
GENERALIZATIONS AND MINIMALISTIC REFINEMENTS OF THE
t -BIRATIONAL SECTION CONJECTURE

FLORIAN POP

Abstract. In this note we give generalizations and present and prove “minimalistic” refinements

of the t -birational Section Conjecture ( t-BSC), cf. [Be], by doing both: First, by extending the

class of base fields over which the t -BSC holds, and second, by proving refinements of the t -BSC

which involve much less, that is minimalistic, Galois theoretical information.

1. Introduction/Motivation

For reader’s sake and to make the presentation self contained (to some extent), we begin by

recalling a few notations and Galois theoretical basics.

Notation/Definition 1.0. Throughout the paper, if not otherwise explicitly stated, we will use

the following notations and definitions:

- k is a field, k|k is a separable closure of k , and k̃|k ↪→ k|k is a Galois subextension.

- ℓ ̸= char(k) is some odd prime number, fixed throughout.

- X is a complete geometrically integral normal k -curve.

- K = k(X) is its function field, hence K|k a regular field extension.

- X = X×k k is the base change, thus X is normal integral.

- π1(X) := π1(X) and π1(K) := π1(Kk) are the geometric étale fundamental groups.

Hence get the canonical commutative diagram with exact rows:

(∗)k

πK/k : 1 → π1(K)
pK−→ π1(K)

pK−→ π1(k) → 1
↓↓ qX ↓↓ qX ||

πX/k : 1 → π1(X)
pX−→ π1(X)

pX−→ π1(k) → 1

Let S(πX/ k ) and S(πK/ k ) denote, respectively, the sets of π1(X) -conjugacy classes of sections

s : π1(k) → π1(X) of πX/ k , and π1(K) -conjugacy classes of sections s : π1(k) → π1(K)
of πK/ k . Obviously, if sK ∈ S(πK/ k ) , then sX := πK ◦ sK lies in S(πX/ k ) .

Next let kt := k(t) be the rational function field. For the base change Xt := X ×k kt and its

function field Kt := kt(Xt) consider the resulting diagram (∗)kt over kt for Xt and Kt below:
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(∗)kt

πKt/kt
: 1 → π1(Kt)

pt−→ π1(Kt)
pt−→ π1(kt) → 1

↓↓ qXt ↓↓ qXt ||
πXt/kt

: 1 → π1(Xt)
pXt−→ π1(Xt)

pXt−→ π1(kt) → 1

Let S(πXt/ kt
) be the set of all the π1(Xt) -conjugacy classes of section st : π1(kt) → π1(Xt)

of πXt/ kt
: π1(Xt) → π1(kt) , and S(πKt/ kt

) be the set of the π1(Kt) -conjugacy classes of

sections st : π1(kt)→ π1(Kt) of πKt/ kt
: π1(Kt)→ π1(kt) . One has a functorial identification

π1(Xt) = π1(X)×π1(k) π1(kt) , hence s ∈ S(πX/ k ) ↪→ S(πXt/ kt
) via s 7→ st := s×π1(k) id .

Definition. Let prk : π1(kt) → π1(k) and prK : π1(Kt) → π1(K) be the canonical projec-

tions, hence prk ◦ pKt = pK ◦ prK . Given a section s ∈ S(πX/ k ) , we say that s is:

1) birationally liftable, if there is sK ∈ S(πK/ k ) such that s = qX ◦ sK .

2) t -birationally liftable, if there is st ∈ S(πKt/ kt
) such that s ◦ prk = prK ◦ st .

Since X is a complete normal k -curve, the points x ∈ X are in bijection with the k -valuation

rings Ov ∈ Valk(K) of the k -valuations of K via Ox = Ov . Hence x ∈ X is closed if and only

if v ∈ Valk(K) is non-trivial iff κ(x) = κ(v) is finite over k . Further, x ∈ X(k) is k -rational iff

κ(x) = k = κ(v) iff v is a k -rational valuation. One has: By functoriality of π1 , every x ∈ X(k)
gives rise naturally to some sx ∈ S(πX/ k ) . Second, given a k -rational v ∈ Valk(K) , let v|v be

the prolongations of v to K
sep |K , and Tv ◁ Zv < π1(K) be the inertia/decomposition groups.

Then all v|v are π1(K) -conjugated, and so are Tv ◁ Zv , and the canonical exact sequence

(πv) : 1→ Tv
pK−→ Zv

pK−→Gk → 1 is split.

Hence the set of conjugacy classes of the sections sv ∈ S(πK/ k ) defined by a k -rational v is in

bijection with the conjugacy classes of splittings of the exact sequece (πv) above, hence with

H1
cont(Gk, Tv) , the cohomology pointed set of Gk with values in Tv . In particular, if char(k) = 0 ,

one has that Tv = Ẑ(1) , thus via Kummer Theory, one has H1
cont(Gk, Tv) = k̂× .

The section conjecture (SC) originates from Grothendieck [G1], [G2], see [GGA], and asserts:

Grothendieck SC. Let k|Q be a finitely generated field and X be a projective hyperbolic k -curve.
Then all s ∈ S(πX/ k ) arise form x ∈ X(k) as described above and X(k)→ S(πX/ k ) is a bijection.

There are several variants of section conjectures as follows. The birational section conjec-
ture (BSC) asserts that in the context of SC, letting K = k(X) be the function field of X , all

sections s ∈ S(πK/ k ) arise from k -rational valuations v of K|k , thus from k -rational points

x ∈ X(k) as explained above. The p -adic SC and p -adic BSC are obtained by replacing the

f.g. field k|Q by a p -adic field k , i.e., by a finite field extension k|Qp . Finally, in the context of

Grothendieck SC, the t -BSC asserts that any section s ∈ S(πX/ k ) which is t -birationally liftable

originates form a k -rational point x ∈ X(k) as explained above, using the fact that x ∈ X(k)
gives rise canonically to the kt -rational point xt := x×k kt ∈ Xt(kt) of Xt = X×k kt , etc.

Concerning results, conditional/weaker forms of the SC are part of the local theory in an-

abelian geometry by Nakamura [Na], Tamagawa [Ta], Mochizuki [Mz1], see e.g. the survey articles

Faltings [Fa], Szamuely [Sz]. One can say that SC is wide open, and there are only a few com-

plete unconditional results concerning forms of the BSC, precisely: The p -adic BSC is known,

see Koenigsmann [Ko1] for the case of curves and Stix [St1] for higher dimensional varieties. The
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BSC is known for the generic curve Cg over κ(Mg) by Hain [Ha], and second, for the geomet-

rically integral hyperbolic curves over totally real number fields k by Stix [St2]. Finally, very

recently, the t -BSC was proved over all k|Q finitely generated by Bresciani [Be].

To complete this short list of results, recall that the p -adic BSC for curves (for all p ) and higher

dimensional varieties (for p > 2 ) holds under Galois “minimalistic” hypotheses. For instance,

if the p -adic field k contains the pth
roots of unity, then the Z/p -metabelian Galois theory

encodes already the rational points of proper smooth k -varieties. See Pop [P1], [P2] and Lüdtke

[Lu] for details and further more general facts.

The aim of this note is to both generalize the t -BSC in its initial form and define/introduce

and prove “Galois-minimalistic” type results for the t -BSC over quite general base fields k , thus

giving wide generalizations of the t -BSC over k|Q finitely generated.

An application/consequence of the methods developed in this note is the following.

Theorem 1.1 (Generalized t -BSC). Let k be a perfect not ℓ-closed field for some given odd prime
number ℓ ̸= char(k) . Let X be a complete integral normal k -curve, K = k(X) . Then every t -
birationally liftable section s ∈ S(πK/ k ) is defined by a unique k -rational point xs ∈ X(k) in the
way explained above. That is, the t -BSC holds over k .

The above theorem is a relatively easy consequence of Theorem 1.5 below.

Notation 1.2. Let k , k̃|k , e.g. k̃ = k , ℓ and X , K = k(X) be as at Notation/Definition 1.0 above.

We set X̃=X ×k k̃ , K̃ := k̃K= k(Xk̃) and let k̃t := k̃(t) be the rational function field. Define

X̃t=X×k k̃t , K̃t= K̃(t)= k̃t(X̃t) correspondingly. Since K̃|K and K̃t|kt are Galois extensions,

both K |K̃c|K̃a|K̃ |K and Kt |K̃c
c|K̃a

t |K̃t |Kt are Galois extensions of K , respectively Kt .

Remark 1.3. Considering the commutative diagrams below:

π1(Kt) π1(kt) G(K̃c
t |Kt) G(k̃c

t |kt) G(K̃a
t |Kt) G(k̃a

t |kt)

π1(K) π1(k) G(K̃c|K) G(k̃c|k) G(K̃a|K) G(k̃a|k)

pt

qK qk

st

pc
t

qc
K qc

k

sc
t

pa
t

qa
K qa

k

sa
t

p

s

pc

sc

pa

sa

with s ∈ S(πK/ k ) and st ∈ S(πKt/ kt
) being corresponding sections. The following hold:

(†) Every s ∈ S(πK/ k ) gives rise canonically to a section sc : π1(k) → G(K̃c|K) of pc
and

sa : π1(k)→ G(K̃a|K) of pa
as above such that sc

is a lifting of sa
.

(†)t Every st ∈ S(πKt/ kt
) gives rise canonically to a sections sc

t : G(k̃c
t |kt)→ G(K̃c

t |Kt) of pc
t

and sa
t : G(k̃a

t |kt)→ G(K̃a
t |Kt) of pa

t as above such that sc
t is a lifting of sa

t .

(‡) If st ∈ S(πKt/ kt
) is a t -birational lifting of some given s ∈ S(πK/ k ) , then st gives rise

canonically to sections sc
t : G(k̃c

t |kt) → G(K̃c
t |Kt) of pc

t and sa
t : G(k̃a

t |kt) → G(K̃a
t |Kt)

of pa
t which lift sc

and sa
, respectively, i.e., one has the following:

qc
K ◦ sc

t = sc ◦ qc
k and qa

K ◦ sa
t = sa ◦ qa

k .

Definition/Remark 1.4. Let sa : G(k̃a|k)→G(K̃a|K) be a section of pa : G(K̃a|K)→G(k̃a|k) .

1) We say that sa
is k̃|k -a.b.c. liftable, if there is a section sc

of pc
which lifts sa

.
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2) We say that sa
is k̃|k - t -a.b.c. liftable, if there is a section sc

t of pc
t which lifts sa

.

We notice that, in particular, if sa
, sc

and sc
t are sections as above, and prK , prk , prKt

, prkt
are the canonical projections, one has commutative diagrams as follows:

(∗)k̃|k

G(K̃c
t |Kt) G(k̃c

t |kt)

G(K̃c|K) G(k̃c|k)

G(K̃a
t |Kt) G(k̃a

t |kt)

G(K̃a|K) G(k̃a|k)

qc
K

pc
t

prKt

sc
t

qc
k

prkt
pc

prK

sc

qa
K

pa
t

qa
k

sa
t

pa

sa
prk

The above Generalized t -BSC is a consequence of the following deeper fact.

Theorem 1.5 (( k|k -Minimalistic t -BSC). Let k be a perfect and not ℓ -closed field for a fixed
ℓ ̸= char(k) . Let X be a complete integral normal k -curve, K = k(X) , and k̃ = k , thus
G(k̃|k) = π1(k) and K̃ = Kk . Then every k|k - t -a.b.c. liftable section sa : π1(k)→ G(K̃a|K) of
pa : G(K̃a|k)→ π1(k) is defined by a unique k -rational point x ∈ X(k) as explained above.

Remark 1.6. We notice that Theorem 1.5 above implies the Generalized t -BSC above, hence

the t -BSC in the classical context, where k is of finite type over Q . Namely, let s ∈ S(πK/ k )
be given and st : π1(kt) → π1(Kt) be a lifting of s : π1(k) → π1(K) . Let Ks ⊂ K

sep
be

the fixed field of the image s(π1(k)) ⊂ π1(K) , and set Ks = ∪αKα with Kα|K the inductive

system of finite subextensions of Ks|K . Then the normalization Xα → X of X in the finite

field extension Kα|K is a geometrically integral model of Kα|k , and setting Xα,t := Xα ×k kt ,

Kα,t = kt(Xα,t) = Kα(t) , one has: The section s : π1(k) → π1(K) gives rise canonically to

sections sα : π1(k) → π1(Kα) , because s(π1(k)) ⊂ π1(Kα) . Second, if Kst ⊂ K
sep

t is the fixed

field of the image st(π1(kt)) ⊂ π1(Kt) , it follows that Kα,t ⊂ Kst . Hence for every sα , the

section st : π1(kt)→ π1(Kt) gives rise canonically to a lifting sα,t : π1(kt)→ π1(Kα,t) .

