed throughout.
- X is a complete geometrically integral normal k -curve.
- $K = k(X)$ is its function field, hence $K|k$ a regular field extension.
- $\bar{X} = X \times_k \bar{k}$ is the base change, thus \bar{X} is normal integral.
- $\bar{\pi}_1(X) := \pi_1(\bar{X})$ and $\bar{\pi}_1(K) := \pi_1(K\bar{k})$ are the geometric étale fundamental groups.

Hence get the canonical commutative diagram with exact rows:

$$(*)_k \quad \begin{array}{ccccccc} \pi_{K/k}: & 1 \rightarrow \bar{\pi}_1(K) & \xrightarrow{\bar{p}_K} & \pi_1(K) & \xrightarrow{p_K} & \pi_1(k) & \rightarrow 1 \\ & & \downarrow \bar{q}_X & & \downarrow q_X & & \parallel \\ \pi_{X/k}: & 1 \rightarrow \bar{\pi}_1(X) & \xrightarrow{\bar{p}_X} & \pi_1(X) & \xrightarrow{p_X} & \pi_1(k) & \rightarrow 1 \end{array}$$

Let $\mathcal{S}(\pi_{X/k})$ and $\mathcal{S}(\pi_{K/k})$ denote, respectively, the sets of $\bar{\pi}_1(X)$ -conjugacy classes of sections $s: \pi_1(k) \rightarrow \pi_1(X)$ of $\pi_{X/k}$, and $\bar{\pi}_1(K)$ -conjugacy classes of sections $s: \pi_1(k) \rightarrow \pi_1(K)$ of $\pi_{K/k}$. Obviously, if $s_K \in \mathcal{S}(\pi_{K/k})$, then $s_X := \pi_K \circ s_K$ lies in $\mathcal{S}(\pi_{X/k})$.

Next let $k_t := k(t)$ be the rational function field. For the base change $X_t := X \times_k k_t$ and its function field $K_t := k_t(X_t)$ consider the resulting diagram $(*)_{k_t}$ over k_t for X_t and K_t below:

Date: Variant of Sept 28, 2025.

Key words and phrases. Rational points of varieties, function fields, valuations and prime divisors, Galois theory, anabelian geometry, (t -birational) section conjecture.

2010 MSC. Primary: 11Gxx, 11Uxx, 14Dxx, 14Gxx.

Supported by the NSF FRG grant DMS-2152304.

$$(*)_{k_t} \quad \begin{array}{ccccccc} \pi_{K_t/k_t} : & 1 \rightarrow \bar{\pi}_1(K_t) & \xrightarrow{\bar{p}_t} & \pi_1(K_t) & \xrightarrow{p_t} & \pi_1(k_t) & \rightarrow 1 \\ & & \downarrow \bar{q}_{X_t} & & \downarrow q_{X_t} & & \parallel \\ \pi_{X_t/k_t} : & 1 \rightarrow \bar{\pi}_1(X_t) & \xrightarrow{\bar{p}_{X_t}} & \pi_1(X_t) & \xrightarrow{p_{X_t}} & \pi_1(k_t) & \rightarrow 1 \end{array}$$

Let $\mathcal{S}(\pi_{X_t/k_t})$ be the set of all the $\bar{\pi}_1(X_t)$ -conjugacy classes of section $s_t : \pi_1(k_t) \rightarrow \pi_1(X_t)$ of $\pi_{X_t/k_t} : \pi_1(X_t) \rightarrow \pi_1(k_t)$, and $\mathcal{S}(\pi_{K_t/k_t})$ be the set of the $\bar{\pi}_1(K_t)$ -conjugacy classes of sections $s_t : \pi_1(k_t) \rightarrow \pi_1(K_t)$ of $\pi_{K_t/k_t} : \pi_1(K_t) \rightarrow \pi_1(k_t)$. One has a functorial identification $\pi_1(X_t) = \pi_1(X) \times_{\pi_1(k)} \pi_1(k_t)$, hence $s \in \mathcal{S}(\pi_{X/k}) \hookrightarrow \mathcal{S}(\pi_{X_t/k_t})$ via $s \mapsto s_t := s \times_{\pi_1(k)} \text{id}$.

Definition. Let $pr_k : \pi_1(k_t) \rightarrow \pi_1(k)$ and $pr_K : \pi_1(K_t) \rightarrow \pi_1(K)$ be the canonical projections, hence $pr_k \circ p_{K_t} = p_K \circ pr_K$. Given a section $s \in \mathcal{S}(\pi_{X/k})$, we say that s is:

- 1) *birationally liftable*, if there is $s_K \in \mathcal{S}(\pi_{K/k})$ such that $s = q_X \circ s_K$.
- 2) *t-birationally liftable*, if there is $s_t \in \mathcal{S}(\pi_{K_t/k_t})$ such that $s \circ pr_k = pr_K \circ s_t$.

Since X is a complete normal k -curve, the points $x \in X$ are in bijection with the k -valuation rings $\mathcal{O}_v \in \text{Val}_k(K)$ of the k -valuations of K via $\mathcal{O}_x = \mathcal{O}_v$. Hence $x \in X$ is closed if and only if $v \in \text{Val}_k(K)$ is non-trivial iff $\kappa(x) = \kappa(v)$ is finite over k . Further, $x \in X(k)$ is k -rational iff $\kappa(x) = k = \kappa(v)$ iff v is a k -rational valuation. One has: By functoriality of π_1 , every $x \in X(k)$ gives rise naturally to some $s_x \in \mathcal{S}(\pi_{X/k})$. Second, given a k -rational $v \in \text{Val}_k(K)$, let $\bar{v}|v$ be the prolongations of v to $K^{\text{sep}}|K$, and $T_v \triangleleft Z_v < \pi_1(K)$ be the inertia/decomposition groups. Then all $\bar{v}|v$ are $\bar{\pi}_1(K)$ -conjugated, and so are $T_v \triangleleft Z_v$, and the canonical exact sequence

$$(\pi_v) : \quad 1 \rightarrow T_v \xrightarrow{\bar{p}_K} Z_v \xrightarrow{p_K} G_k \rightarrow 1 \quad \text{is split.}$$

Hence the set of conjugacy classes of the sections $s_v \in \mathcal{S}(\pi_{K/k})$ defined by a k -rational v is in bijection with the conjugacy classes of splittings of the exact sequence (π_v) above, hence with $H_{\text{cont}}^1(G_k, T_v)$, the cohomology pointed set of G_k with values in T_v . In particular, if $\text{char}(k) = 0$, one has that $T_v = \widehat{\mathbb{Z}}(1)$, thus via Kummer Theory, one has $H_{\text{cont}}^1(G_k, T_v) = \widehat{k^\times}$.

The section conjecture (SC) originates from GROTHENDIECK [G1], [G2], see [GGA], and asserts:

Grothendieck SC. *Let $k|\mathbb{Q}$ be a finitely generated field and X be a projective hyperbolic k -curve. Then all $s \in \mathcal{S}(\pi_{X/k})$ arise from $x \in X(k)$ as described above and $X(k) \rightarrow \mathcal{S}(\pi_{X/k})$ is a bijection.*

There are several variants of section conjectures as follows. The **birational section conjecture (BSC)** asserts that in the context of SC, letting $K = k(X)$ be the function field of X , all sections $s \in \mathcal{S}(\pi_{K/k})$ arise from k -rational valuations v of $K|k$, thus from k -rational points $x \in X(k)$ as explained above. The **p -adic SC** and **p -adic BSC** are obtained by replacing the f.g. field $k|\mathbb{Q}$ by a p -adic field k , i.e., by a finite field extension $k|\mathbb{Q}_p$. Finally, in the context of Grothendieck SC, the **t -BSC** asserts that any section $s \in \mathcal{S}(\pi_{X/k})$ which is t -birationally liftable originates from a k -rational point $x \in X(k)$ as explained above, using the fact that $x \in X(k)$ gives rise canonically to the k_t -rational point $x_t := x \times_k k_t \in X_t(k_t)$ of $X_t = X \times_k k_t$, etc.

Concerning results, conditional/weaker forms of the SC are part of the *local theory* in anabelian geometry by NAKAMURA [Na], TAMAGAWA [Ta], MOCHIZUKI [Mz1], see e.g. the survey articles FALTINGS [Fa], SZAMUELY [Sz]. One can say that SC is wide open, and there are only a few complete unconditional results concerning forms of the BSC, precisely: The p -adic BSC is known, see KOENIGSMANN [Ko1] for the case of curves and STIX [St1] for higher dimensional varieties. The

BSC is known for the generic curve C_g over $\kappa(M_g)$ by HAIN [Ha], and second, for the geometrically integral hyperbolic curves over totally real number fields k by STIX [St2]. Finally, very recently, the t -BSC was proved *over all $k|\mathbb{Q}$ finitely generated* by BRESCIANI [Be].

To complete this short list of results, recall that the p -adic BSC for curves (for all p) and higher dimensional varieties (for $p > 2$) holds under Galois “minimalistic” hypotheses. For instance, if the p -adic field k contains the p^{th} roots of unity, then the \mathbb{Z}/p -metabelian Galois theory encodes already the rational points of proper smooth k -varieties. See Pop [P1], [P2] and LÜDTKE [Lu] for details and further more general facts.

The aim of this note is to both *generalize* the t -BSC in its initial form and define/introduce and prove “*Galois-minimalistic*” type results for the t -BSC over quite general base fields k , thus giving wide generalizations of the t -BSC over $k|\mathbb{Q}$ finitely generated.

An application/consequence of the methods developed in this note is the following.

Theorem 1.1 (Generalized t -BSC). *Let k be a perfect not ℓ -closed field for some given odd prime number $\ell \neq \text{char}(k)$. Let X be a complete integral normal k -curve, $K = k(X)$. Then every t -birationally liftable section $s \in \mathcal{S}(\pi_{K/k})$ is defined by a unique k -rational point $x_s \in X(k)$ in the way explained above. That is, the t -BSC holds over k .*

The above theorem is a relatively easy consequence of Theorem 1.5 below.

Notation 1.2. Let $k, \tilde{k}|k$, e.g. $\tilde{k} = \bar{k}$, ℓ and $X, K = k(X)$ be as at Notation/Definition 1.0 above. We set $\tilde{X} = X \times_k \tilde{k}$, $\tilde{K} := \tilde{k}K = k(X_{\tilde{k}})$ and let $\tilde{k}_t := \tilde{k}(t)$ be the rational function field. Define $\tilde{X}_t = X \times_k \tilde{k}_t$, $\tilde{K}_t = \tilde{K}(t) = \tilde{k}_t(\tilde{X}_t)$ correspondingly. Since $\tilde{K}|K$ and $\tilde{K}_t|k_t$ are Galois extensions, both $\bar{K}|\tilde{K}^c|\tilde{K}^a|\tilde{K}|K$ and $\bar{K}_t|\tilde{K}_t^c|\tilde{K}_t^a|\tilde{K}_t|K_t$ are Galois extensions of K , respectively K_t .

Remark 1.3. Considering the commutative diagrams below:

$$\begin{array}{ccc}
 \pi_1(K_t) \xleftarrow[p_t]{s_t} \pi_1(k_t) & G(\tilde{K}_t^c|K_t) \xleftarrow[p_t^c]{s_t^c} G(\tilde{k}_t^c|k_t) & G(\tilde{K}_t^a|K_t) \xleftarrow[p_t^a]{s_t^a} G(\tilde{k}_t^a|k_t) \\
 \downarrow q_K & \downarrow q_k^c & \downarrow q_k^a \\
 \pi_1(K) \xleftarrow[p]{s} \pi_1(k) & G(\tilde{K}^c|K) \xleftarrow[p^c]{s^c} G(\tilde{k}^c|k) & G(\tilde{K}^a|K) \xleftarrow[p^a]{s^a} G(\tilde{k}^a|k)
 \end{array}$$

with $s \in \mathcal{S}(\pi_{K/k})$ and $s_t \in \mathcal{S}(\pi_{K_t/k_t})$ being corresponding sections. The following hold:

- (+) Every $s \in \mathcal{S}(\pi_{K/k})$ gives rise canonically to a section $s^c : \pi_1(k) \rightarrow G(\tilde{K}^c|K)$ of p^c and $s^a : \pi_1(k) \rightarrow G(\tilde{K}^a|K)$ of p^a as above such that s^c is a lifting of s^a .
- (+)_t Every $s_t \in \mathcal{S}(\pi_{K_t/k_t})$ gives rise canonically to a sections $s_t^c : G(\tilde{k}_t^c|k_t) \rightarrow G(\tilde{K}_t^c|K_t)$ of p_t^c and $s_t^a : G(\tilde{k}_t^a|k_t) \rightarrow G(\tilde{K}_t^a|K_t)$ of p_t^a as above such that s_t^c is a lifting of s_t^a .
- (‡) If $s_t \in \mathcal{S}(\pi_{K_t/k_t})$ is a t -birational lifting of some given $s \in \mathcal{S}(\pi_{K/k})$, then s_t gives rise canonically to sections $s_t^c : G(\tilde{k}_t^c|k_t) \rightarrow G(\tilde{K}_t^c|K_t)$ of p_t^c and $s_t^a : G(\tilde{k}_t^a|k_t) \rightarrow G(\tilde{K}_t^a|K_t)$ of p_t^a which lift s^c and s^a , respectively, i.e., one has the following:

$$q_K^c \circ s_t^c = s^c \circ q_k^c \quad \text{and} \quad q_K^a \circ s_t^a = s^a \circ q_k^a.$$

Definition/Remark 1.4. Let $s^a : G(\tilde{k}^a|k) \rightarrow G(\tilde{K}^a|K)$ be a section of $p^a : G(\tilde{K}^a|K) \rightarrow G(\tilde{k}^a|k)$.

- 1) We say that s^a is $\tilde{k}|k$ -a.b.c. liftable, if there is a section s^c of p^c which lifts s^a .

2) We say that s^a is $\tilde{k}|k$ -t-a.b.c. liftable, if there is a section s_t^c of p_t^c which lifts s^a .

We notice that, in particular, if s^a , s^c and s_t^c are sections as above, and pr_K , pr_k , pr_{K_t} , pr_{k_t} are the canonical projections, one has commutative diagrams as follows:

$$\begin{array}{ccccc}
 & & G(\tilde{K}_t^c|K_t) & & \\
 & \swarrow q_K^c & \downarrow s^c & \searrow q_k^c & \\
 G(\tilde{K}^c|K) & \xleftarrow{p^c} & G(\tilde{k}^c|k) & \xleftarrow{p_t^c} & G(\tilde{k}_t^c|k_t) \\
 \downarrow pr_{K_t} & & \downarrow pr_{k_t} & & \downarrow \\
 & \swarrow q_K^a & \downarrow s^a & \searrow q_k^a & \\
 G(\tilde{K}_t^a|K_t) & \xleftarrow{p_t^a} & G(\tilde{k}_t^a|k_t) & \xleftarrow{p^a} & G(\tilde{K}^a|K) \\
 \downarrow pr_k & & \downarrow & & \downarrow \\
 & \swarrow q_K^a & \xleftarrow{s^a} & \searrow q_k^a & \\
 G(\tilde{K}^a|K) & \xleftarrow{p^a} & G(\tilde{k}^a|k) & \xleftarrow{p_t^a} & G(\tilde{k}_t^a|k_t)
 \end{array}$$

(*) $_{\tilde{k}|k}$

The above Generalized t -BSC is a consequence of the following deeper fact.

Theorem 1.5 ($\bar{k}|k$ -Minimalistic t -BSC). *Let k be a perfect and not ℓ -closed field for a fixed $\ell \neq \text{char}(k)$. Let X be a complete integral normal k -curve, $K = k(X)$, and $\tilde{k} = \bar{k}$, thus $G(\tilde{k}|k) = \pi_1(k)$ and $\tilde{K} = K\bar{k}$. Then every $\bar{k}|k$ -t-a.b.c. liftable section $s^a : \pi_1(k) \rightarrow G(\tilde{K}^a|K)$ of $p^a : G(\tilde{K}^a|k) \rightarrow \pi_1(k)$ is defined by a unique k -rational point $x \in X(k)$ as explained above.*

Remark 1.6. We notice that Theorem 1.5 above implies the Generalized t -BSC above, hence the t -BSC in the classical context, where k is of finite type over \mathbb{Q} . Namely, let $s \in \mathcal{S}(\pi_{K/k})$ be given and $s_t : \pi_1(k_t) \rightarrow \pi_1(K_t)$ be a lifting of $s : \pi_1(k) \rightarrow \pi_1(K)$. Let $K_s \subset K^{\text{sep}}$ be the fixed field of the image $s(\pi_1(k)) \subset \pi_1(K)$, and set $K_s = \cup_{\alpha} K_{\alpha}$ with $K_{\alpha}|K$ the inductive system of finite subextensions of $K_s|K$. Then the normalization $X_{\alpha} \rightarrow X$ of X in the finite field extension $K_{\alpha}|K$ is a geometrically integral model of $K_{\alpha}|k$, and setting $X_{\alpha,t} := X_{\alpha} \times_k k_t$, $K_{\alpha,t} = k_t(X_{\alpha,t}) = K_{\alpha}(t)$, one has: The section $s : \pi_1(k) \rightarrow \pi_1(K)$ gives rise canonically to sections $s_{\alpha} : \pi_1(k) \rightarrow \pi_1(K_{\alpha})$, because $s(\pi_1(k)) \subset \pi_1(K_{\alpha})$. Second, if $K_{s_t} \subset K_t^{\text{sep}}$ is the fixed field of the image $s_t(\pi_1(k_t)) \subset \pi_1(K_t)$, it follows that $K_{\alpha,t} \subset K_{s_t}$. Hence for every s_{α} , the section $s_t : \pi_1(k_t) \rightarrow \pi_1(K_t)$ gives rise canonically to a lifting $s_{\alpha,t} : \pi_1(k_t) \rightarrow \pi_1(K_{\alpha,t})$.

To conclude, for every K_{α} , consider the resulting $\tilde{K}_{\alpha} := K_{\alpha}\bar{k}$, and $\tilde{K}_{\alpha,t} := K_{\alpha,t}\bar{k}$. Then the section s_{α} gives rise to a section $s_{\alpha}^a : \pi_1(k) \rightarrow G(\tilde{K}_{\alpha}^a|K)$ of $p_{\alpha}^a : G(\tilde{K}_{\alpha}^a|K) \rightarrow \pi_1(k)$, which by the discussion above, is obviously $\bar{k}|k$ -t-a.b.c. liftable. Hence by Theorem 1.5 above, s_{α}^a is defined by a unique closed point unique $x_{\alpha} \in X_{\alpha}(k)$. On the other hand, if $K_{\alpha} \subset K_{\beta}$, and $f_{\beta\alpha} : X_{\beta} \rightarrow X_{\alpha}$ is the canonical projection, then sorting through the definitions, one has: $x'_{\alpha} = f_{\beta\alpha}(x_{\beta}) \in X_{\alpha}(k)$ is a k -rational point of X_{α} which defines the section s_{α} as well. Hence by the uniqueness of the point $x_{\alpha} \in X_{\alpha}(k)$, one must have $x'_{\alpha} = x_{\alpha}$, i.e., $f_{\beta\alpha}(x_{\beta}) = x_{\alpha}$. Conclude that the compatible system $(x_{\alpha})_{\alpha}$ of rational points defines the unique k -rational point $x_s \in X(k)$ which defines the t -birationally liftable section $s : \pi_1(k) \rightarrow \pi_1(K)$ we started with.

Finally, we present a refinement of the above Theorem 1.5, which is as follows.

Hypothesis. For $\ell \neq \text{char}(k)$ odd, and $\tilde{k}|k$ Galois extension, consider the hypotheses:

(H) $\mu_\ell \subset \tilde{k}$ and $\tilde{k}^a|k$ is a infinite Galois extension.

(H0) Setting $\tilde{k} := k(\mu_\ell)$, the field extension $\tilde{k}|k$ satisfies hypothesis (H).

Example 1.7. For an odd prime number $\ell \neq \text{char}(k)$, one has the following:

- 1) If k is not ℓ -closed, i.e., ℓ divides the degree $[\bar{k}:k]$, then $\bar{k}|k$ satisfies hypothesis (H).
- 2) The hypothesis (H0) is quite general, e.g., the infinite finitely generated fields, and more general, any Hilbertian field, etc., satisfy hypothesis (H0). And if k satisfies (H0), one has:
(*) $\bar{k} = \cup_\alpha k_\alpha$ inductively, where $k_\alpha|k$ are finite Galois extensions with $k_\alpha^a|k$ satisfying (H).
- 3) Suppose that $\mu_\ell \subset k$. Then by mere definition, TFAE:

- (i) k satisfies hypothesis (H0). (ii) k^\times/ℓ is infinite.

Recalling the notions of $\tilde{k}|k$ -a.b.c. liftable sections and $\tilde{k}|k$ -t-a.b.c. liftable sections, and the commutative diagram $(*)_{\tilde{k}|k}$ above, consider/define the following:

Definition 1.8. For closed points $x \in X$, set $k_x := \kappa(x) \cap \bar{k}$. For the k -valuation v_x of K with $\mathcal{O}_{v_x} = \mathcal{O}_x$, let $\tilde{Z}_x \subset G(\tilde{K}^a|K)$ be the decomposition groups of prolongations \tilde{v}_x^a of v_x to \tilde{K}^a . Let a section $s^a: G(\tilde{k}^a|l) \rightarrow G(\tilde{K}^a|K)$ of $p^a: G(\tilde{K}^a|K) \rightarrow G(\tilde{k}^a|k)$ be given. We say that:

- 1) A closed point $x \in X$ defines s^a if $x \in X(k)$ is k -rational, and $s^a(G(\tilde{k}^a|k)) \subset \tilde{Z}_x$ for some decomposition group $\tilde{Z}_x \subset G(\tilde{K}^a|K)$ above v_x .
- 2) A closed point $x \in X$ quasi-defines s^a if $k_x := \kappa(x) \cap \tilde{k} = k$, and $s^a(G(\tilde{k}^a|k)) \subset \tilde{Z}_x$ for some decomposition group $\tilde{Z}_x \subset G(\tilde{K}^a|K)$ above v_x .