To conclude, for every Kα , consider the resulting K̃α := Kαk , and K̃α,t := Kα,tk . Then

the section sα gives rise to a section sa
α : π1(k) → G(K̃a

α|K) of pa
α : G(K̃a

α|K) → π1(k) ,

which by the discussion above, is obviously k|k - t -a.b.c. liftable. Hence by Theorem 1.5 above,

sa
α is defined by a unique closed point unique xα ∈ Xα(k) . On the other hand, if Kα ⊂ Kβ ,

and fβα : Xβ → Xα is the canonical projection, then sorting through the definitions, one has:

x′α = fβα(xβ) ∈ Xα(k) is a k -rational point of Xα which defines the section sα as well. Hence

by the uniqueness of the point xα ∈ Xα(k) , one must have x′α = xα , i.e., fβα(xβ) = xα.
Conclude that the compatible system (xα)α of rational points defines the unique k -rational point

xs ∈ X(k) which defines the t -birationally liftable section s : π1(k)→ π1(K) we started with.

Finally, we present a refinement of the above Theorem 1.5, which is as follows.

Hypothesis. For ℓ ̸= char(k) odd, and k̃|k Galois extension, consider the hypotheses:

4



(H) µℓ ⊂ k̃ and k̃a|k is a infinite Galois extension.

(H0) Setting k̃ := k(µℓ) , the field extension k̃|k satisfies hypothesis (H).

Example 1.7. For an odd prime number ℓ ̸= char(k) , one has the following:

1) If k is not ℓ -closed, i.e., ℓ divides the degree [k : k] , then k|k satisfies hypothesis (H).

2) The hypothesis (H0) is quite general, e.g., the infinite finitely generated fields, and more

general, any Hilbertian field, etc., satisfy hypothesis (H0). And if k satisfies (H0), one has:

(∗) k = ∪α kα inductively, where kα| k are finite Galois extensions with ka
α|k satisfying (H).

3) Suppose that µℓ ⊂ k . Then by mere definition, TFAE:

(i) k satisfies hypothesis (H0). (ii) k×/ℓ is infinite.

Recalling the notions of k̃|k -a.b.c. liftable sections and k̃|k - t -a.b.c. liftable sections, and the

commutative diagram (∗)k̃|k above, consider/define the following:

Definition 1.8. For closed points x ∈ X, set kx := κ(x)∩ k . For the k -valuation vx of K with

Ovx = Ox, let Z̃x ⊂ G(K̃a|K) be the decomposition groups of prolongations ṽ a
x of vx to K̃a.

Let a section sa : G(k̃a|l)→ G(K̃a|K) of pa : G(K̃a|K)→ G(k̃a|k) be given. We say that:

1) A closed point x ∈ X defines sa
if x ∈ X(k) is k -rational, and sa

(G(k̃a|k)) ⊂ Z̃x for some

decomposition group Z̃x ⊂ G(K̃a|K) above vx .

2) A closed point x ∈ X quasi-defines sa
if kx := κ(x) ∩ k̃ = k , and sa

(G(k̃a|k))⊂ Z̃x for

some decomposition group Z̃x⊂G(K̃a|K) above vx .

In particular, for k̃ = k , the notions “defines” and “quasi defines” are identical.

The above k|k -minimalistic t -BSC is a consequence of the following deeper fact.

Theorem 1.9 ( k̃|k -Minimalistic t -BSC). In the above notation, let sa : G(k̃a|k)→ G(K̃a|K)
be a k̃|k - t -a.b.c. liftable section of pa : G(K̃a|K)→G(k̃a|k) . If k̃|k satisfies hypothesis (H), then
the section sa is quasi-defined by a unique closed point xsa ∈ X , i.e., k̃ ∩ κ(xsa) = k .

Corollary 1.10. If k = k , then sa is defined by a unique k -rational point xsa ∈ X(k) . Hence
Theorem 1.9 implies Theorem 1.5 (Minimalistic t -BSC ) , hence Theorem 1.1 (Generalized t -BSC ) .

2. Reviewing facts about recovering valuations

2.1. Basics of valuations theory.
For arbitrary fields Λ , let Val (Λ) be the set of (equivalence classes of) valuations v of Λ .

For v ∈ Val (Λ) , let mv ⊂ Ov be its valuation ideal/ring, Λv = κ(v) = Ov/mv its residue

field, and vΛ = Λ×/O×v the (canonical) value group of v . Recall that Spec(Ov) is a chain w.r.t.

inclusion, and for each m1 ∈ Spec(Ov) , the localization O1 := (Ov)m1 is a valuation ring with

valuation ideal m1 . And if v1 ∈ Val(Λ) is the corresponding valuation, then O1 = Ov1 and

m1 = mv1 . Moreover, the rings O1 ⊂ Λ with Ov ⊂ O1 are the valuation rings of the form

above, i.e., O1 = (Ov)m1 for some m1 ∈ Spec(Ov) and O0 = Ov/m1 ⊂ Λv1 is a valuation

ring on Λv1 with valuation ideal m0 = m/m1 . Thus setting Vv(Λ) := {v1 ∈ Val(Λ) | v1 ⩽ v}
and ROv := {O1 ⊂ F | Ov ⊂ O1}, one has canonical bijections:

Vv(Λ)→ ROv → Spec(Ov), v1 7→ Ov1 7→ mv1 .
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Finally, Val (Λ) carries a natural partial ordering ⩽ defined by the equivalent conditions:

v1 ⩽ v2 iff Ov1 ⊃ Ov2 iff mv1 ⊂ mv2 iff mv1 ⊂ Ov2 .

We say that v1 is a coarsening of v2 , respectively that v2 is a refinement of v1 . In particular,

if v1 ⩽ v2 , then Ov0 := Ov/mv1 is a valuation ring of Λ0 := Ev1 having mv0 = mv2/mv1 as

valuation ideal, and obviously, Λ0v0 = Ov0/mv0 = Ov/mv = Λv . Further, one has a canonical

exact sequence of value groups 1→ v0Λ0 → vΛ → v1Λ → 1 .

If v1 ⩽ v2 , we denote v0 = v2/v1 and call v0 the (valuation theoretical) quotient of v2 by

v1 , and set v1 = v0 ◦ v2 and call v1 the (valuation theoretical) composition of v0 and v1 .

We also recall that v1 ⩽ v gives rise to the projection vΛ = Λ×/O×v ↠ Λ×/O×v1
= v1Λ ,

which is order preserving, thus its kernel is a convex subgroup ∆v of vΛ . And conversely, if

∆ ⩽ vΛ is a convex subgroup, the vΛ → vΛ/∆1 is order preserving, giving rise to a valuation

v∆ ∈ Val(Λ) with v∆ ⩽ v. Conclude that Vv(Λ) is in canonical bijective with the set of convex

subgroups {∆ ⩽ vΛ | convex subgroup} .

Last but not least, for v1, v2 ∈ Val (Λ) there is a well defined valuation v = min(v1, v2) in

Val (Λ) whose valuation ring Ov is characterized as follows: (Ov1)m = Ov = (Ov2)m and

mv = m , where m ∈ Spec(Ov1) ∩ Spec(Ov2) is the unique maximal element w.r.t. inclusion.

Equivalently, m is maximal in Spec(Ov1) ∩ Spec(Ov2) satisfying m∩O×v1
= ∅ = Ov2 ∩m.

Finally, every v ∈ Val (Λ) defines a field topology τv on Λ (in which a basis of open neigh-

borhoods of 0 consists of the non-zero ideals of Ov ). Obviously, for v1, v2 ∈ Val (Λ) one

has that τv1 = τv2 iff v1 and v2 have a common non-trivial coarsening v ⩽ v1, v2 and

if so, τv1 = τv = τv2 . If this is the case, we say that v1, v2 are dependent. Complemen-

tary, we say that v1, v2 are independent, if τv1 ̸= τv2 , or equivalently, the diagonal embedding

Λ → (Λ, τv1) × (Λ, τv2) has a dense image. Notice that for v1, v2 ∈ Val (Λ) , and Uvi ⊂ Λ
non-empty vi -open, i = 1, 2 , the following are equivalent:

(i) v1 , v2 are independent; (ii) Uv1−Uv2 = Λ ; (iii) Λ× ⊂ Uv1 ·Uv2 .

Fact 2.1. In general, given v1, v2 ∈ Val(Λ) and v := min(v1, v2) , set Uvi = 1 +mvi , i = 1, 2
and Uv = 1 +mv. The following hold:

1) If v1 ⩽ v2 , one has Uv1·Uv2 = Uv2, Ov1· Ov2 = Ov1, Uv2−Uv1 = mv2 .
2) If v < v1, v2 strictly, then Uv1·Uv2 = O×v = O×v1

· O×v2
, Uv1−Uv2 = Ov = Ov1 −Ov2 .

Proof. The assertions from 1) follow by mere definition.

To 2): By mere definitions, the quotient valuations vi = vi/v , on the residue field Λv are

independent. Hence setting Uvi := 1 + mv , i = 1, 2 one has that Λv× = Uv1· Uv2 by the

discussion above. Further, the canonical exact sequence

(∗) 1→ Uv → O×v
π−→ Λv× → 1

defines exact sequences 1→ Uv → Uvi → Uvi → 1 , thus an subsequence of (∗) above:

(∗∗) 1→ Uv ↪→ Uv1 ·Uv2 ↠ Uv1 ·Uv2 → 1 ,

in which the the first map is injective, and the second one is surjective. On the other hand, sine

v1, v2 are independent on Λv , one has Λv× = Uv1 ·Uv2 . Hence since Uv1 ·Uv2 ⊂ O×v and

ker(π) = Uv , we conclude that (∗∗) is exact, implying finally Uv1 ·Uv2 = O×v .

The proof of the assertion Uv1−Uv2 = Ov is similar, being the additive variant. □
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Canonical v -valuation. Let Ω |Λ be an arbitrary field extension and w ∈ Val(Ω) and

v ∈ Val(Λ) satisfy wΛ := w|Ω ⩾ v. Equivalently, by general valuation theory, one has:

Ow ∩ Λ = OwΛ ⊂ Ov, (1 +mv) ∩ Λ = 1 +mwΛ ⊃ 1 +mv, etc.

In particular, by the above discussion about coarsening, Ov = (OwΛ)m is the localization of

OwΛ with respect to its prime ideal mv ∈ Spec(OwΛ). Equivalently, setting ΣwΛ := OwΛ\mv ,

one has that ΣwΛ is a multiplicative system in OwΛ defining Ov as follows:

Ov = (OwΛ)mv = Σ−1
wΛ
OwΛ .

Lemma 2.2. O0 = Σ−1
wΛ
Ow ⊂ Ω is a valuation ring with valuation w0 satisfying w0|Λ = v.

Proof. Indeed, O0∩ Λ = { a
r ∈ N | a ∈ Ow, r ∈ ΣwΛ} and we have to prove that O0∩ Λ = Ov.

For the direct inclusion, let x = a
r ∈ Λ with a ∈ Ow , r ∈ ΣwΛ . Then a = rx ∈ Λ , thus

concluding that a ∈ Ow ∩ Λ = OwΛ ⊂ Ov. Thus finally, x = a
r ∈ Σ−1

wΛ
= Ov. The converse

implication is clear, because Ov = Σ−1
wΛ
OwΛ ⊂ Σ−1

wΛ
Ow = O0 and OwΛ = Ow ∩ Λ. □

Let m1 ∈ Spec(Ow0) ⊂ Spec(Ow) be the (unique) prime ideal which is minimal satisfying

m1 ∩ Λ ⊃ mv. Then one has mv ⊂ m1 ∩ Λ ⊂ mw0 ∩ Λ = mv , thus m1 ∩ Λ = mv. Hence we

conclude that the valuation wv of the valuation ring O1 = (O0)m1 satisfies wv|Λ = v.

Definition 2.3. In the above notation and context, wv is the canonical v -valuation of Ω . Thus

wv is unique minimal with wv ⩽ w , wv|Λ = v , that is, Owv ∩ Λ = Ov , mwv ∩ Λ = mv.

Finally, let (Ω ′, w′ | (Ω , w) and (Λ′, v′) | (Λ, v) be algebraic extensions of valued fields such

that Λ′ ⊂ Ω ′ and w′ ⩾ v′, thus obviously, w = w′|Λ ⩾ v′|Λ = v. For short, we denote this

situation by (Ω ′|Λ′, w′|v′)
∣∣(Ω |Λ, w|v). Obviously, w′ ⩾ v for the field extension Ω ′|Λ.

We conclude this discussion with the following (obvious) facts.

Fact 2.4. In the above notation, the following hold:
1) O×wv ∩ Λ = O×v and (1 +mwv) ∩ Λ = 1 +mv.
2) Let (Ω ′|Λ′, w′|v′)

∣∣(Ω |Λ, v|v) be as above, thus w′ ⩾ v for the field extension Ω ′|Λ.
Then w′v = w′v′ and w′v|Ω = wv = w′v′ |Ω.

Proof. Assertion 1) follows by mere definitions, etc. For assertion 2), recall that for any valuations

w̃′ of Ω ′ and ṽ′|ṽ of the algebraic extension Λ′|Λ one has: w̃′|Λ ′ = v′ iff w̃′|Λ = v , etc. □

2.2. Basics of Hilbert decomposition theory, especially in G a
F .

Let F′|E be an algebraic field extension, v ∈ Val E be a fixed valaution, and Vv(F′) be the

set of prolongations w′|v of v to F|E. Recall that Valv(F′) is a profinite topological space in

the patch topology,
1

and moreover, if F′|E is normal algebraic, the profinite group G(F′|E) :=
AutE(F′) acts transitively and continuously on Vv(F′) via (w′, g) 7→ w′g := w′ ◦ g−1=: w′′.
And if Tw′|v◁Zw′|v are the inertia/decomposition groups of w′|v , then Tw′′|v= g Tw′|v g−1

and

Zw′′|v= g Zw′|v g−1
, and for any w′ ∈ Vv(F′) fixed have:

Vv(F′) = G(F′|E)· w′ ∼= Zw′|v\G(F′|E) as G(F′|E) -spaces, canonically.

1
Actually, Valv(F′) endowed with the patch topology is a profinite space even if F′|E is not algebraic.
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Further, the residue field extension F′w′|Ev is a normal extension, and setting Gw′|v := AutEv(F′w′) ,

one has the canonical exact sequence 1→ Tw′|v → Zw′|v → Gw′|v → 1 .

Next let v1 < v in Val (E) . There is a prolongation w′1|v1 of v1 to F′|E such that w′1 < w′ .
Further, for any such w′1|v1 the following hold: First, Zw′|v ⊂ Zw′1|v1

and both Tw′1|v1
◁ Tw′|v

and Tw′1|v1
◁ Zw′|v . Second, w′0 := w′/w′1 prolongs v0 := v/v1 to F′w′, and via the canonical

exact sequence 1→ Tw′1|v1
−→ Zw′1|v1

π−→Gw′1|v1
→ 1 the following hold:

Zw′0|v0
= π(Zw′|v) = Zw′|v/Tw′1|v1

and Tw′0|v0
= π(Tw′|v) = Tw′|v/Tw′1|v1

,

giving rise to a commutative diagram exact sequences of the form:

(†)
1 → Tw′1|v1

−→ Zw′1|v1

π−→ Gw′1|v1
→ 1

|| ↑ ↑
1 → Tw′1|v1

−→ Zw′|v
π−→ Zw′0|v0

→ 1 .

Finally, recall that if w′|v is tame, i.e., Tw′|v has order prime to char(Ev) , one has that Tw′|v
is abelian, precisely, Tw′|v = Hom(w′F′/vE, µF′w′) with µF′w′ ⊂ F′w′ the group of roots of

unity in F′w′ . Further, the conjugation action of Zw′|v on Tw′|v factors Zw′|v ↠ Gw′|v , and

Gw′|v acts on Tw′|v = Hom(w′F′/vE, µF′w′) via the cyclotomic character of Gw′|v .

This being said, let ℓ > 2 be a prime number fixed throughout the remaining of this section,

and F|E be a Galois field extension with char(E) ̸= ℓ and µℓ ⊂ F . Let Fc|Fa|F be the (max-

imal) Z/ℓ abelian-by-central, respectively the (maximal) Z/ℓ elementary abelian, extensions

of F , and for the corresponding exact sequence of Galois groups

1→ ∆F := G(Fc|Fa)→ G c
F := G(Fc|F)→ G a

F := G(Fa|F)→ 1,

denote G c
F ∋ σ̃ 7→ σ̃|Fa =: σ ∈ G a

F the corresponding projection. Recall that by Kummer Theory,

one has that G a
F = Hom(F×, µℓ) , and ∆F is the maximal Z/ℓ elementary abelian quotient of

the absolute Galois group GFa on which G a
F acts trivially. Via Kummer Theory, one obtains

Fc|F as follows: G a
F acts canonically on Fa×/ℓ , and let A := (Fa×/ℓ)G

a
F be the subgroup of

invariants; that is, u ∈ Fa
lies in A iff ∀ σ ∈ G a

F ∃ rσ ∈ Fa
such that σ(u) = urℓσ . Then one

has Fc = Fa[ ℓ
√

A] . From this discussion immediately follows the following.

Basic Fact. Fc|E and Fa|E are Galois extensions of E .

One has the following basic facts (well known to experts, but I cannot give a precise reference).

Fact 2.5. Let F be a arbitrary field with µℓ ⊂ F if char(F) ̸= ℓ . For a valuation w ∈ Val (F) ,
let wa|w be a prolongation of w to Fa|F , and Fh be the Henselization. The following hold:

1) The compositum FhFa equals the maximal ℓ -elementary abelian extension (Fh)a of Fh .
2) The separable part of Fawa|Fw is the maximal ℓ -abelian extension of Fw .

Proof. We prove the assertion along the following two reductions steps:

Step 1. The valuation w has finite rank one. In particular, F is dense in Fh
.

Case a). ℓ = char(F) . Then the ℓ -elementary abelian extension of both F and Fh
are are

composita of ℓ -cyclic extensions, all of which being Artin-Schreier extensions. Let Fh(x′)|Fh

with x′ℓ − x′ = a′ , a′ ∈ Fh
by such an extension. Since v has rank 1 , hence F is dense in Fh

,
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one can choose a ∈ F such that vh(a′− a) > 0 . Then setting a′′ = a′− a ∈ Fh
, or equivalently,

a′ = a′′ + a , one has: First, the Artin-Schreier equation Tℓ − T = a′′ has a solution in x′′ ∈ Fh

(because v(a′′) > 0 ). Second, x′ is a solution of Tℓ− T = a′′+ a (by the additivity of Tℓ− T ).

Hence we conclude that Fh(x′) ⊂ Fh(x′′ + x) ⊂ FhFa
.

Similarly, if Tℓ − T = a is an Artin-Schreier equations over Fw , and a ∈ Ow is a represen-

tative of a ∈ Fw and x is a solution of the equation Tℓ − T = a , it follows that the reduction

x of x is a root of Tℓ − T = a .

Case b). ℓ ̸= char(Fw) . Proceed as above, but using Kummer type equations Uℓ = a , etc.

Case c). char(F) = 0 , char(Fw) = ℓ . Assertion 1) follows in the same way as in Case b).

For assertion 2), recall that π := ζℓ− 1 with ζℓ ∈ µℓ primitive satisfies: ℓ = πℓ−1ϵ over Z[µℓ]
with ϵ ∈ 1 + πZ[µℓ] ⊂ O×v a principal v -unit. Then the Kummer equation (U + 1)ℓ = b has

roots u ∈ Fa
for each b ∈ F , and can rewritten as follows: uℓ + ∑ℓ>i>0 (

ℓ
i)u

i + 1 = b , thus

diving by πℓ = ℓπϵ and setting u = tπ , the equation satisfied by t is:

(u) Tℓ + ϵ−1 ∑ℓ>i>0
1
ℓ (

ℓ
i)π

i−1Ti = (b− 1)/πℓ .

In particular, choosing b ∈ F such that a = (b − 1)/πℓ
, i.e., b = πℓa + 1 , it follows that

the displayed equation (u) above specializes to Tℓ − T = a . That is, if u ∈ Fa
is a satisfies

(u + 1)ℓ = b , then t = u/π is specializes to a solution of Tℓ − T = a .

Step 2. The valuation w has finite rank d = rk(v) = Kr. dim(Ov) < ∞ . We make induction

on d . Namely, let w1 ⩽ w be the minimal non-trivial coarsening of w , and w0 = w/w1 the

resulting valuation of the residue field F0 = Fw1 . Then w1 has rank one and w0 has rank

d− 1 < d . Hence by the induction hypothesis and Step 1, the assertions 1), 2) hold for both w1
and w0 . From this instantly follows the same for w ( by the fuctoriality of Hilbert Decomposition

for valuations).

Step 3. Let F = ∪αFα be the inductive union of its finitely generated subfields with µℓ ⊂ Fα

provided char(F) ̸= ℓ . Then considering Fa
α |Fα , it follows that Fa = ∪αFa

α and the extension

of valued fields Fa|F, wa|w is the inductive limit of the system of valued fields Fa
α |Fα, wa

α|wα .

And since Fh = ∪αFh
α and Fawa = ∪αFa

α wa
α , by mere definitions one has that assertions 1), 2)

from the Fact hold iff they hold for each Fa
α |Fα endowed with wa

α|wα .

On the other hand, since Fα is finitely generated, the valuation wα has finite rank (bounded by

the Krull dimension of Fα ). Hence assertions 1), 2) hold for each Fa|F, wa|w by the discussion

at Step 1. Hence conclude that assertions 1), 2) hold for Fa|F, wa|w . □

Recall that via the canonical exact sequence 1 → G a
F

ı−→G(Fa|E) π−→G(F|E) → 1 the

group G(F|E) acts canonically (by “conjugation”) on subsets Σ of the three groups above by

g(Σ) := g Σ g−1
for g ∈ G(F|E) and Σ ⊂ G(Fa|F), G(Fa|E), G(F|E) ,

compatibly with the morphisms ı,π . We fix the above notation for this action throughout.

Let V ⊂ Val (E) be a non-empty set. For v ∈ V , let wa|w|v be the prolongations of v ∈ V
to Fa|F|E , and Vv(F) ⊂ V(F) denote the prolongations of v ∈ V and of V to F . And to fix

notation, recall that G(F|E) acts on Vv(F) by g(w) := w ◦ g−1 =: wg.

By Hilbert decomposition theory for valuations, one has: Since G(Fa|F) is abelian, it follows

that Ta
w := Twa|w ⩽ Zwa|w =: Za

w and Twa|v ⩽ Zwa|v depend on w only and not on the concrete

prolongation wa|w . And for w ∈ Vv(F) , g ∈ G(F|E) one has:
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Za
g(w) = g Za

w g−1 = g(Za
w) and Zg(w)|v = g Zw|v g−1 = g(Zw|v) .

Further, one has a canonical projection of topological G(F|E) -spaces:

Z a
v(F) := {Za

w|w ∈ Vv(F)} → {Zw|v|w ∈ Vv(F)} =: Zv(F) , Za
w 7→ Zw|v .

Definition/Remark 2.6. In the above context and notation consider/define:

1) If Za
w ̸= 1 for some w ∈ Vv(F) , hence Za

w′ ̸= 1 for all w′ ∈ Vv(F) , and indicate this by

writing Z a
v(F) ̸= 1 . And if Z a

v(F) ̸= 1 for all v ∈ V , we write Z a
V (F) ̸= 1 .

2) We say that v ∈ V equals its F - ℓ -abelian core if for any proper coarsening v1 < v , the

valuations wa
1 ∈ Valv1(Fa) satisfy: The separable part of Fawa

1 | Fw1 is non-trivial.
Further, we say that V equals its F - ℓ -abelian core if each v ∈ V does so. For instance,

this is the case is all v ∈ V have rank one and Fa ̸= F .

• We notice that for every v ∈ Val (F) there is a valuation v0 ∈ Val (F) which is maximal

with the properties: v0 ⩽ v and v0
equals it F - ℓ -abelian core.

Let V be as above in Definition/Remark 2.6, and v1, v2 ∈ Val (E) be given, and wa
i |wi|vi be

prolongations of vi to Fa|F|E , i = 1, 2 . Setting v = min(v1, v2) and w = min(w1, w2) , it

follows that w|v prolongs v to F|E , and setting vi := vi/v , wi := wi/w , wa
i := wa

i /w , one

has: wa
i |wi|vi prolong vi to Fawa

i |Fwi|Evi and further, vi = vi ◦ v , wi = wi ◦w, wa
i = wa

i ◦wa

for i = 1, 2 . And one has a commutative diagram of exact sequences:

(‡)
1 → Twa|v −→ Zwa|v

π−→ Gwa|v → 1∣∣∣∣ ↑ ↑
1 → Twa|v −→ Zwa

i |vi
π−→ Zwa

i |vi
→ 1, i = 1, 2

Fact 2.7. In the above notation, suppose that V equals its F - ℓ -abelian core, Z a
V (F) ̸= 1 , and any

two distinct valuations v1, v2 ∈ V are not comparable. Then for any valuations v, v1, v2 ∈ V and
w ∈ Vv(F) , wi ∈ Vvi(F) , wa

i ∈ Vvi(Fa) , i = 1, 2 , the following hold:
1) Suppose that w1, w2 are not comparable, and set w := min(w1, w2) < w1, w2 . Then one has

that Zwa
1|w1
∩ Zwa

2|w2
= Twa|w , and in particular, Zwa

1|w1
̸= Zwa

2|w2
. Therefore,

Vv(F)→ Z a
v(F) , w 7→ Za

w is an isomorphism of topological G(F|E) -spaces.

2) For g ∈ G(F|E) one has: g ∈ Zw|v iff g(Za
w) = Za

w.

Hence items 1), 2) above give a group theoretical recipe to recover the G(F|E) -space isomorphism

V(F)→ ZZV (F|E) :=
{
(Za

w, Zw|v0
) | v ∈ V(E), w ∈ Vv(F)

}
, w 7→ (Za

w, Zw|v)

from G(Fa|E)→ G(F|E) endowed with Z a
V (F) .

Proof. We begin by proving the Lemma below, in which v1, v2 are abitrary valuations.

Lemma 2.8. Let N be a field with µℓ ⊂ N provided ℓ ̸= char(N) and G a
N := G(Na|N) be the

Galois group of the maximal ℓ -elementary abelian extension Na|N. If vi ∈ Val (N), i = 1, 2 are
independent valuations, their decomposition groups Za

vi
⊂ G a

N satisfy Za
v1
∩ Za

v2
= 1.