In particular, for $\tilde{k} = \bar{k}$, the notions “defines” and “quasi defines” are identical.

The above $\bar{k}|k$ -minimalistic t -BSC is a consequence of the following deeper fact.

Theorem 1.9 ($\tilde{k}|k$ -Minimalistic t -BSC). *In the above notation, let $s^a: G(\tilde{k}^a|k) \rightarrow G(\tilde{K}^a|K)$ be a $\tilde{k}|k$ -t-a.b.c. liftable section of $p^a: G(\tilde{K}^a|K) \rightarrow G(\tilde{k}^a|k)$. If $\tilde{k}|k$ satisfies hypothesis (H), then the section s^a is quasi-defined by a unique closed point $x_{s^a} \in X$, i.e., $\tilde{k} \cap \kappa(x_{s^a}) = k$.*

Corollary 1.10. *If $k = \bar{k}$, then s^a is defined by a unique k -rational point $x_{s^a} \in X(k)$. Hence Theorem 1.9 implies Theorem 1.5 (Minimalistic t -BSC), hence Theorem 1.1 (Generalized t -BSC).*

2. REVIEWING FACTS ABOUT RECOVERING VALUATIONS

2.1. Basics of valuations theory.

For arbitrary fields Λ , let $\text{Val}(\Lambda)$ be the set of (equivalence classes of) valuations v of Λ . For $v \in \text{Val}(\Lambda)$, let $\mathfrak{m}_v \subset \mathcal{O}_v$ be its valuation ideal/ring, $\Lambda v = \kappa(v) = \mathcal{O}_v/\mathfrak{m}_v$ its residue field, and $v\Lambda = \Lambda^\times/\mathcal{O}_v^\times$ the (canonical) value group of v . Recall that $\text{Spec}(\mathcal{O}_v)$ is a chain w.r.t. inclusion, and for each $\mathfrak{m}_1 \in \text{Spec}(\mathcal{O}_v)$, the localization $\mathcal{O}_1 := (\mathcal{O}_v)_{\mathfrak{m}_1}$ is a valuation ring with valuation ideal \mathfrak{m}_1 . And if $v_1 \in \text{Val}(\Lambda)$ is the corresponding valuation, then $\mathcal{O}_1 = \mathcal{O}_{v_1}$ and $\mathfrak{m}_1 = \mathfrak{m}_{v_1}$. Moreover, the rings $\mathcal{O}_1 \subset \Lambda$ with $\mathcal{O}_v \subset \mathcal{O}_1$ are the valuation rings of the form above, i.e., $\mathcal{O}_1 = (\mathcal{O}_v)_{\mathfrak{m}_1}$ for some $\mathfrak{m}_1 \in \text{Spec}(\mathcal{O}_v)$ and $\mathcal{O}_0 = \mathcal{O}_v/\mathfrak{m}_1 \subset \Lambda v_1$ is a valuation ring on Λv_1 with valuation ideal $\mathfrak{m}_0 = \mathfrak{m}/\mathfrak{m}_1$. Thus setting $\mathcal{V}_v(\Lambda) := \{v_1 \in \text{Val}(\Lambda) \mid v_1 \leq v\}$ and $\mathcal{R}_{\mathcal{O}_v} := \{\mathcal{O}_1 \subset F \mid \mathcal{O}_v \subset \mathcal{O}_1\}$, one has canonical bijections:

$$\mathcal{V}_v(\Lambda) \rightarrow \mathcal{R}_{\mathcal{O}_v} \rightarrow \text{Spec}(\mathcal{O}_v), \quad v_1 \mapsto \mathcal{O}_{v_1} \mapsto \mathfrak{m}_{v_1}.$$

Finally, $\text{Val}(\Lambda)$ carries a natural partial ordering \leqslant defined by the equivalent conditions:

$$v_1 \leqslant v_2 \text{ iff } \mathcal{O}_{v_1} \supset \mathcal{O}_{v_2} \text{ iff } \mathfrak{m}_{v_1} \subset \mathfrak{m}_{v_2} \text{ iff } \mathfrak{m}_{v_1} \subset \mathcal{O}_{v_2}.$$

We say that v_1 is a *coarsening* of v_2 , respectively that v_2 is a *refinement* of v_1 . In particular, if $v_1 \leqslant v_2$, then $\mathcal{O}_{v_0} := \mathcal{O}_v / \mathfrak{m}_{v_1}$ is a valuation ring of $\Lambda_0 := Ev_1$ having $\mathfrak{m}_{v_0} = \mathfrak{m}_{v_2} / \mathfrak{m}_{v_1}$ as valuation ideal, and obviously, $\Lambda_0 v_0 = \mathcal{O}_{v_0} / \mathfrak{m}_{v_0} = \mathcal{O}_v / \mathfrak{m}_v = \Lambda v$. Further, one has a canonical exact sequence of value groups $1 \rightarrow v_0 \Lambda_0 \rightarrow v \Lambda \rightarrow v_1 \Lambda \rightarrow 1$.

If $v_1 \leqslant v_2$, we denote $v_0 = v_2 / v_1$ and call v_0 the (valuation theoretical) *quotient* of v_2 by v_1 , and set $v_1 = v_0 \circ v_2$ and call v_1 the (valuation theoretical) *composition* of v_0 and v_1 .

We also recall that $v_1 \leqslant v$ gives rise to the projection $v \Lambda = \Lambda^\times / \mathcal{O}_v^\times \rightarrow \Lambda^\times / \mathcal{O}_{v_1}^\times = v_1 \Lambda$, which is order preserving, thus its kernel is a convex subgroup Δ_v of $v \Lambda$. And conversely, if $\Delta \leqslant v \Lambda$ is a convex subgroup, the $v \Lambda \rightarrow v \Lambda / \Delta$ is order preserving, giving rise to a valuation $v_\Delta \in \text{Val}(\Lambda)$ with $v_\Delta \leqslant v$. Conclude that $\mathcal{V}_v(\Lambda)$ is in canonical bijective with the set of convex subgroups $\{\Delta \leqslant v \Lambda \mid \text{convex subgroup}\}$.

Last but not least, for $v_1, v_2 \in \text{Val}(\Lambda)$ there is a well defined valuation $v = \min(v_1, v_2)$ in $\text{Val}(\Lambda)$ whose valuation ring \mathcal{O}_v is characterized as follows: $(\mathcal{O}_{v_1})_{\mathfrak{m}} = \mathcal{O}_v = (\mathcal{O}_{v_2})_{\mathfrak{m}}$ and $\mathfrak{m}_v = \mathfrak{m}$, where $\mathfrak{m} \in \text{Spec}(\mathcal{O}_{v_1}) \cap \text{Spec}(\mathcal{O}_{v_2})$ is the unique maximal element w.r.t. inclusion. Equivalently, \mathfrak{m} is maximal in $\text{Spec}(\mathcal{O}_{v_1}) \cap \text{Spec}(\mathcal{O}_{v_2})$ satisfying $\mathfrak{m} \cap \mathcal{O}_{v_1}^\times = \emptyset = \mathcal{O}_{v_2} \cap \mathfrak{m}$.

Finally, every $v \in \text{Val}(\Lambda)$ defines a field topology τ_v on Λ (in which a basis of open neighborhoods of 0 consists of the non-zero ideals of \mathcal{O}_v). Obviously, for $v_1, v_2 \in \text{Val}(\Lambda)$ one has that $\tau_{v_1} = \tau_{v_2}$ iff v_1 and v_2 have a common non-trivial coarsening $v \leqslant v_1, v_2$ and if so, $\tau_{v_1} = \tau_v = \tau_{v_2}$. If this is the case, we say that v_1, v_2 are *dependent*. Complementary, we say that v_1, v_2 are *independent*, if $\tau_{v_1} \neq \tau_{v_2}$, or equivalently, the diagonal embedding $\Lambda \rightarrow (\Lambda, \tau_{v_1}) \times (\Lambda, \tau_{v_2})$ has a dense image. Notice that for $v_1, v_2 \in \text{Val}(\Lambda)$, and $U_{v_i} \subset \Lambda$ non-empty v_i -open, $i = 1, 2$, the following are equivalent:

$$(i) \ v_1, v_2 \text{ are independent; } (ii) \ U_{v_1} - U_{v_2} = \Lambda; \ (iii) \ \Lambda^\times \subset U_{v_1} \cdot U_{v_2}.$$

Fact 2.1. *In general, given $v_1, v_2 \in \text{Val}(\Lambda)$ and $v := \min(v_1, v_2)$, set $U_{v_i} = 1 + \mathfrak{m}_{v_i}$, $i = 1, 2$ and $U_v = 1 + \mathfrak{m}_v$. The following hold:*

- 1) If $v_1 \leqslant v_2$, one has $U_{v_1} \cdot U_{v_2} = U_{v_2}$, $\mathcal{O}_{v_1} \cdot \mathcal{O}_{v_2} = \mathcal{O}_{v_1}$, $U_{v_2} - U_{v_1} = \mathfrak{m}_{v_2}$.
- 2) If $v < v_1, v_2$ strictly, then $U_{v_1} \cdot U_{v_2} = \mathcal{O}_v^\times = \mathcal{O}_{v_1}^\times \cdot \mathcal{O}_{v_2}^\times$, $U_{v_1} - U_{v_2} = \mathcal{O}_v = \mathcal{O}_{v_1} - \mathcal{O}_{v_2}$.

Proof. The assertions from 1) follow by mere definition.

To 2): By mere definitions, the quotient valuations $\bar{v}_i = v_i / v$, on the residue field Λv are independent. Hence setting $U_{\bar{v}_i} := 1 + \mathfrak{m}_{\bar{v}_i}$, $i = 1, 2$ one has that $\Lambda v^\times = U_{\bar{v}_1} \cdot U_{\bar{v}_2}$ by the discussion above. Further, the canonical exact sequence

$$(*) \quad 1 \rightarrow U_v \rightarrow \mathcal{O}_v^\times \xrightarrow{\pi} \Lambda v^\times \rightarrow 1$$

defines exact sequences $1 \rightarrow U_v \rightarrow U_{v_1} \rightarrow U_{\bar{v}_1} \rightarrow 1$, thus an subsequence of $(*)$ above:

$$(**) \quad 1 \rightarrow U_v \hookrightarrow U_{v_1} \cdot U_{v_2} \twoheadrightarrow U_{\bar{v}_1} \cdot U_{\bar{v}_2} \rightarrow 1,$$

in which the the first map is injective, and the second one is surjective. On the other hand, sine \bar{v}_1, \bar{v}_2 are independent on Λv , one has $\Lambda v^\times = U_{\bar{v}_1} \cdot U_{\bar{v}_2}$. Hence since $U_{v_1} \cdot U_{v_2} \subset \mathcal{O}_v^\times$ and $\ker(\pi) = U_v$, we conclude that $(**)$ is exact, implying finally $U_{v_1} \cdot U_{v_2} = \mathcal{O}_v^\times$.

The proof of the assertion $U_{v_1} - U_{v_2} = \mathcal{O}_v$ is similar, being the additive variant. \square

Canonical v -valuation. Let $\Omega|\Lambda$ be an arbitrary field extension and $w \in \text{Val}(\Omega)$ and $v \in \text{Val}(\Lambda)$ satisfy $w_\Lambda := w|_\Lambda \geq v$. Equivalently, by general valuation theory, one has:

$$\mathcal{O}_w \cap \Lambda = \mathcal{O}_{w_\Lambda} \subset \mathcal{O}_v, \quad (1 + \mathfrak{m}_v) \cap \Lambda = 1 + \mathfrak{m}_{w_\Lambda} \supset 1 + \mathfrak{m}_v, \quad \text{etc.}$$

In particular, by the above discussion about coarsening, $\mathcal{O}_v = (\mathcal{O}_{w_\Lambda})_{\mathfrak{m}_v}$ is the localization of \mathcal{O}_{w_Λ} with respect to its prime ideal $\mathfrak{m}_v \in \text{Spec}(\mathcal{O}_{w_\Lambda})$. Equivalently, setting $\Sigma_{w_\Lambda} := \mathcal{O}_{w_\Lambda} \setminus \mathfrak{m}_v$, one has that Σ_{w_Λ} is a multiplicative system in \mathcal{O}_{w_Λ} defining \mathcal{O}_v as follows:

$$\mathcal{O}_v = (\mathcal{O}_{w_\Lambda})_{\mathfrak{m}_v} = \Sigma_{w_\Lambda}^{-1} \mathcal{O}_{w_\Lambda}.$$

Lemma 2.2. $\mathcal{O}_0 = \Sigma_{w_\Lambda}^{-1} \mathcal{O}_w \subset \Omega$ is a valuation ring with valuation w_0 satisfying $w_0|_\Lambda = v$.

Proof. Indeed, $\mathcal{O}_0 \cap \Lambda = \left\{ \frac{a}{r} \in N \mid a \in \mathcal{O}_w, r \in \Sigma_{w_\Lambda} \right\}$ and we have to prove that $\mathcal{O}_0 \cap \Lambda = \mathcal{O}_v$. For the direct inclusion, let $x = \frac{a}{r} \in \Lambda$ with $a \in \mathcal{O}_w, r \in \Sigma_{w_\Lambda}$. Then $a = rx \in \Lambda$, thus concluding that $a \in \mathcal{O}_w \cap \Lambda = \mathcal{O}_{w_\Lambda} \subset \mathcal{O}_v$. Thus finally, $x = \frac{a}{r} \in \Sigma_{w_\Lambda}^{-1} = \mathcal{O}_v$. The converse implication is clear, because $\mathcal{O}_v = \Sigma_{w_\Lambda}^{-1} \mathcal{O}_{w_\Lambda} \subset \Sigma_{w_\Lambda}^{-1} \mathcal{O}_w = \mathcal{O}_0$ and $\mathcal{O}_{w_\Lambda} = \mathcal{O}_w \cap \Lambda$. \square

Let $\mathfrak{m}_1 \in \text{Spec}(\mathcal{O}_{w_0}) \subset \text{Spec}(\mathcal{O}_w)$ be the (unique) prime ideal which is *minimal* satisfying $\mathfrak{m}_1 \cap \Lambda \supset \mathfrak{m}_v$. Then one has $\mathfrak{m}_v \subset \mathfrak{m}_1 \cap \Lambda \subset \mathfrak{m}_{w_0} \cap \Lambda = \mathfrak{m}_v$, thus $\mathfrak{m}_1 \cap \Lambda = \mathfrak{m}_v$. Hence we conclude that the valuation w_v of the valuation ring $\mathcal{O}_1 = (\mathcal{O}_0)_{\mathfrak{m}_1}$ satisfies $w_v|_\Lambda = v$.

Definition 2.3. In the above notation and context, w_v is the *canonical v -valuation of Ω* . Thus w_v is unique minimal with $w_v \leq w$, $w_v|_\Lambda = v$, that is, $\mathcal{O}_{w_v} \cap \Lambda = \mathcal{O}_v$, $\mathfrak{m}_{w_v} \cap \Lambda = \mathfrak{m}_v$.

Finally, let $(\Omega', w' | (\Omega, w)$ and $(\Lambda', v') | (\Lambda, v)$ be algebraic extensions of valued fields such that $\Lambda' \subset \Omega'$ and $w' \geq v'$, thus obviously, $w = w'|_\Lambda \geq v'|_\Lambda = v$. For short, we denote this situation by $(\Omega'|\Lambda', w'|v')|(\Omega|\Lambda, w|v)$. Obviously, $w' \geq v$ for the field extension $\Omega'|\Lambda$.

We conclude this discussion with the following (obvious) facts.

Fact 2.4. In the above notation, the following hold:

- 1) $\mathcal{O}_{w_v}^\times \cap \Lambda = \mathcal{O}_v^\times$ and $(1 + \mathfrak{m}_{w_v}) \cap \Lambda = 1 + \mathfrak{m}_v$.
- 2) Let $(\Omega'|\Lambda', w'|v')|(\Omega|\Lambda, w|v)$ be as above, thus $w' \geq v$ for the field extension $\Omega'|\Lambda$. Then $w'_v = w'_{v'}$ and $w'_v|_\Omega = w_v = w'_{v'}|_\Omega$.

Proof. Assertion 1) follows by mere definitions, etc. For assertion 2), recall that for any valuations \tilde{w}' of Ω' and $\tilde{v}'|_{\tilde{\Omega}}$ of the algebraic extension $\Lambda'|\Lambda$ one has: $\tilde{w}'|_{\Lambda'} = v'$ iff $\tilde{w}'|_\Lambda = v$, etc. \square

2.2. Basics of Hilbert decomposition theory, especially in \mathcal{G}_F^a .

Let $F'|E$ be an algebraic field extension, $v \in \text{Val } E$ be a fixed valuation, and $\mathcal{V}_v(F')$ be the set of prolongations $w'|v$ of v to $F|E$. Recall that $\text{Val}_v(F')$ is a profinite topological space in the patch topology,¹ and moreover, if $F'|E$ is normal algebraic, the profinite group $G(F'|E) := \text{Aut}_E(F')$ acts transitively and continuously on $\mathcal{V}_v(F')$ via $(w', g) \mapsto w'^g := w' \circ g^{-1} =: w''$. And if $T_{w'|v} \triangleleft Z_{w'|v}$ are the inertia/decomposition groups of $w'|v$, then $T_{w''|v} = g T_{w'|v} g^{-1}$ and $Z_{w''|v} = g Z_{w'|v} g^{-1}$, and for any $w' \in \mathcal{V}_v(F')$ fixed have:

$$\mathcal{V}_v(F') = G(F'|E) \cdot w' \cong Z_{w'|v} \backslash G(F'|E) \text{ as } G(F'|E)\text{-spaces, canonically.}$$

¹Actually, $\text{Val}_v(F')$ endowed with the patch topology is a profinite space even if $F'|E$ is not algebraic.

Further, the residue field extension $F'w'|Ev$ is a normal extension, and setting $G_{w'|v} := \text{Aut}_{Ev}(F'w')$, one has the canonical exact sequence $1 \rightarrow T_{w'|v} \rightarrow Z_{w'|v} \rightarrow G_{w'|v} \rightarrow 1$.

Next let $v_1 < v$ in $\text{Val}(E)$. There is a prolongation $w'_1|v_1$ of v_1 to $F'|E$ such that $w'_1 < w'$. Further, for any such $w'_1|v_1$ the following hold: First, $Z_{w'|v} \subset Z_{w'_1|v_1}$ and both $T_{w'_1|v_1} \triangleleft T_{w'|v}$ and $T_{w'_1|v_1} \triangleleft Z_{w'|v}$. Second, $w'_0 := w'/w'_1$ prolongs $v_0 := v/v_1$ to $F'w'$, and via the canonical exact sequence $1 \rightarrow T_{w'_1|v_1} \rightarrow Z_{w'_1|v_1} \xrightarrow{\pi} G_{w'_1|v_1} \rightarrow 1$ the following hold:

$$Z_{w'_0|v_0} = \pi(Z_{w'|v}) = Z_{w'|v}/T_{w'_1|v_1} \text{ and } T_{w'_0|v_0} = \pi(T_{w'|v}) = T_{w'|v}/T_{w'_1|v_1},$$

giving rise to a commutative diagram exact sequences of the form:

$$\begin{array}{ccccccc} 1 & \rightarrow & T_{w'_1|v_1} & \longrightarrow & Z_{w'_1|v_1} & \xrightarrow{\pi} & G_{w'_1|v_1} & \rightarrow 1 \\ (\dagger) & & \parallel & & \uparrow & & \uparrow & \\ 1 & \rightarrow & T_{w'_1|v_1} & \longrightarrow & Z_{w'|v} & \xrightarrow{\pi} & Z_{w'_0|v_0} & \rightarrow 1. \end{array}$$

Finally, recall that if $w'|v$ is tame, i.e., $T_{w'|v}$ has order prime to $\text{char}(Ev)$, one has that $T_{w'|v}$ is abelian, precisely, $T_{w'|v} = \text{Hom}(w'F'/vE, \mu_{F'w'})$ with $\mu_{F'w'} \subset F'w'$ the group of roots of unity in $F'w'$. Further, the conjugation action of $Z_{w'|v}$ on $T_{w'|v}$ factors $Z_{w'|v} \rightarrow G_{w'|v}$, and $G_{w'|v}$ acts on $T_{w'|v} = \text{Hom}(w'F'/vE, \mu_{F'w'})$ via the cyclotomic character of $G_{w'|v}$.

This being said, let $\ell > 2$ be a prime number fixed throughout the remaining of this section, and $F|E$ be a Galois field extension with $\text{char}(E) \neq \ell$ and $\mu_\ell \subset F$. Let $F^c|F^a|F$ be the (maximal) \mathbb{Z}/ℓ abelian-by-central, respectively the (maximal) \mathbb{Z}/ℓ elementary abelian, extensions of F , and for the corresponding exact sequence of Galois groups

$$1 \rightarrow \Delta_F := G(F^c|F^a) \rightarrow \mathcal{G}_F^c := G(F^c|F) \rightarrow \mathcal{G}_F^a := G(F^a|F) \rightarrow 1,$$

denote $\mathcal{G}_F^c \ni \tilde{\sigma} \mapsto \tilde{\sigma}|_{F^a} =: \sigma \in \mathcal{G}_F^a$ the corresponding projection. Recall that by Kummer Theory, one has that $\mathcal{G}_F^a = \text{Hom}(F^\times, \mu_\ell)$, and Δ_F is the maximal \mathbb{Z}/ℓ elementary abelian quotient of the absolute Galois group G_{F^a} on which \mathcal{G}_F^a acts trivially. Via Kummer Theory, one obtains $F^c|F$ as follows: \mathcal{G}_F^a acts canonically on $F^{a\times}/\ell$, and let $A := (F^{a\times}/\ell)^{\mathcal{G}_F^a}$ be the subgroup of invariants; that is, $u \in F^a$ lies in A iff $\forall \sigma \in \mathcal{G}_F^a \exists r_\sigma \in F^a$ such that $\sigma(u) = ur_\sigma^\ell$. Then one has $F^c = F^a[\sqrt[\ell]{A}]$. From this discussion immediately follows the following.