Proof of Lemma. Set Ui = 1 +mvi , i = 1, 2 . We analyze separately the cases:

Case 1. char(N) ̸= ℓ . By Hensel Lemma, for all ui ∈ Ui , i = 1, 2 one has: Tℓ − ui ∈ N[T]
splits in linear factors over the Henselization of N with respect to vi . Therefore, vi is totally
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split in Ni := N[ ℓ
√

Ui] , and equivalently, Ni is contained in the fixed field of Za
vi
⊂ G a

N in Na.
On the other hand, since v1, v2 are independent, one has U1 ·U2 = N×, hence Na = N1N2 .

Conclude by Kummer theory that Za
v1
∩ Za

v2
= 1 .

Case 2. char(N) = ℓ . By Hensel Lemma, for all ui ∈ mi , i = 1, 2 the Artin–Schreier

polynomial Tℓ − T − ui ∈ N[T] splits in linear factors over the Henselization of N w.r.t. vi .

Hence Ni := N[℘−1(mi)] is contained in the fixed field of Za
vi
⊂ G a

N in Na. On the other

hand, since v1, v2 are independent, one has mv1 +mv2 = N , hence Na = N1N2 . Conclude by

Artin–Schreier theory that Za
v1
∩ Za

v2
= 1 .

This concludes the proof of Lemma 2.8. Returning to the proof of Fact 2.7, proceed as follows.

To 1): Since w1, w2 are not comparable, one has w < w1, w2 strictly, and wi = wi/w are

two independent valuations on the residue field Fw . Further, by Fact 2.5, Fawa|Fw is the max-

imal ℓ -elementary abelian extension of Fw , hence Gwa|w := G(Fawa|Fw) = G
(
(Fw)a|Fw

)
.

Further, by the commutative diagram (‡) above, Zwa
i |wi

= Zwa
i |wi

/Twa|w ⊂ Gwa|w is the decom-

position group of wa
i |wi in Gwa|w = G

(
(Fw)a|Fw

)
for i = 1, 2 . In particular, since w1, w2 are

independent valuations of Fw , it follows that by Lemma 2.8 above that Zwa
1|w1
∩ Zwa

2|w2
= 1 .

Hence since Twa|w = ker(Zwa
i |wi
→ Zwa

i |wi
), finally get Zwa

1|w1
∩ Zwa

2|w2
= Twa|w.

To 2): By mere definitions one has that σ ∈ Zw|v iff wσ = w . First, for the direct implication,

if σ ∈ Zw|v , then w = wσ
, thus Za

w = Za
w σ = σ(Za

w). For the converse implication, suppose

that w1 := w ̸= wσ =: w2 . Then by assertion 1) above one has Za
w1
̸= Za

w1
, that is Za

w ̸= Za
wσ .

Finally, the last assertion is an immediate consequence of the discussion above. □

2.3. Commuting liftability. See Topaz [To1] (and Pop[P1], section 3) for more details.

Let F be a field with char(F) ̸= ℓ , µℓ ⊂ F , and Fa|F be the maximal Z/ℓ elementary

abelian extension. For a valuation w of F , set FD := F[ ℓ
√

1 +mw ] , FI := F[ ℓ
√
O×w ] . The

groups Iw ⩽ Dw below are called the minimized inertia and decomposition groups of w :

Iw := G(Fa|FI) = Hom(F×/O×w , µℓ) ⩽ Hom
(

F×/(1 +mw), µℓ

)
= G(Fa|FD) =: Dw.

We notice that the minimized inertia/decomposition groups behave under valued field exten-

sion as follows. Let (F, w) | (N,w) is an extension of valued fields, µℓ ⊂ N , thus O×w = O×w ∩N
and 1 +mw = (1 +mw) ∩ N. Then by mere definitions one has:

Fact 2.9 (Functoriality). The canonical projection pa : G a
F → G a

N gives rise canonically to em-
beddings pa(Iw) ⊂ Iw and pa(Dw) ⊂ Dw . Moreover, if F and Na are linearly disjoint over N ,
i.e., F ∩ Na = N , then pa(Iw) = Iw and pa(Dw) = Dw.

Fact 2.10. In the above notation, the following hold:
1) Iw ∼= Hom(wF/ℓ, µℓ) and Dw/Iw ∼= Hom(Fw×/ℓ, µℓ) . Hence one has:

Iw = 1 iff wF is ℓ -divisible, and Iw = Dw iff Fw× is ℓ -divisible.
2) If char(Fw) ̸= ℓ , then Ta

w= Iv ⊂ Dw= Za
w . Further, (Fw)a= Fawa, thus G a

Fw = Za
w/Ta

w .
3) If char(Fw)= ℓ , then Iw⊂Ta

w and Dw⊂Za
w .

Proof. Everything follows by mere definitions, Pontryagin duality, and Kummer theory from the

exact sequences 1→ O×w → F×→ wF → 0 and 1→ (1 +mw)→ O×w → Fw× → 1 . □
11



In the above notation, for σ ∈ G a
F , let σ̃ ∈ G c

F denote preimages of σ , and for Σ ⊂ G a
F , let

Σ̃ ⊂ G c
F denote the preimage of Σ . Recall the following canonical maps in this context:

- The bilinear map ψ : G a
F × G a

F → ∆F , defined by (σ, τ) 7→ [σ̃, τ̃] .

- The linear map β : G a
F → ∆F , σ 7→ σβ := σ̃ℓ

.

Definition/Remarks 2.11. We next recall basics about commuting liftability, see Topaz [To1] for

details. First σ, τ ∈ G a
F are called independent, if ⟨σ, τ⟩ ∼= (Z/ℓ)2

. We say that / define:

1) Independent σ, τ are commuting liftable (c.l.) if σ, τ satisfy the equivalent conditions:

(i) ∃ σ̃, τ̃ such that [σ̃, τ̃] ∈ ⟨σβ, τβ⟩ ; (ii) ∀ σ̃, τ̃ one has [σ̃, τ̃] ∈ ⟨ σ̃ β, τ̃ β⟩ .
2) An independent pair σ, τ ∈ G a

F is called c.l. pair, if σ, τ satisfy the equivalent conditions:

(i) ∃ σ̃, τ̃ such that [σ̃, τ̃] ∈ ⟨σβ⟩ ; (ii) ∀ σ̃, τ̃ one has [σ̃, τ̃] ∈ ⟨ σ̃ β⟩ .
Note the following: Let σ, τ ∈ G a

F be independent and c.l. Then the following hold:

a) If σ1, τ1 ∈ ⟨σ, τ⟩ are independent, then ⟨σ, τ⟩ = ⟨σ1, τ1⟩ , and σ1, τ1 is c.l.

b) There exists 1 ̸= σ1 ∈ ⟨σ, τ⟩ such that [σ1, τ1] ∈ ⟨σ
β
1 ⟩ for all τ1 ∈ ⟨σ, τ⟩ .

c) For k ∈ Z with (k, ℓ) = 1 one has: σk, τk
are c.l. (pair, provided σ, τ is c.l. pair).

d) One has: σ, τ and τ, σ are both c.l. pairs if and only if [σ̃, τ̃] = 1 .

3) Subgroups I⩽D of G a
F is a c.l. (group) pair, if I ̸= 1 , D is non-cyclic, and all independent

pairs σ, τ with σ ∈ I , τ ∈ D define c.l. pairs.

In particular, if σ, τ ∈ I are independent, then by item d) above, one has that [σ̃, τ̃] = 1 .

Note that if σ, τ ∈ G a
F define a c.l. pair, then in the notation from 2), b) above, one has:

I := ⟨σ1⟩ ⩽ ⟨σ, τ⟩ := D is c.l. pair .

4) For I⩽D c.l. pair, the following hold:

a) There exists a unique maximal ID ⊂ G a
F such that ID⩽DID is c.l. pair, hence I ⊂ ID .

b) There exists a unique maximal DI ⊂ G a
F such that I⩽DI is c.l. pair, hence D ⊂ DI .

• Finally, a c.l. pair I⩽D is called maximal, if I = ID , D = DI . We notice the following:

Starting with a c.l. pair I ⩽ D , one has: ID⩽DID and IDI⩽DI are maximal.

5) Let ϕa ∈ Aut(G a
F ) be the automorphism which lifts to an automorphism ϕc ∈ Aut(G c

F ).
Then for every pair of subgroups I ⊂ D ⊂ G a

F one has:

a) I⩽D is a maximal c.l. pair in G a
F iff ϕ(I⩽D) :=

(
ϕ(I)⩽ϕ(D)

)
is so.

b) If I⩽D is a maximal c.l. pair, then ϕ(I⩽D) = (I⩽D) iff ϕ(I) = I iff ϕ(D) = D.
(Indeed, I⩽D is a maximal c.l. pair iff ϕ(I)⩽ϕ(D) is a maximal c.l. pair, etc.)

The essential property of commuting liftability is that it is related in an intimate way to (arith-

metically significant) valuations of F , see Theorem 2.15 below. But first recall the following basic

fact, see e.g. the discussion in Pop [P1], Section 3, and Topaz [To1] for details:

Fact 2.12. In the above notation, suppose that wF not ℓ -divisible, and F×/(1 +mw) non-cyclic,
or equivalently, Iw ̸= 1 and Dw non-cyclic. The following hold:

1) Iw⩽Dw is c.l., hence Iw⩽ IDw and Dw⩽DIw .
2) Moreover, if w has rank one, then IDw⩽Dw is a maximal c.l. pair. In particular, in this case,

every group automorphism of Dw defined by some σ ∈ G a
F maps IDw into itself.
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By work of Ware, Jacob, Arason–Elman–Jacob, Bogomolov, Koenigsmann, Bogomolov–

Tschinkel, culminating with contributions of Topaz, [To1], where more literature can be found,

one has the following fundamental facts. Recall that the set of (equivalence classes of) valuations

of F is partially ordered by w1 ⩽ w2 if the following equivalent conditions are satisfied:

(i) Ow1 ⊃ Ow2 ; (i)
′ mw1 ⊂ mw2 ; (ii) O×w1

⊃ O×w2
; (ii)

′ 1 +mw1 ⊂ 1 +mw2 .

Equivalently, the kernel ∆w2/w1 := ker
(
w2F = F×/O×w2

↠ F×/O×w1
= w1F

)
is a convex sub-

group of w1F, which is equals actually value group of w0 = w2/w1 ∈ Val (Fw1). In particular,

one has the following obvious facts on the behavior of reduced inertia/decomposition groups:

Fact 2.13. In the above context, let w1 ⩽ w2 be as above. Then Iw1 ⊂ Iw2 and Dw1 ⊃ Dw2 .

Notations/Remark 2.14 (cf. Topaz [To1], §1.2 for some details). In the above context, consider

the following:

1) Let WF be the set of valuations w ∈ Val (F) which for all w1 ∈ Val(F) satisfy:

(i) Let w1 < w strictly. Then the value group of w/w1 is not ℓ -divisible, i.e., Iw/w1 ̸= 1 .

(ii) Let w < w2 strictly. Then Dw2 = Dw implies Iw2 = Iw, i.e., Iw2/w = 1 .

• Notice that every w ∈ WF equals its F - ℓ -abelian core. Indeed, if w ∈ WF and w1 < w
strictly, then Iw/w1 ̸= 1 , implying that Faw1|Fw1 is not purely inseparable.

2) Let PF be the set of maximal c.l. pairs I ⩽ D in G a
F with I ̸= 1, D not cyclic, and denote:

IF := {I ⊂ G a
F | ∃ I⩽D in DF}, DF := {D ⊂ G a

F | ∃ I⩽D in DF}.
• Notice that given I ⩽ D in PF, each I and D individually determine the c.l. pair I⩽D.

Indeed, by by Definition/Remarks 2.11, 4), one has both D = DI and I = ID.
• In particular, both projection maps PF → IF,DF , I⩽D 7→ I, D are bijective.

Theorem 2.15 (cf. Topaz [To1], Thm 1, (1) & Thm 6, for N = n = 1 =R(1)). The following
hold:

1) For w in WF, there is I⩽D in PF such that D = Dw , 1 ̸= Iw ⊂ I , and if so, I/Iw is
cyclic. Moreover, if Fw×/ℓ is not cyclic, then D = Dw , I = Iw .

2) For I⩽D in PF, there is w ∈ WF satisfying the condition from 1) above.

Remark 2.16. Note that in Theorem 2.15 above, both w in WF and I ⩽ D in PF are unique
corresponding to each other. Notation: w⇝ (I⩽D)w ⇝ Iw, Dw, resp. I⩽D ⇝ I, D ⇝ wI, wD.

Uniqueness of I⩽D : Let w ⇝ Ii⩽Di , i = 1, 2 . Then Di = Dw and Ii⩽Dw , i = 1, 2 are

both c.l. pairs, hence so is I1 I2⩽Dw . And Ii⩽Dw being maximal implies I1 = I1 I2 = I2 .

Uniqueness of w : By contradiction, let (I⩽D) ⇝ w1, w2, w1 ̸= w2. Then Dwi = D ,

Iwi ⊂ I , and w1, w2 are not comparable by Notations/Remark 2.14, 1). Set w0 = min(w1, w2) ,

hence and wi = wi/w0 are non-trivial. Thus letting π : Za
w0
→ Gwa

0|w0
be the canonical

projection, one has 1 ̸= Iwi = Iwi /Iw0 = π(Iwi), i = 1, 2. On the other hand, one has

1 ̸= Iwi ⊂ π(I) ⊂ π(D) = Dwi ⊂ Za
wi
⊂ Gwa

0|w0
, hence 1 ̸= π(I) ⊂ Za

w1
∩ Za

w2
.

Since w1, w2 are independent, this is a contradiction by Fact 2.7.

2.4. Commuting liftability and Galois action. In the above context, let F|E be a Galois ex-

tension with µℓ ⊂ F and Galois group G(F|E) . Recall that G(F|E) acts on WF by g(w) =
w ◦ g−1

, g ∈ G(F|E) and on the spaces PF,DF, IF by conjugation g(I⩽D) =
(

g(I)⩽g(D)
)
.
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Further, the G(F|E)-actions are compatible with the previous constructions and introduced ob-

jects in the following sense:

- If g(w) = w, then g
(

Iw⩽Dw

)
=

(
g(Iw)⩽g(Dw)

)
and g

(
IDw⩽Dw

)
=

(
g(IDw)⩽g(Dw)

)
.

- If I⩽D ⇝ w, then g(I⩽D
)
=

(
g(I)⩽g(D)

)
⇝ g(w).

Further, by mere definitions one has that Dw ◁ Zwa|v and Iw, IDw ◁ Zwa|v. In particular, there is

a unique maximal (normal) subgroup Dw|v ◁ Zwa|v satisfying the following two conditions:

(i) Dw|v ∩ Za
w = Dw ; (ii) Dw|v/Dw = Zw|v .

And obviously, Iw, IDw ◁ Dw|v and Dw|v fits in the exact sequence

1→ Dw → Dw|v → Zw|v → 1 ,

which is in an obvious way a subsequence of 1 → Za
w → Zwa|v → Zw|v → 1 . Further, if

char(Fw) ̸= ℓ, then Dw|v = Zwa|v and Dw = Za
w, Iw = Ta

w.

Definition/Notations 2.17. In the above notation, we define and consider notation as follows:

1) We say that Dw|v is the (relative) minimized decomposition group of wa|v in Fa|E.
2) Recalling Remark/Notation 2.14, we denote:

a) WF|E :=
{

w|v
∣∣ w ∈ WF, v = w|E

}
.

b) DF|E :=
{

Dw|v ⊂ G(Fa|E)
∣∣ w|v ∈ WF|E}.

In the above notation and context, let F′|F|E be Galois extensions with F′|F finite and µℓ ⊂ F,
and pr : G(F′|E) → G(F|E) be the projection of Galois groups. For I⩽D from PF and

I⩽D ⇝ w ∈ WF relating to each other as in Theorem 2.15, set v := w|E, thus w|v ∈ WF|E,
and let w′|w be a prolongation of w to F′′|F.

Proposition 2.18. In the above notation, the following hold:
1) (Fact 2.7 revisited). For g ∈ G(F|E) and I⩽D ⇝ w|v⇝ Dw|v , the following hold:

g(I)= I iff g(D)=D iff g(Dw|v)=Dw|v iff g(Za
w)=Za

w iff g(w)=w iff g∈Zw|v.

2) (Galois action). WF, WF|E, DF|E, PF, DF, IF are G(F|E) -spaces, and the maps

WF →WF|E → DF|E → PF → DF, IF w 7→ w|v 7→ Dw|v 7→ ID⩽D 7→ ID, D

are G(F|E) -isomorphisms, where the last two projections are as defined in Remark/Notation 2.14, 2).

Proof. To 1): First, I⩽D ∈ PF and w ∈ WF relate to each other iff D = Dw and I = IDw . Next,

by Remark 2.16, since w ∈ WF equals its F - ℓ -abelian core, the last three equivalences follow

from Fact 2.7. Further, g(w) = w iff g(O×w ) = O×w iff g(1 +mw) = 1 +mw . Hence by the

definitions of Iw ⊂ Dw and Kummer theory one has: g(w) = w ⇒ g(FI) = FI, g(FD) = FD,
and therefore, g(w) = w ⇒ g(Iw) = Iw, g(Dw) = Dw. And further, by mere definitions,

this implies g(IDw) = IDw . Hence it is left to show that g(I) = I and/or g(D) = D implies

g(w) = w . First, since both I and D individually define I⩽D uniquely, it is sufficient to prove

one of the assertions, e.g., that g(I) = I implies g(w) = w . This is more-or-less a reformulation

of the last part of the proof of the Remark 2.16 above, along the following lines: First, we notice

that WF is invariant under automorphisms of F (by mere definitions). Hence w1 := w ∈ WF
iff w2 := g(w) ∈ WF . And if so, by mere definitions on has Dw2 = g(D) = D = Dw1 , hence

IDw2
= g(I) = I = IDw1

. Conclude that w2 = w1 by arguing as at the end of Remark 2.16.
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To 2): Recall that by Remark 2.16, for I ∈ IF given, there is a unique D ⊂ G a
F with I⩽D

in PF . Hence the stabilizer StG(F|E(I) of I in G(F|E) stabilizes D, i.e., stabilizes I ⩽ D .

Since w ∈ WF with D = Dw is unique, we conclude: StG(F|E(I) = StG(F|E)(w) = Zw|v for

the unique w|v ∈ WF|E with Dw = D , Iw ⊂ I and I/Iw cyclic. Similarly, starting with

w|v ∈ WF|E and setting D = Dw|v ∩ G a
F ∈ IF, it follows that StG(F|E) = Zw|v, etc.

□

This being said, we notice though that Theorem 2.15 and Fact 2.18 above do not give conditions

to ensure that the valuation w has char(Fw) ̸= ℓ. In the next section we discuss —among other

things— this issue, which is essential for the proof of the main results of the paper.

3. Commuting liftability, field extensions, and sections

Let E|L be a regular field extension, L̃|L be a Galois extension, and Ẽ := EL̃ be the com-

positum of E and L̃ over L (which is well defined up to L -isomorphism, because E|L was

a regular field extension). In particular, Ẽ|E is Galois such that the canonical projection map

ı̃ : G(Ẽ|E) → G(L̃|L) is an isomorphism. For valuations v ∈ Val(E) , let ṽ|v denote prolon-

gations of v to Ẽ|E , and vL := v|L and ṽL := ṽ|L̃ be the corresponding restrictions, thus in

particular, vL̃ = (ṽL̃)|L . Next suppose that char(L) ̸= ℓ and µℓ ⊂ L̃ . Recall that L̃c|L̃a|L̃|L
and Ẽc|Ẽa|Ẽ|E are Galois extensions, and one has a commutative diagram with exact rows and

surjective vertical morphisms, ı̃ : G(Ẽ|E)→ G(L̃|L) being an isomorphism, where • stays for

either a or c (similar to the ones in the Introduction):

(∗)Ẽ|L̃

1 → G•Ẽ ↪→ G(Ẽ•|E) ↠ G(Ẽ|E) → 1
↓↓ p̃• ↓↓ p• ↓ ı̃

1 → G•L̃ ↪→ G(L̃•|L) ↠ G(L̃|L) → 1

Next let sa : G(L̃a|L) → G(Ẽa|E) be a section of pa : G(Ẽa|E) → G(L̃a|L) , which is

a.b.c.-liftable, i.e., sa
lifts to a section sc

of pc : G(Ẽc|E)→ G(L̃c|L). Consider the diagram:

1 G•Ẽ G(Ẽ•|E) G(Ẽ|E) 1

1 G•L̃ G(L̃•|L) G(L̃|L) 1

p̃• p•

pE

ı̃
pL

s•

Claim. The restriction s•|G•
L̃

is a section of p̃• and pE ◦ s• ◦ p−1
L is the inverse map of ı̃.

Indeed, let im(s•) ⊂ G(Ẽ•|E) be the image of s•. Then ı̃ ◦ pE = pL ◦ p̃• and ı̃ being an

isomorphism implies that pE
(
s•(g)

)
= 1 iff pL(g) = 1. Hence s•(g) ∈ G•Ẽ iff pE

(
s•(g)

)
= 1

iff pE(g) = 1 iff g ∈ G•L̃, concluding that s• is a section of pr•. For the last assertions, one has:

h = pE(g) ∈ G(L̃|L) iff ı̃−1(h) = pE ◦ s•(g). Thus the Claim is proved. (Note that p−1
L is a

multi-valued correspondence, but pE ◦ s• ◦ p−1
L is indeed single valued, hence a map.)

3.1. s•-valuations arising from Val1(L) .
In the above context, let N|L ↪→ L̃|L be a finite Galois subextension of L̃|L with µℓ ⊂ N

and setting F = NE, consider F|E ↪→ Ẽ|E and the resulting projections of Galois groups
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q•E : G(Ẽ•|E) ↠ G(F•|E), q•F : G(Ẽ•|F) ↠ G(F•|F) and qa
L : G(L̃•|L) ↠ G(N•|L),

qa
N : G(L̃•|L)↠ G(N•|N), and finally p• : G(F•|E)↠ G(N•|L), hence p• : G•F ↠ G•N.
In particular, given the a.b.c.-liftable section sa : G(L̃a|L) → G(Ẽa|L) , for • = a , c one has

a commutative diagrams of the form:

G•Ẽ G(Ẽ•|E) G(Ẽ|E)

G•F G(F•|E) G(F|E)

G•L̃ G(L̃•|L) G(L̃|L)

G•N G(N•|L) G(N|L)

q•F

p̃•

q•F

p̃•

pẼ

qE

ı̃

p• p•

pF

ı

q•N

s•

q•N

pL̃

s•

qL

pN

in which all maps are the canonical projections and ı̃ and ı are isomorphisms.

Finally, let L1|L ↪→ N|L ↪→ L̃|L be a finite Galois subextensions of L̃|L such that µℓ ⊂ L1 ,

and for v ∈ Val(L) , denote by ṽ|w|v1|v the prolongations of v to L̃|N|L1|L.

Notations/Remark 3.1. . Let Val1(L) ⊂ Val(L) be the set of valuations v ∈ Val(L) satisfying:

(i) vL = Z ; (ii) char(Lv) ̸= ℓ ; (iii) L1v1
×/ℓ ̸= 1 ; (iv) ṽ|v are unramified.

We notice that if v ∈ Val1(L), then wN = Z = vL and Nw×/ℓ ̸= 1 for all N|L as above.

[Proof. Since [Nw : L1v1] ⩽ [N : L1] < ∞, by basic Galois theory, L1v1
×/ℓ ̸= 1 implies

Nw×/ℓ ̸= 1 (because ℓ > 2 ). Since ṽ|v unramified, vL ⊂ wN ⊂ ṽL̃ = vL, thus vL = wN. ]

For v ∈ Val1(L), L̃|N|L as above, let ṽ•|w•|v be the prolongations of ṽ|w|v to L̃•|N•|L.
Since char(L̃ṽ) = char(Nw) = char(Lv) ̸= ℓ and Z = vL = wN = ṽL̃, by functoriality and

basics of Hilbert decomposition theory, the following hold:

1) Tṽa|v = Tṽa|ṽ
∼= Z/ℓ∼= Twa|w = Twa|v and Tṽc|v = Tṽc|ṽ

∼= Z/ℓ2∼= Twc|w = Twc|v. Further,

denoting by Gṽ•|v and Gw•|v the Galois group of the residue field extensions L̃•ṽ•|Lv , respec-

tively N•w•|Lv , one has Zṽ•|v = Tṽ•|v ⋊ Gṽ•|v and Zw•|v = Tw•|v ⋊ Gw•|v , the action being in

both cases by the ℓ -adic cyclotomic character of Gṽ•|v , respectively Gw•|v.

2) q•L : G(L̃•|L) → G(N•|L) maps Tṽ•|v isomorphically onto Tw•|v and defines a surjective

morphism of the residue Galois groups q•
ṽ|w|v : Gṽ•|v ↠ Gw•|v which is obviously compatible

with the ℓ -adic characters. Finally, the restriction q•L : Zṽ•|v ↠ Zw•|v is defined canonically by

its restrictions to the inertia groups and the residue Galois groups.

Conclude: First, µℓ ⊂ N ⇒ Gṽa|w and Gwa|w act trivially on Tṽa|w
∼= Z/ℓ ∼=Twa|w. Hence

Zṽa|w and Zwa|w are abelian and Iw = Twa|w⩽Zwa|w = Dw is a c.l. pair in G(Na|N). Second,

for σ̃ ∈ Tṽc|w and τ̃ ∈ Zṽc|w one has [σ̃, τ̃] ∈ ⟨σ̃ℓ⟩. Hence by abuse of language, we will say:

Terminology. Tṽa|w⩽Zṽa|w is a generalized-commuting c.l. pair of subgroups of G(L̃a|N) .