Basic Fact. $F^c|E$ and $F^a|E$ are Galois extensions of E .

One has the following basic facts (well known to experts, but I cannot give a precise reference).

Fact 2.5. Let F be a arbitrary field with $\mu_\ell \subset F$ if $\text{char}(F) \neq \ell$. For a valuation $w \in \text{Val}(F)$, let $w^a|w$ be a prolongation of w to $F^a|F$, and F^h be the Henselization. The following hold:

- 1) The compositum F^hF^a equals the maximal ℓ -elementary abelian extension $(F^h)^a$ of F^h .
- 2) The separable part of $F^a w^a|Fw$ is the maximal ℓ -abelian extension of Fw .

Proof. We prove the assertion along the following two reductions steps:

Step 1. The valuation w has finite rank one. In particular, F is dense in F^h .

Case a). $\ell = \text{char}(F)$. Then the ℓ -elementary abelian extension of both F and F^h are composita of ℓ -cyclic extensions, all of which being Artin-Schreier extensions. Let $F^h(x')|F^h$ with $x'^\ell - x' = a'$, $a' \in F^h$ by such an extension. Since v has rank 1, hence F is dense in F^h ,

one can choose $a \in F$ such that $v^h(a' - a) > 0$. Then setting $a'' = a' - a \in F^h$, or equivalently, $a' = a'' + a$, one has: First, the Artin-Schreier equation $T^\ell - T = a''$ has a solution in $x'' \in F^h$ (because $v(a'') > 0$). Second, x' is a solution of $T^\ell - T = a'' + a$ (by the additivity of $T^\ell - T$). Hence we conclude that $F^h(x') \subset F^h(x'' + x) \subset F^h F^a$.

Similarly, if $T^\ell - T = \bar{a}$ is an Artin-Schreier equations over Fw , and $a \in \mathcal{O}_w$ is a representative of $\bar{a} \in Fw$ and x is a solution of the equation $T^\ell - T = a$, it follows that the reduction \bar{x} of x is a root of $T^\ell - T = \bar{a}$.

Case b). $\ell \neq \text{char}(Fw)$. Proceed as above, but using Kummer type equations $U^\ell = a$, etc.

Case c). $\text{char}(F) = 0$, $\text{char}(Fw) = \ell$. Assertion 1) follows in the same way as in Case b). For assertion 2), recall that $\pi := \zeta_\ell - 1$ with $\zeta_\ell \in \mu_\ell$ primitive satisfies: $\ell = \pi^{\ell-1}\epsilon$ over $\mathbb{Z}[\mu_\ell]$ with $\epsilon \in 1 + \pi\mathbb{Z}[\mu_\ell] \subset \mathcal{O}_v^\times$ a principal v -unit. Then the Kummer equation $(U + 1)^\ell = b$ has roots $u \in F^a$ for each $b \in F$, and can rewritten as follows: $u^\ell + \sum_{\ell > i > 0} \binom{\ell}{i} u^i + 1 = b$, thus diving by $\pi^\ell = \ell\pi\epsilon$ and setting $u = t\pi$, the equation satisfied by t is:

$$(u) \quad T^\ell + \epsilon^{-1} \sum_{\ell > i > 0} \frac{1}{\ell} \binom{\ell}{i} \pi^{i-1} T^i = (b-1)/\pi^\ell.$$

In particular, choosing $b \in F$ such that $a = (b-1)/\pi^\ell$, i.e., $b = \pi^\ell a + 1$, it follows that the displayed equation (u) above specializes to $T^\ell - T = \bar{a}$. That is, if $u \in F^a$ is a satisfies $(u+1)^\ell = b$, then $t = u/\pi$ is specializes to a solution of $T^\ell - T = \bar{a}$.

Step 2. The valuation w has finite rank $d = \text{rk}(v) = \text{Kr. dim}(\mathcal{O}_v) < \infty$. We make induction on d . Namely, let $w_1 \leq w$ be the minimal non-trivial coarsening of w , and $w_0 = w/w_1$ the resulting valuation of the residue field $F_0 = Fw_1$. Then w_1 has rank one and w_0 has rank $d-1 < d$. Hence by the induction hypothesis and Step 1, the assertions 1), 2) hold for both w_1 and w_0 . From this instantly follows the same for w (by the functoriality of Hilbert Decomposition for valuations).

Step 3. Let $F = \bigcup_\alpha F_\alpha$ be the inductive union of its finitely generated subfields with $\mu_\ell \subset F_\alpha$ provided $\text{char}(F) \neq \ell$. Then considering $F_\alpha^a|F_\alpha$, it follows that $F^a = \bigcup_\alpha F_\alpha^a$ and the extension of valued fields $F^a|F, w^a|w$ is the inductive limit of the system of valued fields $F_\alpha^a|F_\alpha, w_\alpha^a|w_\alpha$. And since $F^h = \bigcup_\alpha F_\alpha^h$ and $F^a w^a = \bigcup_\alpha F_\alpha^a w_\alpha^a$, by mere definitions one has that assertions 1), 2) from the Fact hold iff they hold for each $F_\alpha^a|F_\alpha$ endowed with $w_\alpha^a|w_\alpha$.

On the other hand, since F_α is finitely generated, the valuation w_α has finite rank (bounded by the Krull dimension of F_α). Hence assertions 1), 2) hold for each $F^a|F, w^a|w$ by the discussion at Step 1. Hence conclude that assertions 1), 2) hold for $F^a|F, w^a|w$. \square

Recall that via the canonical exact sequence $1 \rightarrow \mathcal{G}_F^a \xrightarrow{\iota} G(F^a|E) \xrightarrow{\pi} G(F|E) \rightarrow 1$ the group $G(F|E)$ **acts canonically** (by “conjugation”) on subsets Σ of the three groups above by

$$g(\Sigma) := g \Sigma g^{-1} \quad \text{for } g \in G(F|E) \text{ and } \Sigma \subset G(F^a|F), G(F^a|E), G(F|E),$$

compatibly with the morphisms ι, π . We fix the above notation for this action throughout.

Let $\mathcal{V} \subset \text{Val}(E)$ be a non-empty set. For $v \in \mathcal{V}$, let $w^a|w|v$ be the prolongations of $v \in \mathcal{V}$ to $F^a|F|E$, and $\mathcal{V}_v(F) \subset \mathcal{V}(F)$ denote the prolongations of $v \in \mathcal{V}$ and of \mathcal{V} to F . And to fix notation, recall that $G(F|E)$ acts on $\mathcal{V}_v(F)$ by $g(w) := w \circ g^{-1} =: w^g$.

By Hilbert decomposition theory for valuations, one has: Since $G(F^a|F)$ is abelian, it follows that $T_w^a := T_{w^a|w} \leq Z_{w^a|w} =: Z_w^a$ and $T_{w^a|v} \leq Z_{w^a|v}$ depend on w only and not on the concrete prolongation $w^a|w$. And for $w \in \mathcal{V}_v(F)$, $g \in G(F|E)$ one has:

$$Z_{g(w)}^a = g Z_w^a g^{-1} = g(Z_w^a) \text{ and } Z_{g(w)|v} = g Z_{w|v} g^{-1} = g(Z_{w|v}).$$

Further, one has a canonical projection of topological $G(F|E)$ -spaces:

$$\mathcal{Z}_v^a(F) := \{Z_w^a \mid w \in \mathcal{V}_v(F)\} \rightarrow \{Z_{w|v} \mid w \in \mathcal{V}_v(F)\} =: \mathcal{Z}_v(F), \quad Z_w^a \mapsto Z_{w|v}.$$

Definition/Remark 2.6. In the above context and notation consider/define:

- 1) If $Z_w^a \neq 1$ for some $w \in \mathcal{V}_v(F)$, hence $Z_{w'}^a \neq 1$ for all $w' \in \mathcal{V}_v(F)$, and indicate this by writing $\mathcal{Z}_v^a(F) \neq 1$. And if $\mathcal{Z}_v^a(F) \neq 1$ for all $v \in \mathcal{V}$, we write $\mathcal{Z}_{\mathcal{V}}^a(F) \neq 1$.
- 2) We say that $v \in \mathcal{V}$ equals its F - ℓ -abelian core if for any proper coarsening $v_1 < v$, the valuations $w_1^a \in \text{Val}_{v_1}(F^a)$ satisfy: *The separable part of $F^a w_1^a \mid F w_1$ is non-trivial.*
Further, we say that \mathcal{V} equals its F - ℓ -abelian core if each $v \in \mathcal{V}$ does so. For instance, this is the case if all $v \in \mathcal{V}$ have rank one and $F^a \neq F$.
- We notice that for every $v \in \text{Val}(F)$ there is a valuation $v^0 \in \text{Val}(F)$ which is maximal with the properties: $v^0 \leq v$ and v^0 equals its F - ℓ -abelian core.

Let \mathcal{V} be as above in Definition/Remark 2.6, and $v_1, v_2 \in \text{Val}(E)$ be given, and $w_i^a \mid w_i \mid v_i$ be prolongations of v_i to $F^a|F|E$, $i = 1, 2$. Setting $v = \min(v_1, v_2)$ and $w = \min(w_1, w_2)$, it follows that $w|v$ prolongs v to $F|E$, and setting $\bar{v}_i := v_i/v$, $\bar{w}_i := w_i/w$, $\bar{w}_i^a := w_i^a/w$, one has: $\bar{w}_i^a \mid \bar{w}_i \mid \bar{v}_i$ prolongs \bar{v}_i to $F^a w_i^a \mid F w_i \mid E v_i$ and further, $v_i = \bar{v}_i \circ v$, $w_i = \bar{w}_i \circ w$, $w_i^a = \bar{w}_i^a \circ w^a$ for $i = 1, 2$. And one has a commutative diagram of exact sequences:

$$\begin{array}{ccccccc} 1 & \rightarrow & T_{w^a|v} & \longrightarrow & Z_{w^a|v} & \xrightarrow{\pi} & G_{w^a|v} & \rightarrow 1 \\ (\dagger) & & \parallel & & \uparrow & & \uparrow & \\ 1 & \rightarrow & T_{w_i^a|v} & \longrightarrow & Z_{w_i^a|v_i} & \xrightarrow{\pi} & Z_{\bar{w}_i^a|\bar{v}_i} & \rightarrow 1, \quad i = 1, 2 \end{array}$$

Fact 2.7. In the above notation, suppose that \mathcal{V} equals its F - ℓ -abelian core, $\mathcal{Z}_{\mathcal{V}}^a(F) \neq 1$, and any two distinct valuations $v_1, v_2 \in \mathcal{V}$ are not comparable. Then for any valuations $v, v_1, v_2 \in \mathcal{V}$ and $w \in \mathcal{V}_v(F)$, $w_i \in \mathcal{V}_{v_i}(F)$, $w_i^a \in \mathcal{V}_{v_i}(F^a)$, $i = 1, 2$, the following hold:

- 1) Suppose that w_1, w_2 are not comparable, and set $w := \min(w_1, w_2) < w_1, w_2$. Then one has that $Z_{w_1^a|w_1} \cap Z_{w_2^a|w_2} = T_{w^a|w}$, and in particular, $Z_{w_1^a|w_1} \neq Z_{w_2^a|w_2}$. Therefore,

$\mathcal{V}(F) \rightarrow \mathcal{Z}_v^a(F)$, $w \mapsto Z_w^a$ is an isomorphism of topological $G(F|E)$ -spaces.

- 2) For $g \in G(F|E)$ one has: $g \in Z_{w|v}$ iff $g(Z_w^a) = Z_w^a$.

Hence items 1), 2) above give a group theoretical recipe to recover the $G(F|E)$ -space isomorphism

$$\mathcal{V}(F) \rightarrow \mathcal{Z}_{\mathcal{V}}(F|E) := \{(Z_w^a, Z_{w|v}) \mid v \in \mathcal{V}(E), w \in \mathcal{V}_v(F)\}, \quad w \mapsto (Z_w^a, Z_{w|v})$$

from $G(F^a|E) \rightarrow G(F|E)$ endowed with $\mathcal{Z}_{\mathcal{V}}^a(F)$.

Proof. We begin by proving the Lemma below, in which $\mathfrak{v}_1, \mathfrak{v}_2$ are arbitrary valuations.

Lemma 2.8. Let N be a field with $\mu_\ell \subset N$ provided $\ell \neq \text{char}(N)$ and $\mathcal{G}_N^a := G(N^a|N)$ be the Galois group of the maximal ℓ -elementary abelian extension $N^a|N$. If $\mathfrak{v}_i \in \text{Val}(N)$, $i = 1, 2$ are independent valuations, their decomposition groups $Z_{\mathfrak{v}_i}^a \subset \mathcal{G}_N^a$ satisfy $Z_{\mathfrak{v}_1}^a \cap Z_{\mathfrak{v}_2}^a = 1$.

Proof of Lemma. Set $U_i = 1 + \mathfrak{m}_{\mathfrak{v}_i}$, $i = 1, 2$. We analyze separately the cases:

Case 1. $\text{char}(N) \neq \ell$. By Hensel Lemma, for all $u_i \in U_i$, $i = 1, 2$ one has: $T^\ell - u_i \in N[T]$ splits in linear factors over the Henselization of N with respect to \mathfrak{v}_i . Therefore, \mathfrak{v}_i is totally

split in $N_i := N[\sqrt[\ell]{U_i}]$, and equivalently, N_i is contained in the fixed field of $Z_{\mathfrak{v}_i}^a \subset \mathcal{G}_N^a$ in N^a . On the other hand, since $\mathfrak{v}_1, \mathfrak{v}_2$ are independent, one has $U_1 \cdot U_2 = N^\times$, hence $N^a = N_1 N_2$. Conclude by Kummer theory that $Z_{\mathfrak{v}_1}^a \cap Z_{\mathfrak{v}_2}^a = 1$.

Case 2. $\text{char}(N) = \ell$. By Hensel Lemma, for all $u_i \in \mathfrak{m}_i$, $i = 1, 2$ the Artin–Schreier polynomial $T^\ell - T - u_i \in N[T]$ splits in linear factors over the Henselization of N w.r.t. \mathfrak{v}_i . Hence $N_i := N[\wp^{-1}(\mathfrak{m}_i)]$ is contained in the fixed field of $Z_{\mathfrak{v}_i}^a \subset \mathcal{G}_N^a$ in N^a . On the other hand, since $\mathfrak{v}_1, \mathfrak{v}_2$ are independent, one has $\mathfrak{m}_{\mathfrak{v}_1} + \mathfrak{m}_{\mathfrak{v}_2} = N$, hence $N^a = N_1 N_2$. Conclude by Artin–Schreier theory that $Z_{\mathfrak{v}_1}^a \cap Z_{\mathfrak{v}_2}^a = 1$.

This concludes the proof of Lemma 2.8. Returning to the proof of Fact 2.7, proceed as follows.

To 1): Since w_1, w_2 are not comparable, one has $w < w_1, w_2$ strictly, and $\bar{w}_i = w_i/w$ are two independent valuations on the residue field Fw . Further, by Fact 2.5, $F^a w^a | Fw$ is the maximal ℓ -elementary abelian extension of Fw , hence $G_{w^a|w} := G(F^a w^a | Fw) = G((Fw)^a | Fw)$. Further, by the commutative diagram (\ddagger) above, $Z_{\bar{w}_i^a | \bar{w}_i} = Z_{w_i^a | w_i} / T_{w^a | w} \subset G_{w^a | w}$ is the decomposition group of $\bar{w}_i^a | \bar{w}_i$ in $G_{w^a | w} = G((Fw)^a | Fw)$ for $i = 1, 2$. In particular, since \bar{w}_1, \bar{w}_2 are independent valuations of Fw , it follows that by Lemma 2.8 above that $Z_{\bar{w}_1^a | \bar{w}_1} \cap Z_{\bar{w}_2^a | \bar{w}_2} = 1$. Hence since $T_{w^a | w} = \ker(Z_{w_i^a | w_i} \rightarrow Z_{\bar{w}_i^a | \bar{w}_i})$, finally get $Z_{w_1^a | w_1} \cap Z_{w_2^a | w_2} = T_{w^a | w}$.

To 2): By mere definitions one has that $\sigma \in Z_{w|v}$ iff $w^\sigma = w$. First, for the direct implication, if $\sigma \in Z_{w|v}$, then $w = w^\sigma$, thus $Z_w^a = Z_{w^\sigma}^a = \sigma(Z_w^a)$. For the converse implication, suppose that $w_1 := w \neq w^\sigma =: w_2$. Then by assertion 1) above one has $Z_{w_1}^a \neq Z_{w_2}^a$, that is $Z_w^a \neq Z_{w^\sigma}^a$.

Finally, the last assertion is an immediate consequence of the discussion above. \square

2.3. Commuting liftability. See TOPAZ [To1] (and Pop[P1], section 3) for more details.

Let F be a field with $\text{char}(F) \neq \ell$, $\mu_\ell \subset F$, and $F^a | F$ be the maximal \mathbb{Z}/ℓ elementary abelian extension. For a valuation w of F , set $F^D := F[\sqrt[\ell]{1 + \mathfrak{m}_w}]$, $F^I := F[\sqrt[\ell]{\mathcal{O}_w^\times}]$. The groups $I_w \leq D_w$ below are called the *minimized inertia* and *decomposition groups* of w :

$$I_w := G(F^a | F^I) = \text{Hom}(F^\times / \mathcal{O}_w^\times, \mu_\ell) \leq \text{Hom}(F^\times / (1 + \mathfrak{m}_w), \mu_\ell) = G(F^a | F^D) =: D_w.$$

We notice that the minimized inertia/decomposition groups behave under valued field extension as follows. Let $(F, w) | (N, \mathfrak{w})$ is an extension of valued fields, $\mu_\ell \subset N$, thus $\mathcal{O}_{\mathfrak{w}}^\times = \mathcal{O}_w^\times \cap N$ and $1 + \mathfrak{m}_{\mathfrak{w}} = (1 + \mathfrak{m}_w) \cap N$. Then by mere definitions one has:

Fact 2.9 (Functionality). *The canonical projection $p^a : \mathcal{G}_F^a \rightarrow \mathcal{G}_N^a$ gives rise canonically to embeddings $p^a(I_w) \subset I_{\mathfrak{w}}$ and $p^a(D_w) \subset D_{\mathfrak{w}}$. Moreover, if F and N^a are linearly disjoint over N , i.e., $F \cap N^a = N$, then $p^a(I_w) = I_{\mathfrak{w}}$ and $p^a(D_w) = D_{\mathfrak{w}}$.*

Fact 2.10. *In the above notation, the following hold:*

1) $I_w \cong \text{Hom}(wF/\ell, \mu_\ell)$ and $D_w / I_w \cong \text{Hom}(Fw^\times/\ell, \mu_\ell)$. Hence one has:

$I_w = 1$ iff wF is ℓ -divisible, and $I_w = D_w$ iff Fw^\times is ℓ -divisible.

2) If $\text{char}(Fw) \neq \ell$, then $T_w^a = I_w \subset D_w = Z_w^a$. Further, $(Fw)^a = F^a w^a$, thus $\mathcal{G}_{Fw}^a = Z_w^a / T_w^a$.
3) If $\text{char}(Fw) = \ell$, then $I_w \subset T_w^a$ and $D_w \subset Z_w^a$.

Proof. Everything follows by mere definitions, Pontryagin duality, and Kummer theory from the exact sequences $1 \rightarrow \mathcal{O}_w^\times \rightarrow F^\times \rightarrow wF \rightarrow 0$ and $1 \rightarrow (1 + \mathfrak{m}_w) \rightarrow \mathcal{O}_w^\times \rightarrow Fw^\times \rightarrow 1$. \square

In the above notation, for $\sigma \in \mathcal{G}_F^a$, let $\tilde{\sigma} \in \mathcal{G}_F^c$ denote preimages of σ , and for $\Sigma \subset \mathcal{G}_F^a$, let $\tilde{\Sigma} \subset \mathcal{G}_F^c$ denote the preimage of Σ . Recall the following canonical maps in this context:

- The bilinear map $\psi : \mathcal{G}_F^a \times \mathcal{G}_F^a \rightarrow \Delta_F$, defined by $(\sigma, \tau) \mapsto [\tilde{\sigma}, \tilde{\tau}]$.
- The linear map $\beta : \mathcal{G}_F^a \rightarrow \Delta_F$, $\sigma \mapsto \sigma^\beta := \tilde{\sigma}^\ell$.

Definition/Remarks 2.11. We next recall basics about *commuting liftability*, see TOPAZ [To1] for details. First $\sigma, \tau \in \mathcal{G}_F^a$ are called *independent*, if $\langle \sigma, \tau \rangle \cong (\mathbb{Z}/\ell)^2$. We say that / define:

1) Independent σ, τ are *commuting liftable* (c.l.) if σ, τ satisfy the equivalent conditions:

- (i) $\exists \tilde{\sigma}, \tilde{\tau}$ such that $[\tilde{\sigma}, \tilde{\tau}] \in \langle \sigma^\beta, \tau^\beta \rangle$; (ii) $\forall \tilde{\sigma}, \tilde{\tau}$ one has $[\tilde{\sigma}, \tilde{\tau}] \in \langle \tilde{\sigma}^\beta, \tilde{\tau}^\beta \rangle$.

2) An independent pair $\sigma, \tau \in \mathcal{G}_F^a$ is called *c.l. pair*, if σ, τ satisfy the equivalent conditions:

- (i) $\exists \tilde{\sigma}, \tilde{\tau}$ such that $[\tilde{\sigma}, \tilde{\tau}] \in \langle \sigma^\beta \rangle$; (ii) $\forall \tilde{\sigma}, \tilde{\tau}$ one has $[\tilde{\sigma}, \tilde{\tau}] \in \langle \tilde{\sigma}^\beta \rangle$.

Note the following: Let $\sigma, \tau \in \mathcal{G}_F^a$ be independent and c.l. Then the following hold:

- a) If $\sigma_1, \tau_1 \in \langle \sigma, \tau \rangle$ are independent, then $\langle \sigma, \tau \rangle = \langle \sigma_1, \tau_1 \rangle$, and σ_1, τ_1 is c.l.
 - b) There exists $1 \neq \sigma_1 \in \langle \sigma, \tau \rangle$ such that $[\sigma_1, \tau_1] \in \langle \sigma_1^\beta \rangle$ for all $\tau_1 \in \langle \sigma, \tau \rangle$.
 - c) For $k \in \mathbb{Z}$ with $(k, \ell) = 1$ one has: σ^k, τ^k are c.l. (pair, provided σ, τ is c.l. pair).
 - d) One has: σ, τ and τ, σ are both c.l. pairs if and only if $[\tilde{\sigma}, \tilde{\tau}] = 1$.
- 3) Subgroups $I \leq D$ of \mathcal{G}_F^a is a *c.l. (group) pair*, if $I \neq 1$, D is non-cyclic, and all independent pairs σ, τ with $\sigma \in I$, $\tau \in D$ define c.l. pairs.

In particular, if $\sigma, \tau \in I$ are independent, then by item d) above, one has that $[\tilde{\sigma}, \tilde{\tau}] = 1$.

Note that if $\sigma, \tau \in \mathcal{G}_F^a$ define a c.l. pair, then in the notation from 2), b) above, one has:

$$I := \langle \sigma_1 \rangle \leq \langle \sigma, \tau \rangle := D \text{ is c.l. pair.}$$

4) For $I \leq D$ c.l. pair, the following hold:

- a) There exists a unique maximal $I_D \subset \mathcal{G}_F^a$ such that $I_D \leq D I_D$ is c.l. pair, hence $I \subset I_D$.
- b) There exists a unique maximal $D_I \subset \mathcal{G}_F^a$ such that $I \leq D_I$ is c.l. pair, hence $D \subset D_I$.

• Finally, a c.l. pair $I \leq D$ is called *maximal*, if $I = I_D$, $D = D_I$. We notice the following:

Starting with a c.l. pair $I \leq D$, one has: $I_D \leq D_{I_D}$ and $I_{D_I} \leq D_I$ are maximal.

5) Let $\phi^a \in \text{Aut}(\mathcal{G}_F^a)$ be the automorphism which lifts to an automorphism $\phi^c \in \text{Aut}(\mathcal{G}_F^c)$.

Then for every pair of subgroups $I \subset D \subset \mathcal{G}_F^a$ one has:

- a) $I \leq D$ is a maximal c.l. pair in \mathcal{G}_F^a iff $\phi(I \leq D) := (\phi(I) \leq \phi(D))$ is so.
- b) If $I \leq D$ is a maximal c.l. pair, then $\phi(I \leq D) = (I \leq D)$ iff $\phi(I) = I$ iff $\phi(D) = D$.
(Indeed, $I \leq D$ is a maximal c.l. pair iff $\phi(I) \leq \phi(D)$ is a maximal c.l. pair, etc.)

The essential property of commuting liftability is that it is related in an intimate way to (arithmetically significant) valuations of F , see Theorem 2.15 below. But first recall the following basic fact, see e.g. the discussion in POP [P1], Section 3, and TOPAZ [To1] for details:

Fact 2.12. *In the above notation, suppose that wF not ℓ -divisible, and $F^\times/(1 + \mathfrak{m}_w)$ non-cyclic, or equivalently, $I_w \neq 1$ and D_w non-cyclic. The following hold:*

- 1) $I_w \leq D_w$ is c.l., hence $I_w \leq I_{D_w}$ and $D_w \leq D_{I_w}$.
- 2) Moreover, if w has rank one, then $I_{D_w} \leq D_w$ is a maximal c.l. pair. In particular, in this case, every group automorphism of D_w defined by some $\sigma \in \mathcal{G}_F^a$ maps I_{D_w} into itself.

By work of WARE, JACOB, ARASON–ELMAN–JACOB, BOGOMOLOV, KOENIGSMANN, BOGOMOLOV–TSCHINKEL, culminating with contributions of TOPAZ, [To1], where more literature can be found, one has the following fundamental facts. Recall that the set of (equivalence classes of) valuations of F is partially ordered by $w_1 \leq w_2$ if the following equivalent conditions are satisfied:

$$(i) \mathcal{O}_{w_1} \supset \mathcal{O}_{w_2}; \quad (i)' \mathfrak{m}_{w_1} \subset \mathfrak{m}_{w_2}; \quad (ii) \mathcal{O}_{w_1}^\times \supset \mathcal{O}_{w_2}^\times; \quad (ii)' 1 + \mathfrak{m}_{w_1} \subset 1 + \mathfrak{m}_{w_2}.$$

Equivalently, the kernel $\Delta_{w_2/w_1} := \ker(w_2 F = F^\times / \mathcal{O}_{w_2}^\times \rightarrow F^\times / \mathcal{O}_{w_1}^\times = w_1 F)$ is a convex subgroup of $w_1 F$, which is equals actually value group of $w_0 = w_2/w_1 \in \text{Val}(Fw_1)$. In particular, one has the following obvious facts on the behavior of reduced inertia/decomposition groups:

Fact 2.13. *In the above context, let $w_1 \leq w_2$ be as above. Then $I_{w_1} \subset I_{w_2}$ and $D_{w_1} \supset D_{w_2}$.*

Notations/Remark 2.14 (cf. TOPAZ [To1], §1.2 for some details). In the above context, consider the following:

- 1) Let \mathcal{W}_F be the set of valuations $w \in \text{Val}(F)$ which for all $w_1 \in \text{Val}(F)$ **satisfy**:
 - (i) Let $w_1 < w$ strictly. Then the value group of w/w_1 is not ℓ -divisible, i.e., $I_{w/w_1} \neq 1$.
 - (ii) Let $w < w_2$ strictly. Then $D_{w_2} = D_w$ implies $I_{w_2} = I_w$, i.e., $I_{w_2/w} = 1$.
- Notice that *every* $w \in \mathcal{W}_F$ *equals its* F - ℓ -*abelian core*. Indeed, if $w \in \mathcal{W}_F$ and $w_1 < w$ strictly, then $I_{w/w_1} \neq 1$, implying that $F^a w_1 | Fw_1$ is not purely inseparable.
- 2) Let \mathcal{P}_F be the set of **maximal** c.l. pairs $I \leq D$ in \mathcal{G}_F^a with $I \neq 1$, D not cyclic, and denote:

$$\mathcal{I}_F := \{I \subset \mathcal{G}_F^a \mid \exists I \leq D \text{ in } \mathcal{D}_F\}, \quad \mathcal{D}_F := \{D \subset \mathcal{G}_F^a \mid \exists I \leq D \text{ in } \mathcal{D}_F\}.$$

- Notice that given $I \leq D$ in \mathcal{P}_F , *each* I and D *individually determine the c.l. pair* $I \leq D$. Indeed, by Definition/Remarks 2.11, 4), one has both $D = D_I$ and $I = I_D$.
- In particular, both projection maps $\mathcal{P}_F \rightarrow \mathcal{I}_F, \mathcal{D}_F$, $I \leq D \mapsto I, D$ are bijective.

Theorem 2.15 (cf. TOPAZ [To1], Thm 1, (1) & Thm 6, for $N = n = 1 = \mathbf{R}(1)$). *The following hold:*

- 1) *For w in \mathcal{W}_F , there is $I \leq D$ in \mathcal{P}_F such that $D = D_w$, $1 \neq I_w \subset I$, and if so, I/I_w is cyclic. Moreover, if Fw^\times/ℓ is not cyclic, then $D = D_w$, $I = I_w$.*
- 2) *For $I \leq D$ in \mathcal{P}_F , there is $w \in \mathcal{W}_F$ satisfying the condition from 1) above.*

Remark 2.16. Note that in Theorem 2.15 above, both w in \mathcal{W}_F and $I \leq D$ in \mathcal{P}_F are *unique corresponding to each other*. **Notation:** $w \rightsquigarrow (I \leq D)^w \rightsquigarrow I^w, D^w$, resp. $I \leq D \rightsquigarrow I, D \rightsquigarrow w^I, w^D$.

Uniqueness of $I \leq D$: Let $w \rightsquigarrow I_i \leq D_i$, $i = 1, 2$. Then $D_i = D_w$ and $I_i \leq D_w$, $i = 1, 2$ are both c.l. pairs, hence so is $I_1 I_2 \leq D_w$. And $I_i \leq D_w$ being maximal implies $I_1 = I_1 I_2 = I_2$.

Uniqueness of w : By contradiction, let $(I \leq D) \rightsquigarrow w_1, w_2$, $w_1 \neq w_2$. Then $D_{w_i} = D$, $I_{w_i} \subset I$, and w_1, w_2 are not comparable by Notations/Remark 2.14, 1). Set $w_0 = \min(w_1, w_2)$, hence and $\bar{w}_i = w_i/w_0$ are non-trivial. Thus letting $\pi : Z_{w_0}^a \rightarrow G_{w_0^a|w_0}$ be the canonical projection, one has $1 \neq I_{\bar{w}_i} = I_{w_i}/I_{w_0} = \pi(I_{w_i})$, $i = 1, 2$. On the other hand, one has

$$1 \neq I_{\bar{w}_i} \subset \pi(I) \subset \pi(D) = D_{\bar{w}_i} \subset Z_{\bar{w}_i}^a \subset G_{w_0^a|w_0}, \text{ hence } 1 \neq \pi(I) \subset Z_{\bar{w}_1}^a \cap Z_{\bar{w}_2}^a.$$

Since \bar{w}_1, \bar{w}_2 are independent, this is a contradiction by Fact 2.7.

2.4. Commuting liftability and Galois action. In the above context, let $F|E$ be a Galois extension with $\mu_\ell \subset F$ and Galois group $G(F|E)$. Recall that $G(F|E)$ acts on \mathcal{W}_F by $g(w) = w \circ g^{-1}$, $g \in G(F|E)$ and on the spaces $\mathcal{P}_F, \mathcal{D}_F, \mathcal{I}_F$ by conjugation $g(I \leq D) = (g(I) \leq g(D))$.

Further, the $G(F|E)$ -actions are compatible with the previous constructions and introduced objects in the following sense:

- If $g(w) = w$, then $g(I_{w|v} \leq D_{w|v}) = (g(I_{w|v}) \leq g(D_{w|v}))$ and $g(I_{D_{w|v}} \leq D_{w|v}) = (g(I_{D_{w|v}}) \leq g(D_{w|v}))$.
- If $I \leq D \rightsquigarrow w$, then $g(I \leq D) = (g(I) \leq g(D)) \rightsquigarrow g(w)$.

Further, by mere definitions one has that $D_w \triangleleft Z_{w^a|v}$ and $I_w, I_{D_w} \triangleleft Z_{w^a|v}$. In particular, there is a unique maximal (normal) subgroup $D_{w|v} \triangleleft Z_{w^a|v}$ satisfying the following two conditions:

$$(i) \quad D_{w|v} \cap Z_w^a = D_w; \quad (ii) \quad D_{w|v}/D_w = Z_{w|v}.$$

And obviously, $I_w, I_{D_w} \triangleleft D_{w|v}$ and $D_{w|v}$ fits in the exact sequence

$$1 \rightarrow D_w \rightarrow D_{w|v} \rightarrow Z_{w|v} \rightarrow 1,$$

which is in an obvious way a subsequence of $1 \rightarrow Z_w^a \rightarrow Z_{w^a|v} \rightarrow Z_{w|v} \rightarrow 1$. Further, if $\text{char}(Fw) \neq \ell$, then $D_{w|v} = Z_{w^a|v}$ and $D_w = Z_w^a$, $I_w = T_w^a$.

Definition/Notations 2.17. In the above notation, we define and consider notation as follows:

- 1) We say that $D_{w|v}$ is the (relative) minimized decomposition group of $w^a|v$ in $F^a|E$.
- 2) Recalling Remark/Notation 2.14, we denote:
 - a) $\mathcal{W}_{F|E} := \{w|v \mid w \in \mathcal{W}_F, v = w|_E\}$.
 - b) $\mathcal{D}_{F|E} := \{D_{w|v} \subset G(F^a|E) \mid w|v \in \mathcal{W}_{F|E}\}$.

In the above notation and context, let $F'|F|E$ be Galois extensions with $F'|F$ finite and $\mu_\ell \subset F$, and $pr : G(F'|E) \rightarrow G(F|E)$ be the projection of Galois groups. For $I \leq D$ from \mathcal{P}_F and $I \leq D \rightsquigarrow w \in \mathcal{W}_F$ relating to each other as in Theorem 2.15, set $v := w|_E$, thus $w|v \in \mathcal{W}_{F|E}$, and let $w'|w$ be a prolongation of w to $F''|F$.

Proposition 2.18. *In the above notation, the following hold:*

- 1) **(Fact 2.7 revisited).** For $g \in G(F|E)$ and $I \leq D \rightsquigarrow w|v \rightsquigarrow D_{w|v}$, the following hold:

$$g(I) = I \text{ iff } g(D) = D \text{ iff } g(D_{w|v}) = D_{w|v} \text{ iff } g(Z_w^a) = Z_w^a \text{ iff } g(w) = w \text{ iff } g \in Z_{w|v}.$$

- 2) **(Galois action).** $\mathcal{W}_F, \mathcal{W}_{F|E}, \mathcal{D}_{F|E}, \mathcal{P}_F, \mathcal{D}_F, \mathcal{I}_F$ are $G(F|E)$ -spaces, and the maps

$$\mathcal{W}_F \rightarrow \mathcal{W}_{F|E} \rightarrow \mathcal{D}_{F|E} \rightarrow \mathcal{P}_F \rightarrow \mathcal{D}_F, \mathcal{I}_F \quad w \mapsto w|v \mapsto D_{w|v} \mapsto I_D \leq D \mapsto I_D, D$$

are $G(F|E)$ -isomorphisms, where the last two projections are as defined in Remark/Notation 2.14, 2).

Proof. To 1): First, $I \leq D \in \mathcal{P}_F$ and $w \in \mathcal{W}_F$ relate to each other iff $D = D_w$ and $I = I_{D_w}$. Next, by Remark 2.16, since $w \in \mathcal{W}_F$ equals its F - ℓ -abelian core, the last three equivalences follow from Fact 2.7. Further, $g(w) = w$ iff $g(\mathcal{O}_w^\times) = \mathcal{O}_w^\times$ iff $g(1 + \mathfrak{m}_w) = 1 + \mathfrak{m}_w$. Hence by the definitions of $I_w \subset D_w$ and Kummer theory one has: $g(w) = w \Rightarrow g(F^I) = F^I, g(F^D) = F^D$, and therefore, $g(w) = w \Rightarrow g(I_w) = I_w, g(D_w) = D_w$. And further, by mere definitions, this implies $g(I_{D_w}) = I_{D_w}$. Hence it is left to show that $g(I) = I$ and/or $g(D) = D$ implies $g(w) = w$. First, since both I and D individually define $I \leq D$ uniquely, it is sufficient to prove one of the assertions, e.g., that $g(I) = I$ implies $g(w) = w$. This is more-or-less a reformulation of the last part of the proof of the Remark 2.16 above, along the following lines: First, we notice that \mathcal{W}_F is invariant under automorphisms of F (by mere definitions). Hence $w_1 := w \in \mathcal{W}_F$ iff $w_2 := g(w) \in \mathcal{W}_F$. And if so, by mere definitions on has $D_{w_2} = g(D) = D = D_{w_1}$, hence $I_{D_{w_2}} = g(I) = I = I_{D_{w_1}}$. Conclude that $w_2 = w_1$ by arguing as at the end of Remark 2.16.

To 2): Recall that by Remark 2.16, for $I \in \mathcal{I}_F$ given, there is a unique $D \subset \mathcal{G}_F^a$ with $I \leq D$ in \mathcal{P}_F . Hence the stabilizer $\text{St}_{G(F|E)}(I)$ of I in $G(F|E)$ stabilizes D , i.e., stabilizes $I \leq D$. Since $w \in \mathcal{W}_F$ with $D = D_w$ is unique, we conclude: $\text{St}_{G(F|E)}(I) = \text{St}_{G(F|E)}(w) = Z_{w|v}$ for the unique $w|v \in \mathcal{W}_{F|E}$ with $D_w = D$, $I_w \subset I$ and I/I_w cyclic. Similarly, starting with $w|v \in \mathcal{W}_{F|E}$ and setting $D = D_{w|v} \cap \mathcal{G}_F^a \in \mathcal{I}_F$, it follows that $\text{St}_{G(F|E)} = Z_{w|v}$, etc. \square

This being said, we notice though that Theorem 2.15 and Fact 2.18 above do not give conditions to ensure that the valuation w has $\text{char}(Fw) \neq \ell$. In the next section we discuss —among other things— this issue, which is essential for the proof of the main results of the paper.

3. COMMUTING LIFTABILITY, FIELD EXTENSIONS, AND SECTIONS

Let $E|L$ be a regular field extension, $\tilde{L}|L$ be a Galois extension, and $\tilde{E} := E\tilde{L}$ be the compositum of E and \tilde{L} over L (which is well defined up to L -isomorphism, because $E|L$ was a regular field extension). In particular, $\tilde{E}|E$ is Galois such that the canonical projection map $\tilde{\iota} : G(\tilde{E}|E) \rightarrow G(\tilde{L}|L)$ is an isomorphism. For valuations $v \in \text{Val}(E)$, let $\tilde{v}|v$ denote prolongations of v to $\tilde{E}|E$, and $v_L := v|_L$ and $\tilde{v}_L := \tilde{v}|_L$ be the corresponding restrictions, thus in particular, $v_L = (\tilde{v}_L)|_L$. Next suppose that $\text{char}(L) \neq \ell$ and $\mu_\ell \subset \tilde{L}$. Recall that $\tilde{L}^c|\tilde{L}^a|\tilde{L}|L$ and $\tilde{E}^c|\tilde{E}^a|\tilde{E}|E$ are Galois extensions, and one has a commutative diagram with exact rows and surjective vertical morphisms, $\tilde{\iota} : G(\tilde{E}|E) \rightarrow G(\tilde{L}|L)$ being an isomorphism, where \bullet stays for either a or c (similar to the ones in the Introduction):

$$(*)_{\tilde{E}|L} \quad \begin{array}{ccccccc} 1 & \rightarrow & \mathcal{G}_{\tilde{E}}^\bullet & \hookrightarrow & G(\tilde{E}^\bullet|E) & \twoheadrightarrow & G(\tilde{E}|E) \rightarrow 1 \\ & & \downarrow \tilde{p}^\bullet & & \downarrow p^\bullet & & \downarrow \tilde{\iota} \\ 1 & \rightarrow & \mathcal{G}_{\tilde{L}}^\bullet & \hookrightarrow & G(\tilde{L}^\bullet|L) & \twoheadrightarrow & G(\tilde{L}|L) \rightarrow 1 \end{array}$$

Next let $s^a : G(\tilde{L}^a|L) \rightarrow G(\tilde{E}^a|E)$ be a section of $p^a : G(\tilde{E}^a|E) \rightarrow G(\tilde{L}^a|L)$, which is a.b.c.-liftable, i.e., s^a lifts to a section s^c of $p^c : G(\tilde{E}^c|E) \rightarrow G(\tilde{L}^c|L)$. Consider the diagram:

$$\begin{array}{ccccccc} 1 & \longrightarrow & \mathcal{G}_{\tilde{E}}^\bullet & \longrightarrow & G(\tilde{E}^\bullet|E) & \xrightarrow{p_E} & G(\tilde{E}|E) \longrightarrow 1 \\ & & \uparrow \tilde{p}^\bullet & & s^\bullet \uparrow \downarrow p^\bullet & & \downarrow \tilde{\iota} \\ 1 & \longrightarrow & \mathcal{G}_{\tilde{L}}^\bullet & \longrightarrow & G(\tilde{L}^\bullet|L) & \xrightarrow{p_L} & G(\tilde{L}|L) \longrightarrow 1 \end{array}$$

Claim. *The restriction $s^\bullet|_{\mathcal{G}_{\tilde{L}}^\bullet}$ is a section of \tilde{p}^\bullet and $p_E \circ s^\bullet \circ p_L^{-1}$ is the inverse map of $\tilde{\iota}$.*

Indeed, let $\text{im}(s^\bullet) \subset G(\tilde{E}^\bullet|E)$ be the image of s^\bullet . Then $\tilde{\iota} \circ p_E = p_L \circ \tilde{p}^\bullet$ and $\tilde{\iota}$ being an isomorphism implies that $p_E(s^\bullet(g)) = 1$ iff $p_L(g) = 1$. Hence $s^\bullet(g) \in \mathcal{G}_{\tilde{E}}^\bullet$ iff $p_E(s^\bullet(g)) = 1$ iff $p_E(g) = 1$ iff $g \in \mathcal{G}_{\tilde{L}}^\bullet$, concluding that s^\bullet is a section of p_E . For the last assertions, one has: $h = p_E(g) \in G(\tilde{L}|L)$ iff $\tilde{\iota}^{-1}(h) = p_E \circ s^\bullet(g)$. Thus the Claim is proved. (Note that p_L^{-1} is a multi-valued correspondence, but $p_E \circ s^\bullet \circ p_L^{-1}$ is indeed single valued, hence a map.)

3.1. s^\bullet -valuations arising from $\text{Val}^1(L)$.

In the above context, let $N|L \hookrightarrow \tilde{L}|L$ be a finite Galois subextension of $\tilde{L}|L$ with $\mu_\ell \subset N$ and setting $F = NE$, consider $F|E \hookrightarrow \tilde{E}|E$ and the resulting projections of Galois groups

$q_E^\bullet : G(\tilde{E}^\bullet|E) \rightarrow G(F^\bullet|E)$, $q_F^\bullet : G(\tilde{E}^\bullet|F) \rightarrow G(F^\bullet|F)$ and $q_L^a : G(\tilde{L}^\bullet|L) \rightarrow G(N^\bullet|L)$, $q_N^a : G(\tilde{L}^\bullet|L) \rightarrow G(N^\bullet|N)$, and finally $p^\bullet : G(F^\bullet|E) \rightarrow G(N^\bullet|L)$, hence $p^\bullet : \mathcal{G}_F^\bullet \rightarrow \mathcal{G}_N^\bullet$.