Key Lemma 3.2. In the above notation/context, set Ia := qa
F
(
sa(Tṽa|w)

)
, Da := qa

F
(
sa(Zṽa|w)

)
.

Then Ia⩽Da is a c.l. pair in G a
F ⊂ G(Fa|E) which is mapped by pa : G(Fa|E)→ G(Na|L) onto
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the c.l. pair Iw = Twa|w⩽Zwa|w = Dw in G a
N ⊂ G(Na|L). And the same holds, correspondingly,

for the maximal c.l. pair IDw⩽Dw in G a
N.

Proof. In the above notation, recalling the remarks at 1) above, one has: The canonical projection

G(Ẽc|F)↠ G(Ẽa|F) maps the subgroups sc(Tṽc|w)⩽ sc(Zṽc|w) of G(Ẽc|F) onto the subgroups

sa(Tṽa|w)⩽ sa(Zṽa|w) of G(Ẽa|F). Hence recalling that [σ̃, τ̃] ∈ ⟨σ̃ℓ⟩ for all σ̃ ∈ Tṽc|w and

τ̃ ∈ Zṽc|w, one has [sc(σ̃), sc(τ̃)] ∈ ⟨s(σ̃)ℓ⟩ for all σ̃ ∈ Tṽc|w and τ̃ ∈ Zṽc|w. Hence since the

canonical projections G(Ẽ•|F)↠ G(F•|F) are surjective and that q•N = p• ◦ q•F ◦ s•, it follows

that the subgroups I• := q•F
(
s•(Tṽ•|w)

)
, D• = q•F

(
s•(Zṽ•|w)

)
of G•F = G(F•|F) satisfy:

a) Ia ⊂ Da
are subgroups of G a

F . Further, q•N = p• ◦ q•F ◦ s• implies pa(Ia) = Twa|w and

pa(Da) = Zwa|w. Hence Ia ̸= 1 and Da
is not cyclic.

b) Ic ⊂ Dc
are subgroups of G c

F which project onto Ia ⊂ Da
under G(Fc|F) ↠ G(Fa|F)

and ∀ σ ∈ Ia, τ ∈ Da
and any preimages σ̃ ∈ Ic, τ̃ ∈ Dc

one has [σ̃, τ̃] ∈ ⟨σ̃ℓ⟩.
Further, in the case when Iw = Twa|w⩽Zwa|w = Dw is replaced by IDw = IZwa |w⩽Zwa|w = Dw,
the assertion of Lemma follows along the same lines, so we omit the details. □

Construction 3.3 ((w|v⇝⇝⇝ IDI⩽DI ⇝⇝⇝ w|v ∈ W F|E ).
In notation from Lemma 3.2, let IDIa ⩽DIa be the maximal c.l. pair in G a

F attached to the c.l. pair

I := Ia⩽Da =: D as in Definition/Remark 2.11, 4. Further, consider IDw⩽Dw ⇝ w ∈ WN and

IDIa ⩽DIa ⇝ w ∈ WF as defined in Remark 2.16. Hence since v = w|L and v = w|E, in the

context of Remark/Notation 2.17, one has w|v ∈ WN|L and w|v ∈ WF|E, and further:

1) Zwa|v = Dw|v ∈ DN|L, Zwa|v ↠ Zw|v and Dw|v ∈ DF|E, Dw|v → Zw|v.
2) By Fact 2.18 applied to w|v and w|v , for g ∈ G(F|E), h ∈ G(N|L) the following hold:

(∗)w h(IDw)= IDw iff h(Dw)=Dw iff h(Dw|v)=Dw|v iff h(Za
w)=Za

w iff h(w)=w iff h ∈ Zw|v.
(∗)w g(IDIa )= IDIa iff g(DIa)=DIa iff g(Dw|v) = Dw|v iff g(Za

w)=Za
w iff g(w)=w iff g ∈ Zw|v.

Proposition 3.4 (Fact 2.7 re-revisited). In the above notations, the following hold:

1) Setting wN := w|N , one has: w ⩽ wN , Za
w = DwN = pa(Dw), Ta

w = pa(Ia) ⊂ IwN = IDw .
2) ı(Zw|v) = Zw|v and ı(Dw|v) = Zwa|v.
3) For for g ∈ G(F|E) one has:

g(Ia)= Ia iff g(DIa)=DIa iff g(Dw|v) = Dw|v iff g(w)=w iff g ∈ Zw|v.

Proof. To 1): We first notice that the surjectivity of pa
and pc

imply that for every c.l. pair

I′⩽D′ in G a
F with pa(I′) ̸= 1 and pa(D′) non-cyclic, the image pa(I′)⩽ pa(D′) of I′⩽D′

under pa
is a c.l. pair in G a

N. (Actually, by mere definitions one has: If g, τ is a c.l. pair in G a
F , then

pa(g), pa(τ) is a c.l. pair in G a
N, provided pa(g), pa(τ) are independent in G a

N. ) In particular,

since both Ia ⊂ IDIa , pa(Ia) = Iw = Ta
w , and Da ⊂ DIa , pa(Da) = Dw = Za

w , one has:

IN := pa(IDIa ) ⩽ pa(DIa) =: DN is a c.l. pair in G a
N such that Iw ⊂ IN, Dw ⊂ DN . Thus

wN = w|N is non-trivial, because IN ̸= 1. Further, since char(Nw) ̸= ℓ , one has Dw = Za
w

(and Ta
w = Iw , provided Nw×/ℓ non-cyclic), and since w has rank one, one has that either

w ⩽ wN, or w and wN are independent. By contradiction, suppose that w1 := w and w2 := wN
are independent. Then by Lemma 2.8, it follows that Za

w1
∩ Za

w2
= 1 , hence Dw1 ∩ Dw2 = 1 as

well, because Dwi ⊂ Za
wi

, i = 1, 2 . This is a contradiction, because w1 = w discrete implies
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1 ̸= Dw1 , hence 1 ̸= Dw1 = Dw = pra(Da) ⊂ Dw2 . Conclude that w1, w2 are comparable,

hence w = w1 ⩽ w2 = wN, because w1 = w has rank one. Therefore, see e.g., Topaz [To1],

Lemma 4.1, one has: Since w1 ⩽ w2 , i.e., w2 is a refinement of w1 , one has Dw2 ⊂ Dw1 ,

Iw2 ⊃ Iw1 , etc. On the other hand, by functoriality of (reduced) Hilbert decomposition theory,

pa(Dw) ⊂ DwN = Dw2 . Hence since Dw = pa(Da) , putting everything together, we get:

Dw1 = Dw = pa(Da) ⊂ DwN = Dw2 ⊂ Dw = Dw1 ,

concluding that Dw = Dw1 = Dw2 = pa(Dw) = DwN . Concerning the last assertion about

(reduced) inertia, as mentioned above, one has that pa(Iw)⩽ pa(Dw) is a c.l. pair in G a
N. Recalling

that pa(Da) = Dw2 = Dw , let IDw ⊂ Dw = pa(Da) be maximal such that IDw⩽Dw is a c.l.

pair in G a
N. Since pa(Ia)⩽ pa(Da), that is, pa(Ia)⩽Dw is a c.l. pair, it follows that pa(Ia) ⊂ IDw

by the maximality of IDw ⊂ Dw such that IDw⩽Dw is a c.l. pair in G a
N.

To 2): Since pra(Dw) = Dw , taking into account assertions (∗)w and (∗)w above, by mere

definitions one has ı(Zw|v) ⊂ Zw|v . For the converse inclusion, proceed as follows: By asser-

tion (∗)w , one has that h ∈ Zw|v iff h(IDw) = IDw . Let h′ 7→ h under G(Na|L) ↠ G(N|L) ,

and denote g′ = sa(h′) . Then by mere definitions one has: τ ∈ DIa iff ∀ σ ∈ Ia = sa(IDw)
have: σ, τ is a c.l. pair in G a

F . Obviously, since the inner conjugation by g′ is an automorphism

of G a
F which lifts to the inner conjugation in G c

F , the latter assertion is equivalent to σ′, τ′ being

a c.l. pair in G a
F , where σ′= g′σ g′−1

and τ′= g′τg−1
. On the other hand, σ 7→ σ′ := g′σg′−1

is an automorphism of IDw (because g′ IDw g′−1 = g′(IDw) = IDw ). Hence τ ∈ DIa iff

τ′ := g′τ g′−1 ∈ DIa . Thus g′DIa g′−1 = DIa , that is, g′(DIa) = DIa . Since g ∈ Zw|v was

arbitrary and g′(DIa) = DIa , conclude by Fact 2.18 that ı−1(τ) ∈ Zw|v under the isomorphism

ı : G(F|E)→ G(N|L) . Thus ı(Zw|v) = Zw|v as claimed.

Finally, the assertion pa(Dw|v) = Dwa|v = Zwa|v follows by mere definitions from functori-

ality of Hilbert decomposition theory, using assertions 1) and the fact that ı(Zw|v) = Zw|v .

To 3): By assertion (∗)w above, it is enough to show that for g ∈ G(F|E) one has: g(Ia)= Ia

iff g(DIa) = DIa . To fix notation, for every g ∈ G(F|E), set h := ı(g), and for preimages

h• ∈ G(N•|L) of h, let g• = s•(h•) ∈ G(F•|E) be the corresponding preimages of g.
- For the direct implication, let g(Ia) = Ia

for some g ∈ G(F|E) , and g• be the liftings as

defined above. Let σw ∈ Iw = Ta
w
∼= Z/ℓ be a generator and σ̃w ∈ Tc

w
∼= Z/ℓ2

be a lifting of

σw . In particular, σ = sa(σw) generates Ia = sa(Iw) and σ̃ := sc(σ̃w) generates Ic := sc(Tc
w).

Further, σ̃ and Ic ⊂ G c
F are liftings of σ , respectively Ia

under G c
F → G a

F . This being said, the

action of g• on I• = s(T•w) is induced by the action of h• on I•w. In particular, if τ ∈ DI and

τ̃ ∈ G c
F is a lifting, then by the definition of DI one has: [σ̃, τ̃] = σ̃ℓn

for some n ∈N , thus:

[σ̃gc
, τ̃gc

] = (σ̃ℓn)gc
= (σ̃gc

)ℓn = (∗)
On the other hand, ga(Ia) = Ia

and Ia = ⟨σ⟩ implies ga(σ) = σm
for some m ∈ N with

(ℓ, m) = 1. Therefore, σ̃gc
= σ̃mσ0 for some σ0 ∈ G(Fc|Fa) , hence finally:

(∗) = (σ̃gc
)ℓn = (σ̃mσ0)

ℓn = σ̃ℓmnσℓn
0 = σ̃ℓmn ∈ ⟨σ̃ℓ⟩,

because σℓ
0 = 1 by the fact that G(Fc|Fa) is an ℓ -elementary abelian group. Hence we conclude

that ga(σ), ga(τ) is a c.l. pair in G a
F . Thus since τ ∈ DIa was arbitrary, and ga(Ia) = Ia

, it

follows that Ia⩽ga(DIa) is a c.l. pair in G a
F . Since DIa ⊂ G a

F is (the unique) maximal such that
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Ia⩽DIa is c.l. in G a
F , one has ga(DIa) ⊂ DIa . Let ga

be the inverse of ga. Then ga(Ia) = Ia

and reasoning as above, one has that ga(DIa) ⊂ DIa . Conclude that ga(DIa) = DIa .

- For the converse implication, let IDIa ⩽DIa ⇝ w|v ∈ WF|E and g ∈ G(F|E) satisfy

g(DIa) = DIa . Then by assertion (∗)w before Proposition 3.4, one has that g ∈ Zw|v. In

particular, h = ı(g) ∈ G(N|L) lies in Zw|v , hence by functoriality of Hilbert decomposition

theory one has h(Ta
w) = Ta

w and h(Za
w) = Za

w. Hence taking into account that Iw = Ta
w, we

get g(Iw) = g(Ta
w) = Ta

w = Iw. Therefore, since by definition we have Ia = sa(Iw) and

g = ı−1(h) as well, it follows instantly by mere definitions of ı, sa
and pa

that

g(Ia) = g
(
sa(Iw)

)
= sa(ha(Iw)

)
= sa(Iw) = Ia.

□

3.2. Canonical s• -valuations and their functorial behavior.
In the context of Proposition 3.4 above, recall that given valuations w|v of N|L , v ∈ Val1(L) ,

via the section s• of p• one gets valuations w|v of F|E satisfying wN := w|N ⩾ w and

vL := w|L ⩾ v. In particular, the general Fact 2.4 above applies in this context, leads to:

1) The canonical w-valuations and/or v-valuations of F, which turn out to be equal ww = wv.
Indeed, this follows by Fact 2.4, 3), because N|L is an algebraic extension.

2) The canonical wa
- and w- and v -valuations of Fa

are equal wa
wa = wa

w = wa
v and prolong

ww = wv to Fa. Indeed, this follows from Fact 2.4, 3), because Fa|F is algebraic.

And since Fa|F|E are algebraic, the above valuations all have the same restriction to E,

denoted vv := (wa
wa)|E = (wa

w)|E = (ww)|E , etc.