In particular, given the a.b.c.-liftable section $s^a : G(\tilde{L}^a|L) \rightarrow G(\tilde{E}^a|L)$, for $\bullet = a, c$ one has a commutative diagrams of the form:

$$\begin{array}{ccccccc}
\mathcal{G}_{\tilde{E}}^\bullet & \xrightarrow{\quad} & G(\tilde{E}^\bullet|E) & \xrightarrow{p_{\tilde{E}}} & G(\tilde{E}|E) & \xrightarrow{\quad} & \\
\downarrow q_F^\bullet & \searrow & \downarrow s^\bullet & \searrow & \downarrow q_E & \searrow & \\
\mathcal{G}_F^\bullet & \xleftarrow{\quad} & G(F^\bullet|E) & \xrightarrow{p_F} & G(F|E) & \xrightarrow{\quad} & \\
\downarrow \tilde{p}^\bullet & \downarrow & \downarrow \tilde{p}^\bullet & \downarrow & \downarrow \tilde{\iota} & \downarrow & \\
\mathcal{G}_{\tilde{L}}^\bullet & \xleftarrow{\quad} & G(\tilde{L}^\bullet|L) & \xrightarrow{p_{\tilde{L}}} & G(\tilde{L}|L) & \xrightarrow{\quad} & \\
\downarrow p^\bullet & \downarrow & \downarrow p^\bullet & \downarrow & \downarrow \iota & \downarrow & \\
\mathcal{G}_N^\bullet & \xleftarrow{\quad} & G(N^\bullet|L) & \xrightarrow{p_N} & G(N|L) & \xrightarrow{\quad} &
\end{array}$$

in which all maps are the canonical projections and $\tilde{\iota}$ and ι are isomorphisms.

Finally, let $L_1|L \hookrightarrow N|L \hookrightarrow \tilde{L}|L$ be a finite Galois subextensions of $\tilde{L}|L$ such that $\mu_\ell \subset L_1$, and for $\mathfrak{v} \in \text{Val}(L)$, denote by $\tilde{\mathfrak{v}}|\mathfrak{w}|\mathfrak{v}_1|\mathfrak{v}$ the prolongations of \mathfrak{v} to $\tilde{L}|N|L_1|L$.

Notations/Remark 3.1. Let $\text{Val}^1(L) \subset \text{Val}(L)$ be the set of valuations $\mathfrak{v} \in \text{Val}(L)$ satisfying:

- (i) $\mathfrak{v}L = \mathbb{Z}$; (ii) $\text{char}(L\mathfrak{v}) \neq \ell$; (iii) $L_1\mathfrak{v}_1^\times/\ell \neq 1$; (iv) $\tilde{\mathfrak{v}}|\mathfrak{v}$ are unramified.

We notice that if $\mathfrak{v} \in \text{Val}^1(L)$, then $\mathfrak{w}N = \mathbb{Z} = \mathfrak{v}L$ and $N\mathfrak{w}^\times/\ell \neq 1$ for all $N|L$ as above.

[*Proof.* Since $[N\mathfrak{w} : L_1\mathfrak{v}_1] \leq [N : L_1] < \infty$, by basic Galois theory, $L_1\mathfrak{v}_1^\times/\ell \neq 1$ implies $N\mathfrak{w}^\times/\ell \neq 1$ (because $\ell > 2$). Since $\tilde{\mathfrak{v}}|\mathfrak{v}$ unramified, $\mathfrak{v}L \subset \mathfrak{w}N \subset \tilde{\mathfrak{v}}\tilde{L} = \mathfrak{v}L$, thus $\mathfrak{v}L = \mathfrak{w}N$.]

For $\mathfrak{v} \in \text{Val}^1(L)$, $\tilde{L}|N|L$ as above, let $\tilde{\mathfrak{v}}^\bullet|\mathfrak{w}^\bullet|\mathfrak{v}$ be the prolongations of $\tilde{\mathfrak{v}}|\mathfrak{w}|\mathfrak{v}$ to $\tilde{L}^\bullet|N^\bullet|L$. Since $\text{char}(\tilde{L}\tilde{\mathfrak{v}}) = \text{char}(N\mathfrak{w}) = \text{char}(L\mathfrak{v}) \neq \ell$ and $\mathbb{Z} = \mathfrak{v}L = \mathfrak{w}N = \tilde{\mathfrak{v}}\tilde{L}$, by functoriality and basics of Hilbert decomposition theory, the following hold:

1) $T_{\tilde{\mathfrak{v}}^a|\mathfrak{v}} = T_{\tilde{\mathfrak{v}}^a|\tilde{\mathfrak{v}}} \cong \mathbb{Z}/\ell \cong T_{\mathfrak{w}^a|\mathfrak{w}} = T_{\mathfrak{w}^a|\mathfrak{v}}$ and $T_{\tilde{\mathfrak{v}}^c|\mathfrak{v}} = T_{\tilde{\mathfrak{v}}^c|\tilde{\mathfrak{v}}} \cong \mathbb{Z}/\ell^2 \cong T_{\mathfrak{w}^c|\mathfrak{w}} = T_{\mathfrak{w}^c|\mathfrak{v}}$. Further, denoting by $G_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}}$ and $G_{\mathfrak{w}^\bullet|\mathfrak{v}}$ the Galois group of the residue field extensions $\tilde{L}^\bullet|\mathfrak{v}$ and $N^\bullet|\mathfrak{v}$, respectively, one has $Z_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}} = T_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}} \rtimes G_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}}$ and $Z_{\mathfrak{w}^\bullet|\mathfrak{v}} = T_{\mathfrak{w}^\bullet|\mathfrak{v}} \rtimes G_{\mathfrak{w}^\bullet|\mathfrak{v}}$, the action being in both cases by the ℓ -adic cyclotomic character of $G_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}}$, respectively $G_{\mathfrak{w}^\bullet|\mathfrak{v}}$.

2) $q_L^\bullet : G(\tilde{L}^\bullet|L) \rightarrow G(N^\bullet|L)$ maps $T_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}}$ isomorphically onto $T_{\mathfrak{w}^\bullet|\mathfrak{v}}$ and defines a surjective morphism of the residue Galois groups $q_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{w}|\mathfrak{v}}^\bullet : G_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}} \rightarrow G_{\mathfrak{w}^\bullet|\mathfrak{v}}$ which is obviously compatible with the ℓ -adic characters. Finally, the restriction $q_L^\bullet : Z_{\tilde{\mathfrak{v}}^\bullet|\mathfrak{v}} \rightarrow Z_{\mathfrak{w}^\bullet|\mathfrak{v}}$ is defined canonically by its restrictions to the inertia groups and the residue Galois groups.

Conclude: First, $\mu_\ell \subset N \Rightarrow G_{\tilde{\mathfrak{v}}^a|\mathfrak{w}}$ and $G_{\mathfrak{w}^a|\mathfrak{w}}$ act trivially on $T_{\tilde{\mathfrak{v}}^a|\mathfrak{w}} \cong \mathbb{Z}/\ell \cong T_{\mathfrak{w}^a|\mathfrak{w}}$. Hence $Z_{\tilde{\mathfrak{v}}^a|\mathfrak{w}}$ and $Z_{\mathfrak{w}^a|\mathfrak{w}}$ are abelian and $I_{\mathfrak{w}} = T_{\mathfrak{w}^a|\mathfrak{w}} \leq Z_{\mathfrak{w}^a|\mathfrak{w}} = D_{\mathfrak{w}}$ is a c.l. pair in $G(N^a|N)$. Second, for $\tilde{\sigma} \in T_{\tilde{\mathfrak{v}}^c|\mathfrak{w}}$ and $\tilde{\tau} \in Z_{\tilde{\mathfrak{v}}^c|\mathfrak{w}}$ one has $[\tilde{\sigma}, \tilde{\tau}] \in \langle \tilde{\sigma}^\ell \rangle$. Hence by abuse of language, we will say:

Terminology. $T_{\tilde{\mathfrak{v}}^a|\mathfrak{w}} \leq Z_{\tilde{\mathfrak{v}}^a|\mathfrak{w}}$ is a **generalized-commuting c.l. pair** of subgroups of $G(\tilde{L}^a|N)$.

Key Lemma 3.2. In the above notation/context, set $I^a := q_F^a(s^a(T_{\tilde{\mathfrak{v}}^a|\mathfrak{w}}))$, $D^a := q_F^a(s^a(Z_{\tilde{\mathfrak{v}}^a|\mathfrak{w}}))$. Then $I^a \leq D^a$ is a c.l. pair in $\mathcal{G}_F^a \subset G(F^a|E)$ which is mapped by $p^a : G(F^a|E) \rightarrow G(N^a|L)$ onto

the c.l. pair $I_{\mathfrak{w}} = T_{\mathfrak{w}^a|_{\mathfrak{w}}} \leq Z_{\mathfrak{w}^a|_{\mathfrak{w}}} = D_{\mathfrak{w}}$ in $\mathcal{G}_N^a \subset G(N^a|L)$. And the same holds, correspondingly, for the maximal c.l. pair $I_{D_{\mathfrak{w}}} \leq D_{\mathfrak{w}}$ in \mathcal{G}_N^a .

Proof. In the above notation, recalling the remarks at 1) above, one has: The canonical projection $G(\tilde{E}^c|F) \rightarrow G(\tilde{E}^a|F)$ maps the subgroups $s^c(T_{\tilde{\mathfrak{v}}^c|_{\mathfrak{w}}}) \leq s^c(Z_{\tilde{\mathfrak{v}}^c|_{\mathfrak{w}}})$ of $G(\tilde{E}^c|F)$ onto the subgroups $s^a(T_{\tilde{\mathfrak{v}}^a|_{\mathfrak{w}}}) \leq s^a(Z_{\tilde{\mathfrak{v}}^a|_{\mathfrak{w}}})$ of $G(\tilde{E}^a|F)$. Hence recalling that $[\tilde{\sigma}, \tilde{\tau}] \in \langle \tilde{\sigma}^\ell \rangle$ for all $\tilde{\sigma} \in T_{\tilde{\mathfrak{v}}^c|_{\mathfrak{w}}}$ and $\tilde{\tau} \in Z_{\tilde{\mathfrak{v}}^c|_{\mathfrak{w}}}$, one has $[s^c(\tilde{\sigma}), s^c(\tilde{\tau})] \in \langle s(\tilde{\sigma})^\ell \rangle$ for all $\tilde{\sigma} \in T_{\tilde{\mathfrak{v}}^c|_{\mathfrak{w}}}$ and $\tilde{\tau} \in Z_{\tilde{\mathfrak{v}}^c|_{\mathfrak{w}}}$. Hence since the canonical projections $G(\tilde{E}^\bullet|F) \rightarrow G(F^\bullet|F)$ are surjective and that $q_N^\bullet = p^\bullet \circ q_F^\bullet \circ s^\bullet$, it follows that the subgroups $I^\bullet := q_F^\bullet(s^\bullet(T_{\tilde{\mathfrak{v}}^\bullet|_{\mathfrak{w}}}))$, $D^\bullet = q_F^\bullet(s^\bullet(Z_{\tilde{\mathfrak{v}}^\bullet|_{\mathfrak{w}}}))$ of $\mathcal{G}_F^\bullet = G(F^\bullet|F)$ satisfy:

- a) $I^a \subset D^a$ are subgroups of \mathcal{G}_F^a . Further, $q_N^\bullet = p^\bullet \circ q_F^\bullet \circ s^\bullet$ implies $p^a(I^a) = T_{\mathfrak{w}^a|_{\mathfrak{w}}}$ and $p^a(D^a) = Z_{\mathfrak{w}^a|_{\mathfrak{w}}}$. Hence $I^a \neq 1$ and D^a is not cyclic.
- b) $I^c \subset D^c$ are subgroups of \mathcal{G}_F^c which project onto $I^a \subset D^a$ under $G(F^c|F) \rightarrow G(F^a|F)$ and $\forall \sigma \in I^a, \tau \in D^a$ and any preimages $\tilde{\sigma} \in I^c, \tilde{\tau} \in D^c$ one has $[\tilde{\sigma}, \tilde{\tau}] \in \langle \tilde{\sigma}^\ell \rangle$.

Further, in the case when $I_{\mathfrak{w}} = T_{\mathfrak{w}^a|_{\mathfrak{w}}} \leq Z_{\mathfrak{w}^a|_{\mathfrak{w}}} = D_{\mathfrak{w}}$ is replaced by $I_{D_{\mathfrak{w}}} = I_{Z_{\mathfrak{w}^a|_{\mathfrak{w}}}} \leq Z_{\mathfrak{w}^a|_{\mathfrak{w}}} = D_{\mathfrak{w}}$, the assertion of Lemma follows along the same lines, so we omit the details. \square

Construction 3.3 ($\mathfrak{w}|\mathfrak{v} \rightsquigarrow I_{D_I} \leq D_I \rightsquigarrow w|v \in \mathcal{W}_{F|E}$).

In notation from Lemma 3.2, let $I_{D_{I^a}} \leq D_{I^a}$ be the maximal c.l. pair in \mathcal{G}_F^a attached to the c.l. pair $I := I^a \leq D^a =: D$ as in Definition/Remark 2.11, 4. Further, consider $I_{D_{\mathfrak{w}}} \leq D_{\mathfrak{w}} \rightsquigarrow \mathfrak{w} \in \mathcal{W}_N$ and $I_{D_{I^a}} \leq D_{I^a} \rightsquigarrow w \in \mathcal{W}_F$ as defined in Remark 2.16. Hence since $\mathfrak{v} = \mathfrak{w}|_L$ and $v = w|_E$, in the context of Remark/Notation 2.17, one has $\mathfrak{w}|\mathfrak{v} \in \mathcal{W}_{N|L}$ and $w|v \in \mathcal{W}_{F|E}$, and further:

- 1) $Z_{\mathfrak{w}^a|_{\mathfrak{v}}} = D_{\mathfrak{w}|_{\mathfrak{v}}} \in \mathcal{D}_{N|L}$, $Z_{\mathfrak{w}^a|_{\mathfrak{v}}} \rightarrow Z_{\mathfrak{w}|_{\mathfrak{v}}}$ and $D_{w|v} \in \mathcal{D}_{F|E}$, $D_{w|v} \rightarrow Z_{w|v}$.
 - 2) By Fact 2.18 applied to $\mathfrak{w}|\mathfrak{v}$ and $w|v$, for $g \in G(F|E)$, $h \in G(N|L)$ the following hold:
- $(*)_{\mathfrak{w}} h(I_{D_{\mathfrak{w}}}) = I_{D_{\mathfrak{w}}} \text{ iff } h(D_{\mathfrak{w}}) = D_{\mathfrak{w}} \text{ iff } h(D_{\mathfrak{w}|_{\mathfrak{v}}}) = D_{\mathfrak{w}|_{\mathfrak{v}}} \text{ iff } h(Z_{\mathfrak{w}}^a) = Z_{\mathfrak{w}}^a \text{ iff } h(\mathfrak{w}) = \mathfrak{w} \text{ iff } h \in Z_{\mathfrak{w}|_{\mathfrak{v}}}$.
- $(*)_w g(I_{D_{I^a}}) = I_{D_{I^a}} \text{ iff } g(D_{I^a}) = D_{I^a} \text{ iff } g(D_{w|v}) = D_{w|v} \text{ iff } g(Z_w^a) = Z_w^a \text{ iff } g(w) = w \text{ iff } g \in Z_{w|v}$.

Proposition 3.4 (Fact 2.7 re-revisited). *In the above notations, the following hold:*

- 1) Setting $w_N := w|_N$, one has: $\mathfrak{w} \leq w_N$, $Z_{\mathfrak{w}}^a = D_{w_N} = p^a(D_w)$, $T_{\mathfrak{w}}^a = p^a(I^a) \subset I_{w_N} = I_{D_{\mathfrak{w}}}$.
- 2) $\iota(Z_{w|v}) = Z_{\mathfrak{w}|_{\mathfrak{v}}}$ and $\iota(D_{w|v}) = Z_{\mathfrak{w}^a|_{\mathfrak{v}}}$.
- 3) For $g \in G(F|E)$ one has:

$$g(I^a) = I^a \text{ iff } g(D_{I^a}) = D_{I^a} \text{ iff } g(D_{w|v}) = D_{w|v} \text{ iff } g(w) = w \text{ iff } g \in Z_{w|v}.$$

Proof. To 1): We first notice that the surjectivity of p^a and p^c imply that for every c.l. pair $I' \leq D'$ in \mathcal{G}_F^a with $p^a(I') \neq 1$ and $p^a(D')$ non-cyclic, the image $p^a(I') \leq p^a(D')$ of $I' \leq D'$ under p^a is a c.l. pair in \mathcal{G}_N^a . (Actually, by mere definitions one has: If g, τ is a c.l. pair in \mathcal{G}_F^a , then $p^a(g), p^a(\tau)$ is a c.l. pair in \mathcal{G}_N^a , provided $p^a(g), p^a(\tau)$ are independent in \mathcal{G}_N^a .) In particular, since both $I^a \subset I_{D_{I^a}}$, $p^a(I^a) = I_{\mathfrak{w}} = T_{\mathfrak{w}}^a$, and $D^a \subset D_{I^a}$, $p^a(D^a) = D_{\mathfrak{w}} = Z_{\mathfrak{w}}^a$, one has: $I_N := p^a(I_{D_{I^a}}) \leq p^a(D_{I^a}) =: D_N$ is a c.l. pair in \mathcal{G}_N^a such that $I_{\mathfrak{w}} \subset I_N$, $D_{\mathfrak{w}} \subset D_N$. Thus $w_N = w|_N$ is non-trivial, because $I_N \neq 1$. Further, since $\text{char}(N\mathfrak{w}) \neq \ell$, one has $D_{\mathfrak{w}} = Z_{\mathfrak{w}}^a$ (and $T_{\mathfrak{w}}^a = I_{\mathfrak{w}}$, provided $N\mathfrak{w}^{\times/\ell}$ non-cyclic), and since \mathfrak{w} has rank one, one has that either $\mathfrak{w} \leq w_N$, or \mathfrak{w} and w_N are independent. By contradiction, suppose that $w_1 := \mathfrak{w}$ and $w_2 := w_N$ are independent. Then by Lemma 2.8, it follows that $Z_{w_1}^a \cap Z_{w_2}^a = 1$, hence $D_{w_1} \cap D_{w_2} = 1$ as well, because $D_{w_i} \subset Z_{w_i}^a$, $i = 1, 2$. This is a contradiction, because $w_1 = \mathfrak{w}$ discrete implies

$1 \neq D_{w_1}$, hence $1 \neq D_{w_1} = D_{\mathfrak{w}} = pr^a(D^a) \subset D_{w_2}$. Conclude that w_1, w_2 are comparable, hence $\mathfrak{w} = w_1 \leq w_2 = w_N$, because $w_1 = \mathfrak{w}$ has rank one. Therefore, see e.g., TOPAZ [To1], Lemma 4.1, one has: Since $w_1 \leq w_2$, i.e., w_2 is a refinement of w_1 , one has $D_{w_2} \subset D_{w_1}$, $I_{w_2} \supset I_{w_1}$, etc. On the other hand, by functoriality of (reduced) Hilbert decomposition theory, $p^a(D_w) \subset D_{w_N} = D_{w_2}$. Hence since $D_{\mathfrak{w}} = p^a(D^a)$, putting everything together, we get:

$$D_{w_1} = D_{\mathfrak{w}} = p^a(D^a) \subset D_{w_N} = D_{w_2} \subset D_{\mathfrak{w}} = D_{w_1},$$

concluding that $D_{\mathfrak{w}} = D_{w_1} = D_{w_2} = p^a(D_w) = D_{w_N}$. Concerning the last assertion about (reduced) inertia, as mentioned above, one has that $p^a(I_w) \leq p^a(D_w)$ is a c.l. pair in \mathcal{G}_N^a . Recalling that $p^a(D^a) = D_{w_2} = D_{\mathfrak{w}}$, let $I_{D_{\mathfrak{w}}} \subset D_{\mathfrak{w}} = p^a(D^a)$ be maximal such that $I_{D_{\mathfrak{w}}} \leq D_{\mathfrak{w}}$ is a c.l. pair in \mathcal{G}_N^a . Since $p^a(I^a) \leq p^a(D^a)$, that is, $p^a(I^a) \leq D_{\mathfrak{w}}$ is a c.l. pair, it follows that $p^a(I^a) \subset I_{D_{\mathfrak{w}}}$ by the maximality of $I_{D_{\mathfrak{w}}} \subset D_{\mathfrak{w}}$ such that $I_{D_{\mathfrak{w}}} \leq D_{\mathfrak{w}}$ is a c.l. pair in \mathcal{G}_N^a .

To 2): Since $pr^a(D_w) = D_{\mathfrak{w}}$, taking into account assertions $(*)_{\mathfrak{w}}$ and $(*)_w$ above, by mere definitions one has $\iota(Z_{w|v}) \subset Z_{\mathfrak{w}|v}$. For the converse inclusion, proceed as follows: By assertion $(*)_{\mathfrak{w}}$, one has that $h \in Z_{\mathfrak{w}|v}$ iff $h(I_{D_{\mathfrak{w}}}) = I_{D_{\mathfrak{w}}}$. Let $h' \mapsto h$ under $G(N^a|L) \rightarrow G(N|L)$, and denote $g' = s^a(h')$. Then by mere definitions one has: $\tau \in D_{I^a}$ iff $\forall \sigma \in I^a = s^a(I_{D_{\mathfrak{w}}})$ have: σ, τ is a c.l. pair in \mathcal{G}_F^a . Obviously, since the inner conjugation by g' is an automorphism of \mathcal{G}_F^a which lifts to the inner conjugation in \mathcal{G}_F^c , the latter assertion is equivalent to σ', τ' being a c.l. pair in \mathcal{G}_F^a , where $\sigma' = g'\sigma g'^{-1}$ and $\tau' = g'\tau g^{-1}$. On the other hand, $\sigma \mapsto \sigma' := g'\sigma g'^{-1}$ is an automorphism of $I_{D_{\mathfrak{w}}}$ (because $g'I_{D_{\mathfrak{w}}}g'^{-1} = g'(I_{D_{\mathfrak{w}}}) = I_{D_{\mathfrak{w}}}$). Hence $\tau \in D_{I^a}$ iff $\tau' := g'\tau g'^{-1} \in D_{I^a}$. Thus $g'D_{I^a}g'^{-1} = D_{I^a}$, that is, $g'(D_{I^a}) = D_{I^a}$. Since $g \in Z_{\mathfrak{w}|v}$ was arbitrary and $g'(D_{I^a}) = D_{I^a}$, conclude by Fact 2.18 that $\iota^{-1}(\tau) \in Z_{w|v}$ under the isomorphism $\iota: G(F|E) \rightarrow G(N|L)$. Thus $\iota(Z_{w|v}) = Z_{\mathfrak{w}|v}$ as claimed.

Finally, the assertion $p^a(D_{w|v}) = D_{\mathfrak{w}^a|v} = Z_{\mathfrak{w}^a|v}$ follows by mere definitions from functoriality of Hilbert decomposition theory, using assertions 1) and the fact that $\iota(Z_{w|v}) = Z_{\mathfrak{w}|v}$.

To 3): By assertion $(*)_w$ above, it is enough to show that for $g \in G(F|E)$ one has: $g(I^a) = I^a$ iff $g(D_{I^a}) = D_{I^a}$. To fix notation, for every $g \in G(F|E)$, set $h := \iota(g)$, and for preimages $h^\bullet \in G(N^\bullet|L)$ of h , let $g^\bullet = s^\bullet(h^\bullet) \in G(F^\bullet|E)$ be the corresponding preimages of g .

- For the direct implication, let $g(I^a) = I^a$ for some $g \in G(F|E)$, and g^\bullet be the liftings as defined above. Let $\sigma_{\mathfrak{w}} \in I_{\mathfrak{w}} = T_{\mathfrak{w}}^a \cong \mathbb{Z}/\ell$ be a generator and $\tilde{\sigma}_{\mathfrak{w}} \in T_{\mathfrak{w}}^c \cong \mathbb{Z}/\ell^2$ be a lifting of $\sigma_{\mathfrak{w}}$. In particular, $\sigma = s^a(\sigma_{\mathfrak{w}})$ generates $I^a = s^a(I_{\mathfrak{w}})$ and $\tilde{\sigma} := s^c(\tilde{\sigma}_{\mathfrak{w}})$ generates $I^c := s^c(T_{\mathfrak{w}}^c)$. Further, $\tilde{\sigma}$ and $I^c \subset \mathcal{G}_F^c$ are liftings of σ , respectively I^a under $\mathcal{G}_F^c \rightarrow \mathcal{G}_F^a$. This being said, the action of g^\bullet on $I^\bullet = s(T_{\mathfrak{w}}^\bullet)$ is induced by the action of h^\bullet on $I_{\mathfrak{w}}^\bullet$. In particular, if $\tau \in D_I$ and $\tilde{\tau} \in \mathcal{G}_F^c$ is a lifting, then by the definition of D_I one has: $[\tilde{\sigma}, \tilde{\tau}] = \tilde{\sigma}^{\ell n}$ for some $n \in \mathbb{N}$, thus:

$$[\tilde{\sigma}^{g^a}, \tilde{\tau}^{g^a}] = (\tilde{\sigma}^{\ell n})^{g^a} = (\tilde{\sigma}^{g^a})^{\ell n} = (*)$$

On the other hand, $g^a(I^a) = I^a$ and $I^a = \langle \sigma \rangle$ implies $g^a(\sigma) = \sigma^m$ for some $m \in \mathbb{N}$ with $(\ell, m) = 1$. Therefore, $\tilde{\sigma}^{g^a} = \tilde{\sigma}^m \sigma_0$ for some $\sigma_0 \in G(F^c|F^a)$, hence finally:

$$(*) = (\tilde{\sigma}^{g^a})^{\ell n} = (\tilde{\sigma}^m \sigma_0)^{\ell n} = \tilde{\sigma}^{\ell m n} \sigma_0^{\ell n} = \tilde{\sigma}^{\ell m n} \in \langle \tilde{\sigma}^\ell \rangle,$$

because $\sigma_0^\ell = 1$ by the fact that $G(F^c|F^a)$ is an ℓ -elementary abelian group. Hence we conclude that $g^a(\sigma), g^a(\tau)$ is a c.l. pair in \mathcal{G}_F^a . Thus since $\tau \in D_{I^a}$ was arbitrary, and $g^a(I^a) = I^a$, it follows that $I^a \leq g^a(D_{I^a})$ is a c.l. pair in \mathcal{G}_F^a . Since $D_{I^a} \subset \mathcal{G}_F^a$ is (the unique) maximal such that

$I^a \leq D_{I^a}$ is c.l. in \mathcal{G}_F^a , one has $g^a(D_{I^a}) \subset D_{I^a}$. Let \bar{g}^a be the inverse of g^a . Then $\bar{g}^a(I^a) = I^a$ and reasoning as above, one has that $\bar{g}^a(D_{I^a}) \subset D_{I^a}$. Conclude that $g^a(D_{I^a}) = D_{I^a}$.

- For the converse implication, let $I_{D_{I^a}} \leq D_{I^a} \rightsquigarrow w|v \in \mathcal{W}_{F|E}$ and $g \in G(F|E)$ satisfy $g(D_{I^a}) = D_{I^a}$. Then by assertion $(*)_w$ before Proposition 3.4, one has that $g \in Z_{w|v}$. In particular, $h = \iota(g) \in G(N|L)$ lies in $Z_{w|v}$, hence by functoriality of Hilbert decomposition theory one has $h(T_{w|v}^a) = T_{w|v}^a$ and $h(Z_{w|v}^a) = Z_{w|v}^a$. Hence taking into account that $I_{w|v} = T_{w|v}^a$, we get $g(I_{w|v}) = g(T_{w|v}^a) = T_{w|v}^a = I_{w|v}$. Therefore, since by definition we have $I^a = s^a(I_{w|v})$ and $g = \iota^{-1}(h)$ as well, it follows instantly by mere definitions of ι , s^a and p^a that

$$g(I^a) = g(s^a(I_{w|v})) = s^a(h^a(I_{w|v})) = s^a(I_{w|v}) = I^a.$$

□

3.2. Canonical s^\bullet -valuations and their functorial behavior.

In the context of Proposition 3.4 above, recall that given valuations $w|v$ of $N|L$, $v \in \text{Val}^1(L)$, via the section s^\bullet of p^\bullet one gets valuations $w|v$ of $F|E$ satisfying $w_N := w|_N \geq w$ and $v_L := w|_L \geq v$. In particular, the general Fact 2.4 above applies in this context, leads to:

- 1) The canonical w -valuations and/or v -valuations of F , which turn out to be equal $w_{w|v} = w_v$.
Indeed, this follows by Fact 2.4, 3), because $N|L$ is an algebraic extension.
- 2) The canonical w^a - and w - and v -valuations of F^a are equal $w_{w|v}^a = w_{w|v}^a = w_v^a$ and prolong $w_{w|v} = w_v$ to F^a . Indeed, this follows from Fact 2.4, 3), because $F^a|F$ is algebraic.
And since $F^a|F|E$ are algebraic, the above valuations all have the same restriction to E , denoted $v_v := (w_{w|v}^a)|_E = (w_{w|v}^a)|_E = (w_{w|v}^a)|_E$, etc.

Definition 3.5. In the above context, the valuations $w_{w|v}^a = w_{w|v}^a = w_v^a$ of F^a and $w_{w|v} = w_v$ of F and v_v of E are called *canonical s^\bullet -valuations* of $F^a|F|E$ (defined by $w^a|w|v$ via s^\bullet).

• We notice the following: Since $\text{char}(Nw) = \text{char}(Lv) \neq \ell$, $v \in \text{Val}^1(L)$ and $(w_{w|v})|_N = w$, one has that $Fw_{w|v} \neq \ell$. In particular, one also has $D_{w_{w|v}} = Z_{w_{w|v}}^a$ and $I_{w_{w|v}} = T_{w_{w|v}}^a$, etc.

Fact 3.6. The s^\bullet -canonical valuations $w_{w|v}$ arising from $w|v$, $v \in \text{Val}^1(L)$ satisfy:

- (i) $\mathcal{O}_{w_{w|v}}^\times \supset \mathcal{O}_w^\times$, $1 + \mathfrak{m}_{w_{w|v}} \subset 1 + \mathfrak{m}_w$;
- (ii) $\mathcal{O}_{w_{w|v}}^\times \cap N = \mathcal{O}_w^\times$, $(1 + \mathfrak{m}_{w_{w|v}}) \cap N = 1 + \mathfrak{m}_w$.

Therefore, by mere definitions one has:

- 1) $s^a(I_{w|v}) \subset I_{w_{w|v}} \subset I_w$, $D_{w_{w|v}} = D_w \supset s^a(D_{w|v})$, and $D_{w_{w|v}} = D_{w|v} \supset s^a(D_{w|v})$.
- 2) $p^a(I_{w_{w|v}}) = I_{w|v}$, $p^a(D_{w_{w|v}}) = D_{w|v}$, and $p^a(D_{w_{w|v}}) = D_{w|v}$. Thus $\iota(Z_{w_{w|v}}) = Z_{w|v}$.

Proof. To 1): The inclusions $s^a(I_{w|v}) \subset I_{w_{w|v}} \subset I_w$ and $D_{w_{w|v}} \supset D_w \supset s^a(D_{w|v})$ are clear by mere definitions. For the converse inclusion $D_{w_{w|v}} \subset D_w$ one has: Since $I^a \subset I_{w_{w|v}}$ and $D_{w_{w|v}}$ acts on $I_{w_{w|v}}$ via the cyclotomic character, one has: $\forall \sigma \in I^a$ and $\forall \tau D_{w_{w|v}}$ one has: σ, τ is a c.l. pair in \mathcal{G}_F^a . Hence by definition one has $D_w = D_{I^a}$, one finally has $D_{w_{w|v}} \subset D_w$, as claimed.

To 2): The equality $p^a(D_{w_{w|v}}) = D_{w|v}$ follows from $p^a(D_w) = D_{w|v}$ cf. Proposition 3.4, 1) and the other equalities follow along the same lines using loc.cit. 2) and 3). □

Next, in the notation from the previous subsections, let $\tilde{L}|N_\alpha|L_1|L$, $\alpha \in I$, be the family of finite Galois subextensions of $\tilde{L}|L$ with $L_1 \subset N_\alpha$. We notice that I is (filtered partially) ordered by $i \leq j$ iff $N_\alpha \subset N_\beta$. And for each $i \in I$ consider the resulting $F_\alpha := EN_\alpha$, thus the filtered

family of finite Galois subextensions $\tilde{E}|F_\alpha|E_1|E$ if $\tilde{E}|E$. Let $p_\alpha^\bullet : G(F_\alpha^\bullet|E) \rightarrow G(N_\alpha^\bullet|L)$ be the resulting projections, and $s_\alpha^\bullet : G(N_\alpha^\bullet|L) \rightarrow G(F_\alpha^\bullet|E)$ be the resulting sections.

For $\mathfrak{v} \in \text{Val}^1(L)$ and its prolongations $\tilde{\mathfrak{v}}|\mathfrak{w}_\alpha|\mathfrak{v}$ to $\tilde{L}|N_\alpha|L$, $i \in I$, let $w_\alpha|v_\alpha \in \mathcal{W}_{F_\alpha|E}$ be the valuation defined via s^\bullet and $\mathfrak{v} \in \text{Val}^1(L)$. In particular, the valuations $w_\alpha \geq \mathfrak{w}_\alpha$ give rise to the canonical \mathfrak{w}_α -valuation $w_{\mathfrak{w}_\alpha}$ of F_α . Further, for $N_\alpha \subset N_\beta$ and the resulting $F_\alpha \subset F_\beta$, etc., let $p_{\beta\alpha}^\bullet : G(F_\beta^\bullet|E) \rightarrow G(F_\alpha^\bullet|E)$ be the resulting canonical projections, thus $p_\beta^\bullet = p_\alpha^\bullet \circ p_{\beta\alpha}^\bullet$. And recalling the notation introduced in Construction 3.3, set $I_\alpha^a := s_\alpha(I_{\mathfrak{w}})$, $D_\alpha^a = s_\alpha(D_{\mathfrak{w}})$ and notice that $p_\beta^\bullet = p_\alpha^\bullet \circ p_{\beta\alpha}^\bullet$ implies:

$$(*) \quad p_{\beta\alpha}^a(I_\beta^a) = I_\alpha^a, \quad p_{\beta\alpha}^a(D_\beta^a) = D_\alpha^a.$$

Key Lemma 3.7 (Functionality of s^\bullet -canonical valuations).

For $F_\alpha \subset F_\beta$, let $w_{\mathfrak{w}_\alpha} \in \text{Val}(F_\alpha)$ and $w_{\mathfrak{w}_\beta} \in \text{Val}(F_\beta)$ be the corresponding s^\bullet -canonical valuations. Then $w_{\mathfrak{w}_\beta}|_{F_\alpha} = w_{\mathfrak{w}_\alpha}$. In particular, $v_\mathfrak{v} = w_{\mathfrak{w}_\alpha}|_E$ is independent of $\alpha \in I$ and $\mathfrak{v} = v_\mathfrak{v}|_L$.

Proof. Let $w'_\alpha := w_{\mathfrak{w}_\beta}|_{F_\alpha}$ and set $w^0 = \min(w'_\alpha, w_{\mathfrak{w}_\alpha}) \in \text{Val}(F_\alpha)$.

Step 1. We claim that w^0 is non-trivial, or equivalently, w'_α and $w_{\mathfrak{w}_\alpha}$ are not independent. Indeed, by Fact 3.6, 1), one has $I_\alpha^a = s_\alpha^a(I_{\mathfrak{w}_\alpha}) \subset I_{w_{\mathfrak{w}_\alpha}}$, and by assertion $(*)$ right before Key Lemma 3.7, one has $p_{\beta\alpha}^a(I_\beta^a) = I_\alpha^a \subset p_{\beta\alpha}^a(I_{w_{\mathfrak{w}_\beta}})$. Thus since $w'_\alpha = w_{\mathfrak{w}_\beta}|_{F_\alpha}$, by Fact 2.9, one has $p_{\beta\alpha}^a(I_{w_{\mathfrak{w}_\beta}}) \subset I_{w'_\alpha}$. Hence $1 \neq I_\alpha^a \subset I_{w'_\alpha} \cap I_{w_{\mathfrak{w}_\alpha}}$, hence by Fact 2.7, 1), it follows that w'_α and $w_{\mathfrak{w}_\alpha}$ are not independent, as claimed.

Step 2. First, $\mathfrak{w}^0 := w^0|_{N_\alpha}$ is non-trivial. Indeed, by Fact 2.9, one has $p_\alpha^a(I_{w^0}) \subset I_{\mathfrak{w}^0}$. Thus $I_{w^0} \supset I_\alpha^a$ implies $I_{\mathfrak{w}^0} \supset p_\alpha^a(I_{w^0}) \supset p_\alpha^a(I_\alpha^a) = I_{\mathfrak{w}_\alpha} \neq 1$, and therefore, w^0 is non-trivial. Second, since $w^0 \leq w_{\mathfrak{w}_\alpha}$, one has $\mathfrak{w}^0 = w^0|_{N_\alpha} \leq w_{\mathfrak{w}_\alpha}|_{N_\alpha} = \mathfrak{w}_\alpha$. Thus since \mathfrak{w}_α is discrete and $\mathfrak{w}^0 \leq \mathfrak{w}_\alpha$ is nontrivial, one must have $\mathfrak{w}^0 = \mathfrak{w}_\alpha$. Finally, since $w^0 \leq w_{\mathfrak{w}_\alpha}$ and $w^0|_{N_\alpha} = \mathfrak{w}_\alpha$, by the definition of the canonical \mathfrak{w}_α valuation $w_{\mathfrak{w}_\alpha}$ one must have $w^0|_{N_\alpha} = \mathfrak{w}_\alpha$. Therefore, one finally must have $w^0 = \min(w'_\alpha, w_{\mathfrak{w}_\alpha}) = w_{\mathfrak{w}_\alpha}$, concluding that $(w_{\mathfrak{w}_\beta})|_{F_\alpha} = w'_\alpha \geq w_{\mathfrak{w}_\alpha}$.

Step 3. Finally, given that $w_{\mathfrak{w}_\beta}|_{F_\alpha} = w'_\alpha \geq w_{\mathfrak{w}_\alpha}$, let $w'_\beta \leq w_{\mathfrak{w}_\beta}$ be the minimal coarsening of $w_{\mathfrak{w}_\beta}$ such that $w'_\beta|_{F_\alpha} = w'_\alpha$, that is, $w'_\beta|_{F_\alpha} = w_{\mathfrak{w}_\alpha}$. Then by the discussion above and Fact 2.4, 2) one has both: First, $w'_\beta|_{N_\beta}$ is the prolongation of $w'_\alpha = w_{\mathfrak{w}_\alpha}$ to F_β , thus $w'_\beta|_{N_\alpha} = \mathfrak{w}_\alpha$, and second, $w'_\beta \leq w_\beta$. Thus by the definition of the canonical \mathfrak{w}_β -valuation $w_{\mathfrak{w}_\beta}$ one has that $w_{\mathfrak{w}_\beta} \leq w'_\beta$, thus finally concluding that $w'_\beta = w_{\mathfrak{w}_\beta}$, hence $w_{\mathfrak{w}_\alpha} = w_{\mathfrak{w}_\beta}|_{F_\alpha}$. \square

In order to avoid overloaded notation, we introduce the following:

Notation 3.8. Given $N_\alpha|L \hookrightarrow F_\alpha|E$, we denote $\tilde{w}_\alpha := w_{\mathfrak{w}_\alpha}$, thus $\tilde{w}_\alpha|_E = v_\mathfrak{v}$ for all $\alpha \in I$.

An important consequence of the Key Lemma 3.7 above is as follows.

- $\tilde{\mathcal{O}} := \cup_\alpha \mathcal{O}_{\tilde{w}_\alpha} \subset \tilde{E}$ is a valuation ring satisfying $\tilde{\mathcal{O}} \cap F_\alpha = \mathcal{O}_{\tilde{w}_\alpha}$ for all $i \in I$.

In particular, if $\tilde{w}_\mathfrak{v}$ denotes the valuation of $\tilde{\mathcal{O}}$, i.e., $\tilde{\mathcal{O}} = \mathcal{O}_{\tilde{w}_\mathfrak{v}}$, the following hold: First, since $\tilde{L} = \cup_\alpha N_\alpha$, $\tilde{E} = \cup_\alpha F_\alpha$ and $\mathfrak{w}_\alpha = \tilde{w}_\alpha|_{N_\alpha}$, one has $\mathfrak{v} = \tilde{w}_\mathfrak{v}|_{\tilde{L}}$, and further, $\tilde{w}_\mathfrak{v}|_E = v_\mathfrak{v} = \tilde{w}_\alpha|_E$, $\tilde{w}_\mathfrak{v}|_L = \tilde{w}_\alpha|_L = \mathfrak{w}_\alpha|_L = \mathfrak{v}$, $\alpha \in I$. Moreover, by Fact 3.6, 2) one has:

$$s_\alpha^a(I_{\mathfrak{w}_\alpha}) = I_\alpha^a \subset I_{D_{\tilde{w}_\alpha}} \quad \text{and} \quad s_\alpha(D_{\mathfrak{w}_\alpha}) \subset D_{\tilde{w}_\alpha}, \quad \alpha \in I.$$

Therefore, taking into account that $G(L^a|L) = \varprojlim_i G(N_\alpha^a|L)$ and $G(E^a|E) = \varprojlim_i G(F_\alpha^a|E)$ and further, $s^a(I_{\tilde{v}}) = \varprojlim_i I_\alpha^a$, $s^a(D_{\tilde{v}}) = \varprojlim_i D_\alpha^a$, etc., by “taking limits” and taking into account that $I_{\mathfrak{w}_\alpha} = T_{\mathfrak{w}_\alpha}^a$, $D_{\mathfrak{w}_\alpha} = Z_{\mathfrak{w}_\alpha}^a$ and $D_{\tilde{w}_\alpha^a|v_{\mathfrak{v}}} = Z_{\tilde{w}_\alpha^a|v_{\mathfrak{v}}}$, one gets the following:

Fact 3.9 (Fact 3.6 revisited). *The s^\bullet -canonical valuations $\tilde{w}_{\tilde{v}}$ arising from $\mathfrak{v} \in \text{Val}^1(L)$ in the way explained above have $\text{char}(\tilde{F}\tilde{w}_{\tilde{v}}) \neq \ell$ and further satisfy the following:*

1) $\tilde{w}_{\tilde{v}}|_{F_\alpha} = \tilde{w}_\alpha$, $\tilde{w}_{\tilde{v}}|_E = v_{\mathfrak{v}}$, $\tilde{w}_{\tilde{v}}|_{N_\alpha} = \mathfrak{w}_\alpha$, $\tilde{w}_{\tilde{v}}|_L = \mathfrak{v}$. Hence $\text{char}(\tilde{E}\tilde{w}_{\tilde{v}}) \neq \ell$, thus concluding:

$$I_{\tilde{w}_{\tilde{v}}} = T_{\tilde{w}_{\tilde{v}}}^a, \quad D_{\tilde{w}_{\tilde{v}}} = Z_{\tilde{w}_{\tilde{v}}}^a, \quad D_{\tilde{w}_{\tilde{v}}^a|v_{\mathfrak{v}}} = Z_{\tilde{w}_{\tilde{v}}^a|v_{\mathfrak{v}}}.$$

2) $s^a(T_{\tilde{v}}^a) \subset T_{\tilde{w}_{\tilde{v}}}^a$, $s^a(Z_{\tilde{v}}^a) \subset Z_{\tilde{w}_{\tilde{v}}}^a$ and $s^a(Z_{\tilde{v}^a|v_{\mathfrak{v}}}) \subset Z_{\tilde{w}_{\tilde{v}}^a|v_{\mathfrak{v}}}$ and further,

$$p^a(T_{\tilde{w}_{\tilde{v}}}^a) = T_{\tilde{v}}^a, \quad p^a(Z_{\tilde{w}_{\tilde{v}}}^a) = Z_{\tilde{v}}^a, \quad \text{and} \quad p^a(Z_{\tilde{w}_{\tilde{v}}^a|v_{\mathfrak{v}}}) = Z_{\tilde{v}^a|v_{\mathfrak{v}}}. \quad \text{Thus } \iota(Z_{\tilde{w}_{\tilde{v}}^a|v_{\mathfrak{v}}}) = Z_{\tilde{v}^a|v_{\mathfrak{v}}}.$$

Proof. Beweis klar! □

4. PROOF OF THEOREM 1.9 ($\tilde{k}|k$ -MINIMALISTIC t -BSC)

4.1. Preparation for the proof of Main Theorem 1.9.

Let $\tilde{k}|k$ be a field extension satisfying Hypothesis (H), $K = k(X)$ be the function field of a geometrically integral k -curve X . This gives rise to a concrete case of the more general situation from Section 3 as follows. Let $L := k(t) =: k_t$ the rational function field in the variable t over k and $E := K(t) =: K_t$ be the compositum of $K = k(X)$ and $L = k(t)$ over k . Then $E|L$, that is, $K_t|k_t$ is a regular field extension (because $K|k$ was so). Thus setting $\tilde{k}_t := \tilde{k}(t)$ and $\tilde{K}_t := \tilde{K}\tilde{k}_t$, one has $\tilde{E} = E\tilde{L} = \tilde{K}_t$, etc. For the resulting embeddings of Galois field extensions $\tilde{K}_t|K_t \hookrightarrow \tilde{k}_t|k_t \hookrightarrow \tilde{k}|k$ and $\tilde{K}_t^a|K_t \hookrightarrow \tilde{k}_t^a|k_t \hookrightarrow \tilde{k}|k$, let $G(\tilde{K}_t|K_t) \xrightarrow{\iota} G(\tilde{k}_t|k_t) \rightarrow G(\tilde{k}|k)$ be the canonical isomorphisms of Galois groups, respectively $G(\tilde{K}_t^\bullet|K_t) \twoheadrightarrow G(\tilde{k}_t^\bullet|k_t) \twoheadrightarrow \tilde{k}^\bullet|k$ the resulting surjective morphisms of Galois groups, where \bullet stays for a or c .