Definition 3.5. In the above context, the valuations wa
wa = wa

w = wa
v of Fa

and ww = wv of

F and vv of E are called canonical s•-valuations of Fa|F|E (defined by wa|w|v via s• ).

• We notice the following: Since char(Nw) = char(Lv) ̸= ℓ , v ∈ Val1(L) and (ww)|N = w ,

one has that Fww ̸= ℓ. In particular, one also has Dww = Za
ww

and Iww = Ta
ww

, etc.

Fact 3.6. The s•-canonical valuations ww|vv arising from w|v , v ∈ Val1(L) satisfy:

(i) O×ww
⊃ O×w , 1 +mww⊂ 1 +mw ; (ii) O×ww

∩ N = O×w , (1 +mww) ∩ N = 1 +mw.

Therefore, by mere definitions one has:
1) sa(Iw) ⊂ Iww ⊂ Iw , Dww = Dw ⊃ sa(Dw) , and Dww|vv = Dw|v ⊃ sa(Dw|v).
2) pa(Iww) = Iw , pa(Dww) = Dw , and pa(Dww|vv) = Dw|v. Thus ı(Zww|vv) = Zw|v.

Proof. To 1): The inclusions sa(Iw) ⊂ Iww ⊂ Iw and Dww ⊃ Dw ⊃ sa(Dw) are clear by mere

definitions. For the converse inclusion Dww ⊂ Dw one has: Since Ia ⊂ Iww and Dww acts on

Iww via the cyclotomic character, one has: ∀ σ ∈ Ia
and ∀ τDww one has: σ, τ is a c.l. pair in

G a
F . Hence by definition one has Dw = DIa , one finally has Dww ⊂ Dw , as claimed.

To 2): The equality pa(Dww) = Dw follows from pa(Dw) = Dw cf. Proposition 3.4, 1) and

the other equalities follow along the same lines using loc.cit. 2) and 3). □

Next, in the notation from the previous subsections, let L̃|Nα|L1|L , α ∈ I, be the family of

finite Galois subextensions of L̃|L with L1 ⊂ Nα. We notice that I is (filtered partially) ordered

by i ⩽ j iff Nα ⊂ Nβ. And for each i ∈ I consider the resulting Fα := ENα , thus the filtered
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family of finite Galois subextensions Ẽ|Fα|E1|E if Ẽ|E. Let p•α : G(F•α |E) → G(N•α |L) be the

resulting projections, and s•α : G(N•α |L)→ G(F•α |E) be the resulting sections.

For v ∈ Val1(L) and its prolongations ṽ|wα|v to L̃|Nα|L , i ∈ I , let wα|vα ∈ WFα|E be the

valuation defined via s• and v ∈ Val1(L) . In particular, the valuations wα ⩾ wα give rise to

the canonical wα -valuation wwα of Fα. Further, for Nα ⊂ Nβ and the resulting Fα ⊂ Fβ , etc.,

let p•βα : G(F•β |E) → G(F•α |E) be the resulting canonical projections, thus p•β = p•α ◦ p•βα.
And recalling the notation introduced in Construction 3.3, set Ia

α := sα(Iw) , Da
α = sα(Dw) and

notice that p•β = p•α ◦ p•βα implies:

(∗) pa
βα(Ia

β) = Ia
α, pa

βα(Da
β) = Da

α.

Key Lemma 3.7 (Functoriality of s•-canonical valuations).
For Fα ⊂ Fβ, let wwα Val(Fα) and wwβ

∈ Val(Fβ) be the corresponding s•-canonical valuations.
Then wwβ

|Fα = wwα . In particular, vv = wwα |E is independent of α ∈ I and v = vv|L.

Proof. Let w′α := wwβ
|Fα and set w0 = min(w′α, wwα) ∈ Val(Fα) .

Step 1. We claim that w0
is non-trivial, or equivalently, w′i and wwα are not independent.

Indeed, by Fact 3.6, 1), one has Ia
α = sa

α(Iwα) ⊂ Iwwα
, and by assertion (∗) right before Key

Lemma 3.7, one has pa
βα(Ia

β) = Ia
α ⊂ pa

βα(Iwwβ
). Thus since w′α = wwβ

|Fα , by Fact 2.9, one has

pa
βα(Iwwβ

) ⊂ Iw′α . Hence 1 ̸= Ia
α ⊂ Iw′α ∩ Iwwα

, hence by Fact 2.7, 1), it follows that w′α and wwα

are not independent, as claimed.

Step 2. First, w0 := w0|Nα is non-trivial. Indeed, by Fact 2.9, one has pa
α(Iw0) ⊂ Iw0 . Thus

Iw0 ⊃ Ia
α implies Iw0 ⊃ pa

α(Iw0) ⊃ pa
α(Ia

α) = Iwα ̸= 1 , and therefore, w0
is non-trivial.

Second, since w0 ⩽ wwα , one has w0 = w0|Nα ⩽ wwα |Nα = wα. Thus since wα is discrete and

w0 ⩽ wα is nontrivial, one must have w0 = wα . Finally, since w0 ⩽ wwα and w0|Nα = wα, by

the definition of the canonical wα valuation wwα one must have w0|Nα = wα. Therefore, one

finally must have w0 = min(w′α, wwα) = wwα , concluding that (wwβ
)|Fα = w′α ⩾ wwα .

Step 3. Finally, given that wwβ
|Fα = w′α ⩾ wwα , let w′β ⩽ wwβ

be the minimal coarsening of

wwβ
such that w′β|Fα = w′α , that is, w′β|Fα = wwα . Then by the discussion above and Fact 2.4, 2)

one has both: First, w′β|Nβ
is the prolongation is w′α = wwα to Fβ , thus w′β|Nα = wα , and

second, w′β ⩽ wβ. Thus by the definition of the canonical wβ -valuation wwβ
one has that

wwβ
⩽ w′β , thus finally concluding that w′β = wwβ

, hence wwα = wwβ
|Fα . □

In order to avoid overloaded notation, we introduce the following:

Notation 3.8. Given Nα|L ↪→ Fα|E , we denote w̃α := wwα, thus w̃α|E = vv for all α ∈ I.

An important consequence of the Key Lemma 3.7 above is as follows.

• Õ := ∪αOw̃α ⊂ Ẽ is a valuation ring satisfying Õ ∩ Fα = Ow̃α for all i ∈ I.

In particular, if w̃ṽ denotes the valuation of Õ, i.e., Õ = Ow̃ṽ
, the following hold: First, since

L̃ = ∪αNα , Ẽ = ∪αFα and wα = w̃α|Nα, one has ṽ = w̃ṽ|L̃ , and further, w̃ṽ|E = vv = w̃α|E ,

w̃ṽ|L = w̃α|L = wα|L = v , α ∈ I. Moreover, by Fact 3.6, 2) one has:

sa
α(Iwα) = Ia

α ⊂ IDw̃α
and sα(Dwα) ⊂ Dw̃α), αα ∈ I.
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Therefore, taking into account that G(La|L) = lim←−ı
G(Na

α |L) and G(Ea|E) = lim←−ı
G(Fa

α |E)
and further, sa(Iṽ) = lim←−ı

Ia
α, sa(Dṽ) = lim←−ı

Da
α, etc., by “taking limits” and taking into account

that Iwα = Ta
wα

, Dwα = Za
wα

and Dw̃a
α|vv = Zw̃a

α|vv, on gets the following:

Fact 3.9 (Fact 3.6 revisited). The s•-canonical valuations w̃ṽ arising from v ∈ Val1(L) in the
way explained above have char(F̃w̃ṽ) ̸= ℓ and further satisfy the following:

1) w̃ṽ|Fα = w̃α , w̃ṽ|E = vv , w̃ṽ|Nα = wα , w̃ṽ|L = v. Hence char(Ẽw̃ṽ) ̸= ℓ , thus concluding:

Iw̃ṽ
= Ta

w̃ṽ
, Dw̃ṽ

= Za
w̃ṽ

, Dw̃a
ṽ|vv = Zw̃a

ṽ|vv .

2) sa(Ta
ṽ ) ⊂ Ta

w̃ṽ
, sa(Za

ṽ) ⊂ Za
w̃ṽ

and sa(Zṽa|v) ⊂ Zw̃a
ṽ|vv) and further,

pa(Ta
w̃ṽ
) = Ta

ṽ , pa(Za
w̃ṽ
) = Za

ṽ, and pa(Zw̃a
ṽ|vv) = Zṽa|v. Thus ı(Zw̃ṽ|vv) = Zṽ|v.

Proof. Beweis klar! □

4. Proof of Theorem 1.9 ( k̃|k -Minimalistic t -BSC)

4.1. Preparation for the proof of Main Theorem 1.9.
Let k̃|k be a field extension satisfying Hypothesis (H), K = k(X) be the function field of a

geometrically integral k -curve X. This gives rise to a concrete case of the more general situation

from Section 3 as follows. Let L := k(t) =: kt the rational function field in the variable t over k
and E := K(t) =: Kt be the compositum of K = k(X) and L = k(t) over k. Then E|L , that is,

Kt|kt is a regular field extension (because K|k was so). Thus setting k̃t := k̃(t) and K̃ := Kk̃ ,

K̃t := K̃(t) , one has Ẽ = EL̃ = K̃t , etc. For the resulting embeddings of Galois field extensions

K̃t|Kt ←↩ k̃t|kt ←↩ k̃|k and K̃a
t |Kt ←↩ k̃a

t |kt ←↩ k̃|k , let G(K̃t|Kt)
ı→G(k̃t|kt)→G(k̃|k) be

the canonical isomorphisms of Galois groups, respectively G(K̃•t |Kt) ↠ G(k̃•t |kt) ↠ k̃•|k the

resulting surjective morphisms of Galois groups, where • stays for a or c.
Finally, setting k1 := kt(µℓ), consider the family of finite Galois subextensions kα|k , α ∈ I

of k̃|k with k1 ⊂ kα , partially ordered by: α ⩽ β iff kα ⊂ kβ . We are in the context if Section 3

with Nα = kα,t := kα(t) ⊂ k̃t = L̃ and Fα = ENα = kα,t ⊂ k̃t , getting isomorphic projective

systems of finite groups G(kβ|k)↠ G(kα|k) , G(Nβ|L)↠ G(Nα|L) , G(Fβ|E)↠ G(Fα|E) for

α ⩽ β , having the canonical isomorphisms G(Ẽ|E) ı→G(L̃|L)→G(k̃|k) as limit.

Concerning valuations: Recall that all k -valuations v ∈ Valk(kt) are discrete, being either

the p(t) -adic valuations v = vk,p with p = p(t) ∈ k[t] the monic irreducible polynomials,

or v = v∞ with uniformizing parameter π∞ = 1
t . Further, ktv|k is a finite field extension,

hence char(ktv) ̸= ℓ , and therefore, Valk(kt) ⊂ Val1(kt). For v ∈ Valk(kt) consider the

prolongations wa
α|wα|v of v to ka

α,t|kα,t|kt with limit ṽa|ṽ|v as prolongations of v to k̃a
t |k̃t|kt.

Similarly, with Fα := Kα,t := Kkα,t and v ∈ Valk(Kt) , consider its prolongations wa
α|wα|v to

Ka
α,t|Kα,t|Kt and ṽa|ṽ|v prolonging v to K̃a

t |K̃t|Kt . This being said, L̃|L = k̃|kt , Ẽ|E = K̃t|Kt
introduced/defined above are as in the previous section.

Next, let sa : G(k̃a
t |kt)→ G(K̃a

t |Kt) be a liftable section of the canonical (surjective) projection

pa : G(K̃a
t |Kt) ↠ G(k̃a

t |kt) , i.e., there is a section sc : G(k̃c
t |kt) → G(K̃c

t |Kt) of the canonical

(surjective) projection pc : G(K̃c
t |Kt)→ G(k̃c

t |kt). Then recalling the canonical isomorphism

ı : G(K̃t|Kt)→ G(k̃t|kt) defined by K̃t|Kt ←↩ k̃t|kt ,
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one has the following:

Fact 4.1 (Fact 3.9 revisited). In the above context, for v ∈ Valk(kt) and its prolongation ṽ|v to
k̃t|kt , consider the corresponding inertia/decomposition groups Ta

ṽ ⊂ Za
ṽ⊂ Zṽa|v⊂ G(k̃a

t |kt). Then
there is a unique valuation w̃ṽ ∈ Val(K̃t) such that the following hold:

1) w̃ṽ|k̃t
= ṽ , thus w̃ṽ is trivial on k , i.e., w̃ṽ ∈ Valk(K̃t) and vv := w̃ṽ|Kt ∈ Valk(Kt).

2) sa(Ta
ṽ ) ⊂ Ta

w̃ṽ
, sa(Za

ṽ) ⊂ Za
w̃ṽ

, and sa(Zṽa|v) ⊂ Zw̃a
ṽ|v , and further,

pa(Ta
w̃ṽ
) = Ta

ṽ , pa(Za
w̃ṽ
) = Za

ṽ , and pa(Zw̃a
ṽ|vv) = Zṽa|v. Thus ı(Zw̃ṽ|vv) = Zṽ|v.