Finally, setting $k_1 := k_t(\mu_\ell)$, consider the family of finite Galois subextensions $k_\alpha|k$, $\alpha \in I$ of $\tilde{k}|k$ with $k_1 \subset k_\alpha$, partially ordered by: $\alpha \leq \beta$ iff $k_\alpha \subset k_\beta$. We are in the context if Section 3 with $N_\alpha = k_{\alpha,t} := k_\alpha(t) \subset \tilde{k}_t = \tilde{L}$ and $F_\alpha = EN_\alpha = k_{\alpha,t} \subset \tilde{k}_t$, getting isomorphic projective systems of finite groups $G(k_\beta|k) \twoheadrightarrow G(k_\alpha|k)$, $G(N_\beta|L) \twoheadrightarrow G(N_\alpha|L)$, $G(F_\beta|E) \twoheadrightarrow G(F_\alpha|E)$ for $\alpha \leq \beta$, having the canonical isomorphisms $G(\tilde{E}|E) \xrightarrow{\iota} G(\tilde{L}|L) \rightarrow G(\tilde{k}|k)$ as limit.

Concerning valuations: Recall that all k -valuations $\mathfrak{v} \in \text{Val}_k(k_t)$ are discrete, being either the $p(t)$ -adic valuations $\mathfrak{v} = v_{k,p}$ with $p = p(t) \in k[t]$ the monic irreducible polynomials, or $\mathfrak{v} = v_\infty$ with uniformizing parameter $\pi_\infty = \frac{1}{t}$. Further, $k_t\mathfrak{v}|k$ is a finite field extension, hence $\text{char}(k_t\mathfrak{v}) \neq \ell$, and therefore, $\text{Val}_k(k_t) \subset \text{Val}^1(k_t)$. For $\mathfrak{v} \in \text{Val}_k(k_t)$ consider the prolongations $\mathfrak{w}_\alpha^a|\mathfrak{w}_\alpha|\mathfrak{v}$ of \mathfrak{v} to $k_{\alpha,t}^a|k_{\alpha,t}|k_t$ with limit $\tilde{\mathfrak{v}}^a|\tilde{\mathfrak{v}}|\mathfrak{v}$ as prolongations of \mathfrak{v} to $\tilde{k}_t^a|\tilde{k}_t|k_t$. Similarly, with $F_\alpha := K_{\alpha,t} := Kk_{\alpha,t}$ and $v \in \text{Val}_k(K_t)$, consider its prolongations $w_\alpha^a|w_\alpha|v$ to $K_{\alpha,t}^a|K_{\alpha,t}|K_t$ and $\tilde{v}^a|\tilde{v}|v$ prolonging v to $\tilde{K}_t^a|\tilde{K}_t|K_t$. This being said, $\tilde{L}|L = \tilde{k}|k_t$, $\tilde{E}|E = \tilde{K}_t|K_t$ introduced/defined above are as in the previous section.

Next, let $s^a : G(\tilde{k}_t^a|k_t) \rightarrow G(\tilde{K}_t^a|K_t)$ be a liftable section of the canonical (surjective) projection $p^a : G(\tilde{K}_t^a|K_t) \twoheadrightarrow G(\tilde{k}_t^a|k_t)$, i.e., there is a section $s^c : G(\tilde{k}_t^c|k_t) \rightarrow G(\tilde{K}_t^c|K_t)$ of the canonical (surjective) projection $p^c : G(\tilde{K}_t^c|K_t) \rightarrow G(\tilde{k}_t^c|k_t)$. Then recalling the canonical isomorphism

$$\iota : G(\tilde{K}_t|K_t) \rightarrow G(\tilde{k}_t|k_t) \quad \text{defined by} \quad \tilde{K}_t|K_t \hookleftarrow \tilde{k}_t|k_t,$$

one has the following:

Fact 4.1 (Fact 3.9 revisited). *In the above context, for $\mathfrak{v} \in \text{Val}_k(k_t)$ and its prolongation $\tilde{\mathfrak{v}}|\mathfrak{v}$ to $\tilde{k}_t|k_t$, consider the corresponding inertia/decomposition groups $T_{\tilde{\mathfrak{v}}}^a \subset Z_{\tilde{\mathfrak{v}}}^a \subset Z_{\tilde{\mathfrak{v}}^a|\mathfrak{v}} \subset G(\tilde{k}_t^a|k_t)$. Then there is a unique valuation $\tilde{w}_{\tilde{\mathfrak{v}}} \in \text{Val}(\tilde{K}_t)$ such that the following hold:*

- 1) $\tilde{w}_{\tilde{\mathfrak{v}}}|_{\tilde{k}_t} = \tilde{\mathfrak{v}}$, thus $\tilde{w}_{\tilde{\mathfrak{v}}}$ is trivial on k , i.e., $\tilde{w}_{\tilde{\mathfrak{v}}} \in \text{Val}_k(\tilde{K}_t)$ and $v_{\mathfrak{v}} := \tilde{w}_{\tilde{\mathfrak{v}}}|_{K_t} \in \text{Val}_k(K_t)$.
- 2) $s^a(T_{\tilde{\mathfrak{v}}}^a) \subset T_{\tilde{w}_{\tilde{\mathfrak{v}}}}^a$, $s^a(Z_{\tilde{\mathfrak{v}}}^a) \subset Z_{\tilde{w}_{\tilde{\mathfrak{v}}}}^a$, and $s^a(Z_{\tilde{\mathfrak{v}}^a|\mathfrak{v}}) \subset Z_{\tilde{w}_{\tilde{\mathfrak{v}}^a|\mathfrak{v}}}$, and further, $p^a(T_{\tilde{w}_{\tilde{\mathfrak{v}}}}^a) = T_{\tilde{\mathfrak{v}}}^a$, $p^a(Z_{\tilde{w}_{\tilde{\mathfrak{v}}}}^a) = Z_{\tilde{\mathfrak{v}}}^a$, and $p^a(Z_{\tilde{w}_{\tilde{\mathfrak{v}}^a|\mathfrak{v}}}) = Z_{\tilde{\mathfrak{v}}^a|\mathfrak{v}}$. Thus $\iota(Z_{\tilde{w}_{\tilde{\mathfrak{v}}^a|\mathfrak{v}}}) = Z_{\tilde{\mathfrak{v}}^a|\mathfrak{v}}$.

In particular, every liftable section $s^a : G(\tilde{k}_t^a|k_t) \rightarrow G(\tilde{K}_t^a|K_t)$ of the canonical (surjective) projection $p^a : G(\tilde{K}_t^a|K_t) \rightarrow G(\tilde{k}_t^a|k_t)$ gives rise to an injective map

$$\varphi : \text{Val}_k(\tilde{k}_t) \rightarrow \text{Val}_k(\tilde{K}_t), \quad \tilde{\mathfrak{v}} \mapsto \tilde{w}_{\tilde{\mathfrak{v}}},$$

such that the k -valuations $\tilde{\mathfrak{v}}$ and $\tilde{w}_{\tilde{\mathfrak{v}}}$ satisfy the conditions 1), 2) above.

Proof. Beweis, klar! □

4.2. Places via $\tilde{k}|k$ -t-a.b.c. liftable sections.

If not otherwise explicitly stated, through out this subsection, the notation is that from Theorem 1.9, that is: $s_K^a : G(\tilde{k}^a|k) \rightarrow G(\tilde{K}^a|K)$ is a $\tilde{k}|k$ -t-a.b.c. liftable section of the canonical projection $p_K^a : G(\tilde{K}^a|K) \rightarrow G(\tilde{k}^a|k)$, and $s_t^\bullet : G(\tilde{k}_t^\bullet|k) \rightarrow G(\tilde{K}_t^\bullet|K_t)$ be $\tilde{k}|k$ -t-a.b.c. liftings of s_K^a to sections of $p_{K_t}^\bullet : G(\tilde{K}_t^\bullet|K_t) \rightarrow G(\tilde{k}_t^\bullet|k_t)$ for \bullet equal to a and c . In particular, recalling the notations and the commutative diagram introduced before Theorem 1.9, one has the following:

$$\begin{array}{ccccccc} G(K_t^c|K_t) & \xrightarrow{p_{K_t}^c} & G(k_t^c|k_t) & \xrightarrow{p_{k_t}^c} & G(k^c|k) & \xleftarrow{s_t^c} & G(k_t^c|k_t) \\ \downarrow q_{K_t}^c & & \downarrow q_{k_t}^c & & \downarrow q_k^c & & \downarrow q_{k_t}^c \\ G(K_t^a|K_t) & \xrightarrow{p_{K_t}^a} & G(k_t^a|k_t) & \xrightarrow{p_{k_t}^a} & G(k^a|k) & \xleftarrow{s_t^a} & G(k_t^a|k_t) \end{array}$$

Here, s_t^a is the section of $p_{K_t}^a$ liftable to s_t^c , i.e., $s_t^a \circ q_{K_t}^c = q_{k_t}^c \circ s_t^c$.

Notation/Remark. Denote by $v_{\tilde{k},\infty}$, $v_{\tilde{K},\infty}$ the $\frac{1}{t}$ -adic valuations of \tilde{k}_t , \tilde{K}_t , thus $v_{\tilde{k},\infty} = v_{\tilde{K},\infty}|_{\tilde{k}_t}$. We notice the following: Let $v \in \text{Val}(\tilde{K}_t)$ be a given valuation. Then $v = v_{\tilde{K},p}$ with $p \in \tilde{k}[t]$ monic irreducible iff $v_{\tilde{K}} := v|_{\tilde{K}}$ is trivial, $v|_{\tilde{k}_t}$ is non-trivial, and $v \neq v_{\tilde{k},\infty}$.

[For reader's sake we present the quite obvious proof. First, the direct implication is clear, because $\tilde{k} = \bar{k} \cap \tilde{K}$ implies: $p \in \tilde{k}[t]$ is irreducible iff p is irreducible over \tilde{K} . For the covers implication proceed as follows: Since $v|_K$ is trivial, v is a \tilde{K} -valuation of $\tilde{K}_t = \tilde{K}(t)$, and $v \neq v_{\tilde{K},\infty}$ implies that $v = v_{\tilde{K},q}$ is the q -adic \tilde{K} -valuation for some monic irreducible polynomial $q \in \tilde{K}[t]$. Since $v|_{\tilde{k}_t}$ is nontrivial, there exists a unique monic irreducible $p \in \tilde{k}[t]$ such that $v|_{\tilde{k}_t} = v_{\tilde{k},p}$, and since $\tilde{k} = \bar{k} \cap \tilde{K}$ by hypothesis, one has that $p \in \tilde{K}[t]$ is irreducible. On the other hand, since $v_{\tilde{k},p} = v_{\tilde{K},q}|_{\tilde{k}_t}$, one must have $v_{\tilde{K},q}(p) = v_{\tilde{k},p}(p) > 0$. Hence $q|p$ in $\tilde{K}[t]$, thus $p = q$ (because both p, q are irreducible monic).]

Key Lemma 4.2. *In the above notation from Fact 4.1, denote $\tilde{K} = K\tilde{k}$ and for $\tilde{\mathfrak{v}} \in \text{Val}_k(\tilde{k}_t)$ and $\tilde{w}_{\tilde{\mathfrak{v}}} \in \text{Val}_k(\tilde{K}_t)$ set $\tilde{\mathfrak{v}} := \tilde{w}_{\tilde{\mathfrak{v}}}|_{\tilde{K}} \in \text{Val}_k(\tilde{K})$. Then there is $\tilde{v}|\mathfrak{v}$ such that $\tilde{\mathfrak{v}} := \tilde{w}_{\tilde{\mathfrak{v}}}|_K \in \text{Val}(K)$ is non-trivial, and non-trivial $\tilde{\mathfrak{v}}$ and $\mathfrak{v} := \tilde{\mathfrak{v}}|_K = \tilde{w}_{\tilde{\mathfrak{v}}}|_K$ satisfy:*

- 1) $\tilde{w} \in \text{Val}_k(K)$ depends on s_K^a only and not on the specific $\tilde{v} \in \text{Val}_k(\tilde{k}_t)$ used to define it.
- 2) $\tilde{K}\tilde{w}|_k$ is algebraic, $K\tilde{w} \cap \tilde{k} = k_t\tilde{v} \cap \tilde{k}$, and $K\tilde{w}|_k$ and $\tilde{k}|_k$ are linearly disjoint over k .

Proof. First, if $\tilde{v} \in \text{Val}_k(\tilde{k}_t)$, then either $\tilde{v} = v_\infty$ or $\tilde{v} = v_{k,p} = v_p$ is the p -adic valuation for a unique $p \in \tilde{k}[t]$ monic irreducible and the degree $d_{\tilde{v}}$ is $d_{\tilde{v}} := [\tilde{k}_t\tilde{v} : \tilde{k}]$. Obviously, and one has:

$$d_{v_\infty} = 1 \text{ and } d_{v_p} = [\tilde{k}_t v_p : k] = \deg(p) \text{ is the degree of } p \in \tilde{k}[t].$$

And the same holds, correspondingly, for the K -valuations $\tilde{v} \in \text{Val}_K(\tilde{K}_t)$.

Let $\Sigma := \text{Val}_k(\tilde{k}_t)$, $\Sigma' := \{v_\infty\} \cup \{v_p \in \text{Val}_k(\tilde{k}_t) \mid (\ell, d_{v_p}) = 1\}$ and $\Sigma'' := \Sigma \setminus \Sigma'$, thus obviously, $\Sigma = \Sigma' \cup \Sigma'' = \text{Val}_k(\tilde{k}_t)$ as a disjoint union. And define $\Sigma'_K, \Sigma''_K \subset \text{Val}_K(\tilde{K}_t)$ correspondingly. We notice that since $k \subset K$ is relatively algebraically closed, it follows that every monic irreducible polynomial $p \in \tilde{k}[t]$ is monic irreducible in $\tilde{K}[t]$. Hence if $v_{\tilde{K},p}$ is the prolongation of $v_p \in \text{Val}_k(\tilde{k}_t)$ to \tilde{K}_t , then one has:

$$(*) \quad d_{v_p} = [\tilde{k}_t v_p : \tilde{k}] = \deg(p) = [\tilde{K}_t v_{\tilde{K},p} : \tilde{K}] = d_{v_{\tilde{K},p}},$$

implying that $\Sigma' \subset \Sigma'_K$ and $\Sigma'' \subset \Sigma''_K$. Further, let $p \in \tilde{K}[t] \setminus \tilde{k}[t]$ be monic irreducible. Then $v_{\tilde{K},p}$ is trivial on \tilde{k}_t , implying that $\Sigma' = \text{Val}_k(\tilde{k}_t) \cap \Sigma'_K$ and $\Sigma'' = \text{Val}_k(\tilde{k}_t) \cap \Sigma''_K$.

Further, given $p \in \tilde{k}[t]$ monic irreducible, and $\alpha_p \in \tilde{k}_t^a$ with $\alpha_p^\ell = p$, the following hold:

- a) v_p is ramified in $\tilde{k}_t[\alpha_p]|\tilde{k}_t$, and $\tilde{v} \in \text{Val}_k(\tilde{k}_t)$, $\tilde{v} \neq v_p, v_\infty$, are unramified in $\tilde{k}_t[\alpha_p]|\tilde{k}_t$.
- b) v_∞ is ramified in $\tilde{k}_t[\alpha_p]|\tilde{k}_t$ iff $\ell \nmid d_p$.

Recall the exact sequence $1 \rightarrow \tilde{k}_t^\times \xrightarrow{\iota} \tilde{k}^\times \oplus_{\tilde{v} \in \Sigma} \tilde{v}\tilde{k}_t \xrightarrow{\deg} \mathbb{Z} \rightarrow 0$ with $\iota(f) = a_f \oplus_{\tilde{v}} \tilde{v}(f)$, a_f the leading coefficient of f and $\deg = \sum_{\tilde{v}} d_{\tilde{v}}$, and tensoring with \mathbb{Z}/ℓ , on gets an exact the exact sequence $1 \rightarrow \tilde{k}_t^\times/\ell \rightarrow \tilde{k}^\times/\ell \oplus_{\tilde{v} \in \Sigma} \tilde{v}\tilde{k}_t/\ell \rightarrow \mathbb{Z}/\ell \rightarrow 0$. Using the latter exact sequence, by Hilbert decomposition theory and Kummer theory the following hold:

Fact 4.3. *The following hold:*

(I) *In the above notation, setting $k_t^0 := \tilde{k}^a \tilde{k}_t$, $k_t' := \tilde{k}_t[\alpha_{v_p}]_{v_p \in \Sigma'}$, $k_t'' := \tilde{k}_t[\alpha_{v_p}]_{v_p \in \Sigma''}$, one has:*

- 1) *The fields k_t^0, k_t', k_t'' are linearly disjoint over \tilde{k}_t , and $\tilde{k}_t^a|\tilde{k}_t$ is the compositum $\tilde{k}_t^a = k_t^0 k_t' k_t''$. Hence the Galois groups $G^0 = G(k_t^0|\tilde{k}_t) = \mathcal{G}_{\tilde{k}}^a$, $G' = G(k_t'|\tilde{k}_t)$ and $G'' = G(k_t''|\tilde{k}_t)$ satisfy:*

The canonical projection $\mathcal{G}_{\tilde{k}}^a \rightarrow G^0 \times G' \times G''$ is an isomorphism.

- 2) *Concerning generation of G' and G'' one has:*

- a) *Given a fix generator $\tau_\infty \in T_{v_\infty}^a$ there are unique inertia generators $(\tau_v \in T_v^a)_{v \in \Sigma'}$ which topologically generate G' and satisfy the unique prorelational $\prod_{v \in \Sigma'} \tau_v = 1$.*
- b) *G'' is profinite-freely generated by any system of inertia generators $(\tau_v \in T_v^a)_{v \in \Sigma''}$.*

(II) *The same holds, correspondingly, for K_t , and the sets of K -valuations $\Sigma'_K, \Sigma''_K \subset \text{Val}_K(K_t)$. Further since $\Sigma' = \text{Val}_k(k_t) \cap \Sigma'_K$ and $\Sigma'' = \text{Val}_k(k_t) \cap \Sigma''_K$, and one has:*

$$k^0 \subset K^0, \quad k_t' \subset K_t', \quad k_t'' \subset K_t'', \quad \text{and} \quad k^0 = K^0 \cap k_t^a, \quad k_t' = K_t' \cap k_t^a, \quad k_t'' = K_t'' \cap k_t^a.$$

Proceed along the following steps:

Claim 1. *In the above notation, there is $\tilde{v} \in \Sigma'$ with $\tilde{w} := \tilde{w}_{\tilde{v}}|_K$ not-trivial.*

Indeed, by contradiction, suppose that the assertion of Claim 1 does not hold, that is, for every $\tilde{\mathfrak{v}} \in \Sigma'$ the resulting $\tilde{w}_{\tilde{\mathfrak{v}}}$ is trivial on K . Thus the map $\varphi : \Sigma' \rightarrow \text{Val}_k(\tilde{K}_t)$, $\tilde{\mathfrak{v}} \mapsto \tilde{w}_{\tilde{\mathfrak{v}}}$ defined in Fact 4.1 has image $\mathcal{V}_k \subset \text{Val}_K(K_t)$ such that, by Fact 4.1, 1), $\tilde{w}_{\tilde{\mathfrak{v}}}|_{\tilde{K}_t} = \tilde{\mathfrak{v}}$ for all $\tilde{\mathfrak{v}} \in \text{Val}_k(\tilde{K}_t)$. Therefore, if $\tilde{\mathfrak{v}} = v_\infty$, then $\tilde{w}_{\tilde{\mathfrak{v}}} = v_{\tilde{K},\infty}$, and if $\tilde{\mathfrak{v}} = v_p$ with $p \in \tilde{k}[t]$ monic irreducible, then $\tilde{w}_{\tilde{\mathfrak{v}}} = v_{\tilde{K},p}$ is the p -adic valuation of \tilde{K}_t . Thus by (*) above, $[\tilde{k}_t \tilde{\mathfrak{v}} : \tilde{k}] = d_p = [\tilde{K}_t v_{\tilde{K},p} : \tilde{K}]$, concluding that $\mathcal{V}_k \subset \Sigma'_K$. Hence the map below is a bijection

$$\varphi : \Sigma' \rightarrow \mathcal{V}_k \subset \Sigma'_K, \quad \tilde{\mathfrak{v}} \mapsto \tilde{w}_{\tilde{\mathfrak{v}}} \text{ with } \mathcal{V}_k \subset \Sigma'_K \text{ stictly,}$$

which via $s_t^a : G(\tilde{k}_t^a|k_t) \rightarrow G(\tilde{K}_t^a|K_t)$ and $p_{K_t}^a : G(\tilde{K}_t^a|K_t) \rightarrow G(\tilde{k}_t^a|k_t)$, is compatible with inertia and decomposition groups, that is: For $\tilde{\mathfrak{v}} \leftrightarrow \tilde{w}_{\tilde{\mathfrak{v}}}$ one has $s_t^a(T_{\tilde{\mathfrak{v}}}^a) = T_{\tilde{w}_{\tilde{\mathfrak{v}}}^a}^a$, $s_t^a(Z_{\tilde{\mathfrak{v}}}^a) \subset Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a}^a$, $p_{K_t}^a(Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a}^a) = Z_{\tilde{\mathfrak{v}}}^a$, and the residue fields satisfy $\tilde{K}_t \tilde{w}_{\tilde{\mathfrak{v}}} = K \tilde{k}_t \tilde{\mathfrak{v}}$. Let $\tau_\infty \in T_{v_\infty}$ be a fixed generator, hence $\tau_{\tilde{K},\infty} := s^a(\tau_\infty) \in T_{v_{\tilde{K},\infty}}$ generates $T_{v_{\tilde{K},\infty}}$ and $p_{K_t}^a(\tau_{\tilde{K},\infty}) = \tau_\infty$. Further, let $(\tau_{\tilde{\mathfrak{v}}} \in T_{\tilde{\mathfrak{v}}}^a)_{\tilde{\mathfrak{v}} \in \Sigma'}$ and $(\tau_{\tilde{\mathfrak{v}}} \in T_{\tilde{\mathfrak{v}}}^a)_{\tilde{\mathfrak{v}} \in \Sigma''}$ and $(\tau_{\tilde{w}} \in T_{\tilde{w}}^a)_{\tilde{w} \in \Sigma'_K}$, $(\tau_{\tilde{w}} \in T_{\tilde{w}}^a)_{\tilde{w} \in \Sigma''_K}$ be systems of inertia generators as in Fact 4.3, 2) with $\tau_{v_\infty} = \tau_\infty$, $\tau_{v_{K,\infty}} = \tau_{K,\infty}$.

Conclude that $(s^a(\tau_{\tilde{\mathfrak{v}}}))_{\tilde{\mathfrak{v}} \in \Sigma'} = (\tau_{\tilde{w}_{\tilde{\mathfrak{v}}}})_{\tilde{w}_{\tilde{\mathfrak{v}}} \in \mathcal{W}}$ is a proper subsystem of $(\tau_{\tilde{w}})_{\tilde{w} \in \Sigma'_K}$ such that

$$\prod_{\tilde{w}_{\tilde{\mathfrak{v}}} \in \mathcal{W}} \tau_{\tilde{w}_{\tilde{\mathfrak{v}}}} = \prod_{\tilde{\mathfrak{v}} \in \Sigma'} s_t^a(\tau_{\tilde{\mathfrak{v}}}) = s_t^a(\prod_{\tilde{\mathfrak{v}} \in \Sigma'} \tau_{\tilde{\mathfrak{v}}}) = s_t^a(1) = 1.$$

Hence we reached a contradiction, and Claim 1 is proved.

Claim 2. The non-trivial valuation $\tilde{\mathfrak{w}} := \tilde{w}_{\tilde{\mathfrak{v}}}|_K$ from Claim 1 does not dependent of $\tilde{\mathfrak{v}}$.

Indeed, recall the inclusion $\varphi : \text{Val}_k(\tilde{K}_t) \hookrightarrow \text{Val}_k(\tilde{K}_t)$, $\tilde{\mathfrak{v}} \mapsto \tilde{w}_{\tilde{\mathfrak{v}}}$ from Fact 4.1, and by loc.cit., 2), one has $p^a(Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a}^a) = Z_{\tilde{\mathfrak{v}}}^a \subset \mathcal{G}_{\tilde{K}_t}^a$ and $p^a(Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a|v_{\mathfrak{v}}}^a) = Z_{\tilde{\mathfrak{v}}^a|v_{\mathfrak{v}}}^a \subset G(\tilde{k}_t^a|k_t)$. That implies in terms of decomposition fields $k_{\tilde{w}} := \tilde{K}_t \tilde{w}_{\tilde{\mathfrak{v}}} \cap \tilde{k}^a = \tilde{k}_t \tilde{\mathfrak{v}} \cap \tilde{k}^a =: k_{\tilde{\mathfrak{v}}}$ as finite extension of \tilde{k} . Next recall the commutative diagrams:

$$\begin{array}{ccccc} G(\tilde{K}_t^a|K_t) & \xrightarrow{p_t^a} & G(\tilde{k}_t^a|k_t) & & G(\tilde{K}_t^a|K_t) & \xleftarrow{s_t^a} & G(\tilde{k}_t^a|k_t) \\ \downarrow q_{K_t}^a & & \downarrow q_{k_t}^a & & \downarrow q_{K_t}^a & & \downarrow q_{k_t}^a \\ G(\tilde{K}^a|K) & \xrightarrow{p^a} & G(\tilde{k}^a|k) & & G(\tilde{K}^a|K) & \xleftarrow{s^a} & G(\tilde{k}^a|k) \end{array}$$

which give rise to commutative diagrams for the inertia/decomposition groups:

$$\begin{array}{ccccc} Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a|v_{\mathfrak{v}}} & \xrightarrow{p_t^a} & Z_{\tilde{\mathfrak{v}}^a|v} & & Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a|v_{\mathfrak{v}}} & \xleftarrow{s_t^a} & Z_{\tilde{\mathfrak{v}}^a|v} \\ \downarrow q_{K_t}^a & & \downarrow q_{k_t}^a & & \downarrow q_{K_t}^a & & \downarrow q_{k_t}^a \\ G(\tilde{K}^a|K) & \xrightarrow{p^a} & G(\tilde{k}^a|k) & & G(\tilde{K}^a|K) & \xleftarrow{s^a} & G(\tilde{k}^a|k) \end{array}$$

Let $Z_{\tilde{\mathfrak{w}}}^a \subset \mathcal{G}_{\tilde{K}}^a$ be the decomposition group of a non-trivial k -valuation $\tilde{\mathfrak{w}} = \tilde{w}_{\tilde{\mathfrak{v}}}|_{\tilde{K}}$. Then by Hilbert decomposition theory one has that $q_{K_t}^a(Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a|v_{\mathfrak{v}}}^a) \subset Z_{\tilde{\mathfrak{w}}|v}^a$. Hence since $q_{K_t}^a \circ s_t^a = s^a \circ q_{k_t}^a$, and taking into account that $q_{k_t}^a(Z_{\tilde{\mathfrak{v}}^a|v}^a) = G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})$, one has finally commutative diagrams:

$$\begin{array}{ccccc} Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a|v_{\mathfrak{v}}} & \xrightarrow{p_t^a} & Z_{\tilde{\mathfrak{v}}^a|v} & & Z_{\tilde{w}_{\tilde{\mathfrak{v}}}^a|v_{\mathfrak{v}}} & \xleftarrow{s_t^a} & Z_{\tilde{\mathfrak{v}}^a|v} \\ \downarrow q_{K_t}^a & & \downarrow q_{k_t}^a & & \downarrow q_{K_t}^a & & \downarrow q_{k_t}^a \\ Z_{\tilde{\mathfrak{w}}^a|v} & \xrightarrow{p^a} & G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}}) & & Z_{\tilde{\mathfrak{w}}^a|v} & \xleftarrow{s^a} & G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}}) \end{array}$$

that is, $s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})) \subset Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}}$. In particular, since $\tilde{k}^a|k$ satisfies Hypothesis (H), i.e., $\tilde{k}^a|k$ has infinite degree, and $k_{\tilde{\mathfrak{v}}}|k$ has finite degree by the discussion above, one has the following:

$$(*)_{s^a} \quad \text{im}(s^a) \cap Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}} \supset s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})) \cap Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}} \text{ are open subgroups of } \text{im}(s^a).$$

In particular, if $\tilde{\mathfrak{v}}' \in \text{Val}_k(\tilde{k}_t)$ and the resulting $\tilde{w}'_{\tilde{\mathfrak{v}}'} \in \text{Val}_k(K_t)$ is such that $\tilde{\mathfrak{w}}' := \tilde{w}'_{\tilde{\mathfrak{v}}'}|_K$ is non-trivial, then the corresponding $k_{\tilde{\mathfrak{v}}'}|k$ is finite. Hence $G(\tilde{k}_{\tilde{\mathfrak{v}}'}|k) \subset G(\tilde{k}|k)$ is open and $s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}'})) = \text{im}(s^a) \cap Z_{\tilde{\mathfrak{w}}'^a|\mathfrak{w}}$. Therefore, $G_{\tilde{\mathfrak{v}}, \tilde{\mathfrak{v}}'} := G(\tilde{k}|k_{\tilde{\mathfrak{v}}}) \cap G(\tilde{k}_{\tilde{\mathfrak{v}}'}|k) \subset G(\tilde{k}|k)$ is an open subgroup as well, and we conclude: $s^a(G_{\tilde{\mathfrak{v}}, \tilde{\mathfrak{v}}'}) \subset \text{im}(s^a)$ is open, thus infinite, and one has:

$$s^a(G_{\tilde{\mathfrak{v}}, \tilde{\mathfrak{v}}'}) \subset s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})) \cap s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}'})) \subset Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}} \cap Z_{\tilde{\mathfrak{w}}'^a|\mathfrak{w}'}$$

is an infinite group. On the other hand, the k -valuations of \tilde{K} are discrete, because $K = k(X)$ is the function field of a k -curve X . Therefore, the non-equivalent k -valuation of K are independent. Thus we conclude that $\tilde{\mathfrak{w}} = \tilde{\mathfrak{w}}'$ by Lemma 2.8.

Hence Claim 2 is proved.

Claim 3. $K\mathfrak{w}|k$ and $\tilde{k}|k$ are linearly disjoint over k .

Indeed, identify $G(\tilde{K}|K) =: G := G(\tilde{k}|k)$ under $G(\tilde{K}|K) \xrightarrow{\iota} G(\tilde{k}|k)$, and recall that $k_{\tilde{\mathfrak{v}}}|k \hookrightarrow \tilde{k}|k$ is a finite subextension, where $k_{\tilde{\mathfrak{v}}} := K\mathfrak{w} \cap \tilde{k}$. By Hilbert decomposition theory, G acts transitively on the set $\mathcal{V}_{\mathfrak{w}}$ of prolongation $\tilde{\mathfrak{w}}'|\mathfrak{w}$ of \mathfrak{w} to $\tilde{K}|K$ by $\tilde{\mathfrak{w}}^\sigma = \tilde{\mathfrak{w}} \circ \sigma$, and $Z_{\tilde{\mathfrak{w}}|\mathfrak{w}}$ is the stabilizer of $\tilde{\mathfrak{w}}$. Setting $\tilde{\mathfrak{w}}' := \tilde{\mathfrak{w}}^\sigma$ and $\tilde{\mathfrak{v}}' := \tilde{\mathfrak{v}}^\sigma$, one has: First, if $\sigma^a \mapsto \sigma$ under $G(\tilde{k}^a|k) \rightarrow G$, then $\sigma(k_{\tilde{\mathfrak{v}}}) = k_{\tilde{\mathfrak{v}}'}$, thus $G(\tilde{k}|k_{\tilde{\mathfrak{v}}'}) = G(\tilde{k}|k_{\tilde{\mathfrak{v}}})^{\sigma^a}$ is open subgroup of $G(\tilde{k}|k)$. Second, if $\sigma_K^a \mapsto \sigma$ under $G(\tilde{K}^a|K) \rightarrow G$, then $Z_{\tilde{\mathfrak{w}}'^a|\mathfrak{w}} = Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}}^{\sigma_K^a}$ inside $G(\tilde{K}^a|K)$. In particular, choosing $\sigma_K^a = s(\sigma^a)$, thus $\sigma_K^a \in \text{im}(s^a)$, the following hold:

- a) $\text{im}(s^a) \subset G(\tilde{K}^a|K)$ is invariant under the σ^a -conjugation.
- b) $s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}'})) \subset \text{im}(s^a)$ is open, and so is $s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})) \subset \text{im}(s^a)$.
- c) $s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}'})) = s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}}))^{\sigma^a} \subset Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}}^{\sigma^a} = Z_{\tilde{\mathfrak{w}}'^a|\mathfrak{w}}$, because $s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})) \subset Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}}$.

Conclude: $G_{\tilde{\mathfrak{v}}, \tilde{\mathfrak{v}}'} := s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}'})) \cap s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})) \subset \text{im}(s^a)$ is open in $\text{im}(s^a)$, hence infinite, and

$$1 \neq G_{\tilde{\mathfrak{v}}, \tilde{\mathfrak{v}}'} \subset s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}'})) \cap s^a(G(\tilde{k}^a|k_{\tilde{\mathfrak{v}}})) \subset Z_{\tilde{\mathfrak{w}}'^a|\mathfrak{w}} \cap Z_{\tilde{\mathfrak{w}}^a|\mathfrak{w}}.$$

Hence arguing as in the proof of Claim 2, one gets $\tilde{\mathfrak{w}} = \tilde{\mathfrak{w}}'$. Equivalently, $\sigma \in Z_{\tilde{\mathfrak{w}}|\mathfrak{w}}$, thus finally, implying that $K\mathfrak{w} \cap \tilde{k} = k$, as claimed.

This concludes the proof of Key Lemma 4.2. □

4.3. Concluding the proof of Theorem 1.5.

In the context/notation of Theorem 1.5, let $s^a : G(\tilde{k}^a|k) \rightarrow G(\tilde{K}|K)$ be a \mathbf{t} -bitationally liftable section of $p^a : G(\tilde{K}^a|K) \rightarrow G(\tilde{k}|k)$. Then by Key Lemma 4.2, there is a unique non-trivial valuation $\tilde{\mathfrak{w}} \in \text{Val}_k(K)$ which together with its restriction $\mathfrak{w} := \tilde{\mathfrak{w}}|_K$ satisfy:

- (*) $K\mathfrak{w}|k$ and $\tilde{k}|k$ are linearly disjoint over k .

Since $K = k(X)$ with X a complete k -curve and $\mathfrak{w} \in \text{Val}_k(K)$, it follows that \mathfrak{w} has a center $x_{\mathfrak{w}} \in X$ such that $\mathcal{O}_{\mathfrak{w}} = \mathcal{O}_{x_{\mathfrak{w}}}$ and $\mathfrak{m}_{\mathfrak{w}} = \mathfrak{m}_{x_{\mathfrak{w}}}$, and similarly, $\tilde{\mathfrak{w}}$ has a center $x_{\tilde{\mathfrak{w}}} \in \tilde{X} = X_{\tilde{k}}$ such that $x_{\tilde{\mathfrak{w}}} \mapsto x_{\mathfrak{w}}$ under the canonical projection $\tilde{X} \rightarrow X$. In particular, $\kappa_{x_{\mathfrak{w}}} = K\mathfrak{w}$, and therefore, by (*) above, it follows that $\kappa_{x_{\mathfrak{w}}}|k$ and $\tilde{k}|k$ are linearly disjoint over k . And $\tilde{\mathfrak{w}}|\mathfrak{w}$ are

defined by the points $x_{\tilde{w}}|x_w$ as required in Theorem 1.5. Finally, the points $x_{\tilde{w}}|x_w$ are unique with the property that $\text{im}(s^a) \cap Z_{x_{\tilde{w}}|x_w}^a \neq 1$ by the uniqueness part of the Key Lemma 4.2.

This concludes the proof of Theorem 1.5.

5. FINAL COMMENTS/OPEN QUESTIONS

Naturally, the elephant in the room is whether the Section Conjecture holds in the geometric case, i.e., form geometrically integral normal k -curves X , where k is a not ℓ -closed for some $\ell \neq \text{char}(k)$. Here is a short list of questions which might be addressed with methods similar to the ones developed in this manuscript. Here, the notations are as in sections 3 and 4 above.

- 0) Prove all the above results for $\ell = 2$, provided $\text{char} \neq 2$ (after replacing μ_ℓ by μ_4).
 - 1) Suppose that $\mu_{2\ell} \subset \tilde{k}$ and \tilde{k}^\times/ℓ infinite. Does the $\tilde{k}|k$ - t -BSC hold?
 - 2) Replacing \mathbb{P}_t^1 (in the t -BST) by a k -curve or a k -variety Z , formulate & prove the Z -BSC.
 - 3) Let k be Hilbertian, X be proper smooth k -variety. Does the t -BSC hold for $K = k(X)$?
 - 4) Let k be as above. Does the BSC hold for $K_t|k_t$, e.g., for $k = k_0(u)$, $k_0 = \bar{k}_0$?
- This would sharpen BOGOMOLOV–ROVINSKY–TSCHINKEL [BRT] over $k := k_0(t, u)$, $k_0 = \bar{k}_0$.

REFERENCES

- [BRT] F.A. Bogomolov, M. Rovinsky, Y. Tschinkel, *Homomorphisms of multiplicative groups of fields preserving algebraic dependence*, European J. Math. **9** (2019), 656–685.
- [Be] Bresciani, G., *On the birational section conjecture with strong birationality assumptions*, Invent. Math. **235** (2024), 129–150.
- [B-V] Bresciani, G. and Vistoli, A., *An elementary approach to Stix’s proof of the real section conjecture*, (2020). See arXiv:2012.06278 [math.AG], 18 Dec 2020.
- [BOU] Bourbaki, Algèbre commutative, Hermann Paris 1964.
- [Fa] Faltings, G., *Curves and their fundamental groups* (following Grothendieck, Tamagawa and Mochizuki), Astérisque, Vol 252 (1998) Exposé 840.
- [F-J] Fried, M. and Jarden, M., Field Arithmetic (third revised edition). Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge; Springer Verlag, ISSN: 0071-1136.
- [GGA] Geometric Galois Actions I, LMS LNS Vol 242, eds L. Schneps – P. Lochak, Cambridge Univ. Press 1998.
- [G1] Grothendieck, A., *Letter to Faltings, June 1983*, See [GGA].
- [G2] Grothendieck, A., *Esquisse d’un programme*, 1984. See [GGA].
- [H-Sz] Harari, D. and Szamuely, T., *Galois sections for abelianized fundamental groups*, Appendix by E. V. Flynn, Math. Annalen **344** (2009), 779–800.
- [Ko1] Koenigsmann, J., *On the ‘section conjecture’ in anabelian geometry*, J. reine angew. Math. **588** (2005), 221–235.
- [Ko2] Koenigsmann, J., *Solvable absolute Galois groups are metabelian*, Inventiones Math. **144** (2001), 1–22.
- [KPR] Kuhlmann, F.-V., Pank, M., Roquette, P., *Immediate and purely wild extensions of valued fields*, Manuscripta Math. **55** (1986), 39–67.
- [Lu] Lüdtke, M., *The p -adic section conjecture for localisations of curves*, Dissertation, 2020. See urn:nbn:de:hebis:30:3-574318.
- [Mz1] Mochizuki, Sh., *Topics surrounding the anabelian geometry of hyperbolic curves*, in: Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ. **41** (1990), 120–140.
- [Mz2] Mochizuki, Sh., *The local pro- p Grothendieck conjecture for hyperbolic curves*, Invent. Math. **138** (1999), 319–423.
- [Mz3] Mochizuki, Sh., *Topics surrounding the anabelian geometry of hyperbolic curves*, Math. Sci. Res. Inst. Publ. **41** (2003), 119–165.

- [Mz4] Mocizuki, Sh., *Absolute anabelian cuspidalizations of proper hyperbolic curves.*, J. Math. Kyoto Univ. **47** (2007), 451–539.
- [Mu] Mumford, D., The red book of varieties and schemes, LNM 1358, 2nd edition, Springer Verlag 1999.
- [Na] Nakamura, H., *Galois rigidity of the étale fundamental groups of punctured projective lines*, J. reine angew. Math. **411** (1990) 205–216.
- [P1] Pop, F., *On the birational p -adic section conjecture*, Compositio Math. **146** (2010), 621–637.
- [P2] Pop, F., *Z/p metabelian birational p -adic section conjecture for varieties*, Compositio Math. **153** (2017), 1433–1445.
- [St1] Stix, J., *Birational p -adic Galois sections in higher dimensions*, Israel J. Math. **198** (2013), 49–61.
- [St2] Stix, J., *On the birational section conjecture with local conditions*, Invent. Math. **199** (2015), 239–265.
- [Sz] Szamuely, T., *Groupes de Galois de corps de type fini (d’après Pop)*, Astérisque **294** (2004), 403–431.
- [Ta] Tamagawa, A., *The Grothendieck conjecture for affine curves*, Compositio Math. **109** (1997), 135–194.
- [To1] Topaz, A., *Commuting-Liftable Subgroups of Galois Groups II*, J. reine angew. Math. **730** (2017), 65–133.
- [Wk] Wickelgren, K., *2-nilpotent real Section Conjecture*, Math. Ann. **358** (2014), 361–387.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA

DRL, 209 S 33RD STREET, PHILADELPHIA, PA 19104, USA

Email address: pop@math.upenn.edu

URL: <https://www.math.upenn.edu/pop/>