In particular, every liftable section sa : G(k̃a
t |kt) → G(K̃a

t |Kt) of the canonical (surjective)
projection pa : G(K̃a

t |Kt)↠ G(k̃a
t |kt) gives rise to an injective map

φ : Valk(k̃t)→ Valk(K̃t), ṽ 7→ w̃ṽ,

such that the k -valuations ṽ and w̃ṽ satisfy the conditions 1), 2) above.

Proof. Beweis, klar! □

4.2. Places via k̃|k - t -a.b.c. liftable sections.
If not otherwise explicitly stated, through out this subsection, the notation is that from Theo-

rem 1.9, that is: sa
K : G(k̃a|k) → G(K̃a|K) is a k̃|k - t -a.b.c. liftable section of the canonical

projection pa
K : G(K̃a|K) → G(k̃a|k) , and s•t : G(k̃•t |k) → G(K̃•t |Kt) be k̃|k - t -a.b.c. liftings of

sa
K to sections of p•Kt

: G(K̃•t |Kt)→ G(k̃•t |kt) for • equal to a and c. In particular, recalling the

notations and the commutative diagram introduced before Theorem 1.9, one has the following:

G(Kc
t |Kt)

pc
Kt−↠ G(kc

t |kt)
pc

kt−↠ G(kc|k) G(Kc
t |Kt)

sc
t←− G(kc

t |kt)
(‡) ↓↓ qc

Kt ↓↓ qc
kt ↓↓ qc

k ↓↓ qc
Kt ↓↓ qc

kt

G(Ka
t |Kt)

pa
Kt−↠ G(ka

t |kt)
pa

kt−↠ G(ka|k) G(Ka
t |Kt)

sa
t←− G(ka

t |kt)

Here, sa
t is the section of pa

Kt
liftable to sc

t , i.e., sa
t ◦ qa

kt
= qc

Kt
◦ sc

t .

Notation/Remark. Denote by vk̃,∞ , vK̃,∞ the
1
t -adic valuations of k̃t , K̃t , thus vk̃,∞ = vK̃,∞|k̃t

.

We notice the following: Let v ∈ Val(K̃t) be a given valuation. Then v = vK̃,p with p ∈ k̃[t]
monic irreducible iff vK̃ := v|K̃ is trivial, v|k̃t

is non-trivial, and v ̸= vK̃,∞ .

[For reader’s sake we present the quite obvious proof. First, the direct implication is clear, because

k̃ = k∩ K̃ implies: p ∈ k̃[t] is irreducible iff p is irreducible over K̃ . For the covers implication

proceed as follows: Since v|K is trivial, v is a K̃ -valuation of K̃t = K̃(t) , and v ̸= vK̃,∞ implies

that v = vK̃,q is the q -adic K̃ -valuation for some monic irreducible polynomial q ∈ K̃[t] . Since

v|k̃t
is nontrivial, there exists a unique monic irreducible p ∈ k̃[t] such that v|k̃t

= vk̃,p , and

since k̃ = k ∩ K̃ by hypothesis, one has that p ∈ K̃[t] is irreducible. On the other hand, since

vk̃,p = vK̃,q|k̃t
, one must have vK̃,q(p) = vk̃,p(p) > 0 . Hence q|p in K̃[t] , thus p = q (because

both p, q are irreducible monic).]

Key Lemma 4.2. In the above notation from Fact 4.1, denote K̃ = Kk̃ and for ṽ ∈ Valk(k̃t) and
w̃ṽ ∈ Valk(K̃t) set w̃ := w̃ṽ|K̃ ∈ Valk(K). Then there is ṽ|v such that w̃ := w̃ṽ|K̃ ∈ Val(K) is
non-trivial, and non-trivial w̃ and w := w̃|K = w̃ṽ|K satisfy:
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1) w̃ ∈ Valk(K) depends on sa
K only and not on the specific ṽ ∈ Valk(k̃t) used to define it.

2) K̃w̃ |k is algebraic, Kw∩ k̃ = ktv∩ k̃ , and Kw|k and k̃|k are linearly disjoint over k.

Proof. First, if ṽ ∈ Valk(k̃t) , then either ṽ = v∞ or v = vk,p = vp is the p -adic valuation for a

unique p ∈ k̃[t] monic irreducible and the degree dṽ is dṽ := [k̃tṽ : k̃]. Obviously, and one has:

dv∞ = 1 and dvp = [k̃tvp : k] = deg(p) is the degree of p ∈ k̃[t] .

And the same holds, correspondingly, for the K -valuations ṽ ∈ ValK(K̃t).
Let Σ := Valk(k̃t) , Σ′ := {v∞} ∪ {vp ∈ Valk(k̃t)

∣∣ (ℓ, dvp) = 1} and Σ′′ := Σ\Σ′ , thus

obviously, Σ = Σ′ ∪ Σ′′ = Valk(k̃t) as a disjoint union. And define Σ′K, Σ′′K ⊂ ValK(K̃t)
correspondingly. We notice that since k ⊂ K is relatively algebraically closed, it follows that

every monic irreducible polynomial p ∈ k̃[t] is monic irreducible in K̃[t] . Hence if vK̃,p is the

prolongation of vp ∈ Valk(k̃t) to K̃t , then one has:

(∗) dvp = [k̃tvp : k̃] = deg(p) = [K̃tvK̃,p : K̃] = dvK̃,p
,

implying that Σ′ ⊂ Σ′K and Σ′′ ⊂ Σ′′K . Further, let p ∈ K̃[t]\k̃[t] be monic irreducible. Then

vK̃,p is trivial on k̃t , implying that Σ′ = Valk(k̃t) ∩ Σ′K and Σ′′ = Valk(k̃t) ∩ Σ′′K .

Further, given p ∈ k̃[t] monic irreducible, and αp ∈ k̃a
t with αℓp = p , the following hold:

a) vp is ramified in k̃t[αp] | k̃t , and ṽ ∈ Valk(k̃t) , ṽ ̸= vp, v∞ , are unramified in k̃t[αp] | k̃t .

b) v∞ is ramified in k̃t[αp] | k̃t iff ℓ ∤dp .

Recall the exact sequence 1 → k̃×t
ı−→ k̃× ⊕ṽ∈Σ ṽ k̃t

deg−→Z → 0 with ı( f ) = a f ⊕ṽ ṽ( f ) ,

a f the leading coefficient of f and deg = ∑ṽ dṽ , and tensoring with Z/ℓ , on gets an exact the

exact sequence 1 → k̃×t /ℓ → k̃×/ℓ⊕ṽ∈Σ ṽ k̃t/ℓ → Z/ℓ → 0. Using the latter exact sequence,

by Hilbert decomposition theory and Kummer theory the following hold:

Fact 4.3. The following hold:
(I) In the above notation, setting k0

t := k̃ak̃t , k′t := k̃t[αvp ]vp∈Σ′ , k′′t := k̃t[αvp ]vp∈Σ′′ , one has:

1) The fields k0
t , k′t, k′′t are linearly disjoint over k̃t , and k̃a

t |k̃t is the compositum k̃a
t = k0

t k′tk
′′
t .

Hence the Galois groups G0= G(k0
t |k̃t) = G a

k̃
, G′= G(k′t|k̃t) and G′′= G(k′′t |k̃t) satisfy:

The canonical projection G a
kt
→ G0 × G′ × G′′ is an isomorphism.

2) Concerning generation of G′ and G′′ one has:
a) Given a fix generator τ∞ ∈ Ta

v∞
there are unique inertia generators (τv ∈ Ta

v )v∈Σ′ which
topologically generate G′ and satisfy the unique prorelation ∏v∈Σ′ τv = 1 .

b) G′′ is profinite-freely generated by any system of inertia generators (τv ∈ Ta
v )v∈Σ′′ .

(II) The same holds, correspondingly, for Kt , and the sets of K -valuations Σ′K, Σ′′K ⊂ ValK(Kt) .
Further since Σ′ = Valk(kt) ∩ Σ′K and Σ′′ = Valk(kt) ∩ Σ′′K , and one has:

k0 ⊂ K0 , k′t ⊂ K′t , k′′t ⊂ K′′t , and k0 = K0 ∩ ka
t , k′t = K′t ∩ ka

t , k′′t = K′′t ∩ ka
t .

Proceed along the following steps:

Claim 1. In the above notation, there is ṽ ∈ Σ′ with w̃ := w̃ṽ|K not-trivial.
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Indeed, by contradiction, suppose that the assertion of Claim 1 does not hold, that is, for every

ṽ ∈ Σ′ the resulting w̃ṽ is trivial on K . Thus the map φ : Σ′ → Valk(K̃t) , ṽ 7→ w̃ṽ defined

in Fact 4.1 has image Vk ⊂ ValK(Kt) such that, by Fact 4.1, 1), w̃ṽ|k̃t
= ṽ for all ṽ ∈ Valk(k̃t) .

Therefore, if ṽ = v∞ , then w̃ṽ = vK̃,∞ , and if ṽ = vp with p ∈ k̃[t] monic irreducible, then

w̃ṽ = vK̃,p is the p -adic valuation of K̃t . Thus by (∗) above, [k̃tṽ : k̃] = dp = [K̃tvK̃,p : K̃] ,
concluding that Vk ⊂ Σ′K. Hence the map below is a bijection

φ : Σ′ → Vk ⊂ Σ′K, ṽ 7→ w̃ṽ with Vk ⊂ Σ′K stictly,

which via sa
t : G(k̃a

t |kt) → G(K̃a
t |Kt) and pa

Kt
: G(K̃a

t |Kt) → G(k̃a
t |kt) , is compatible with

inertia and decomposition groups, that is: For ṽ ↔ w̃ṽ one has sa
t (T

a
ṽ ) = Ta

w̃ṽ
, sa

t (Za
ṽ)⊂ Za

w̃ṽ
,

pa
Kt
(Za

w̃ṽ
) = Za

ṽ , and the residue fields satisfy K̃tw̃ṽ = K k̃tṽ . Let τ∞ ∈ Tv∞ be a fixed

generator, hence τK̃,∞ := sa(τ∞) ∈ TvK̃,∞
generates TvK̃,∞

and pa
Kt
(τK̃,∞) = τ∞ . Further, let

(τṽ ∈ Ta
ṽ )ṽ∈Σ′ and (τṽ ∈ Ta

ṽ )ṽ∈Σ′′ and (τw̃ ∈ Ta
w̃)w̃∈Σ′K

, (τw̃ ∈ Ta
w̃)w̃∈Σ′′K

be systems of inertia

generators as in Fact 4.3, 2) with τv∞ = τ∞ , τvK,∞ = τK,∞ .

Conclude that

(
sa(τṽ)

)
ṽ∈Σ′ = (τw̃ṽ

)w̃ṽ∈W is a proper subsystem of (τw̃)w̃∈Σ′K
such that

∏w̃ṽ∈Wτw̃ṽ
= ∏ṽ∈Σ′s

a
t (τṽ) = sa

t (∏ṽ∈Σ′τṽ) = sa
t (1) = 1.

Hence we reached a contradiction, and Claim 1 is proved.

Claim 2. The non-trivial valuation w̃ := w̃ṽ|K from Claim 1 does not dependent of ṽ .

Indeed, recall the inclusion φ : Valk(k̃t) ↪→ Valk(K̃t) , ṽ 7→ w̃ṽ from Fact 4.1, and by loc.cit., 2),

one has pa(Za
w̃ṽ
) = Za

ṽ ⊂ G a
k̃t

and pa(Zw̃a
ṽ|vv) = Zṽa|v ⊂ G(k̃a

t |kt). That implies in terms of

decomposition fields kw̃ := K̃tw̃ṽ ∩ k̃a = k̃tṽ ∩ k̃a =: kṽ as finite extension of k̃ . Next recall the

commutative diagrams:

G(K̃a
t |Kt)

pa
t−↠ G(k̃a

t |kt) | G(K̃a
t |Kt)

sa
t←− G(k̃a

t |kt)

↓ qa
Kt ↓ qa

kt ↓ qa
Kt ↓ qa

kt

G(K̃a|K)
pa

−↠ G(k̃a|k) G(K̃a|K) sa
←− G(k̃a|k)

which give rise to commutative diagrams for the inertia/decomposition groups:

Zw̃a
ṽ|vv

pa
t−↠ Zṽa|v Zw̃a

ṽ|vv
sa

t←− Zṽa|v

↓ qa
Kt ↓ qa

kt ↓ qa
Kt ↓ qa

kt

G(K̃a|K)
pa

−↠ G(k̃a|k) G(K̃a|K) sa
←− G(k̃a|k)

Let Za
w̃ ⊂ G a

K̃ be the decomposition group of a non-trivial k -valuation w̃ = w̃ṽ|K̃ . Then by

Hilbert decomposition theory one has that qa
Kt
(Zw̃a

ṽ|vv) ⊂ Zw̃|w . Hence since qa
Kt
◦ sa

t = sa ◦ qa
kt

,

and taking into account that qa
kt
(Zṽa|v) = G(k̃a|kṽ) , one has finally commutative diagrams:

Zw̃a
ṽ|vv

pa
t−↠ Zṽa|v Za

w̃a
ṽ|vv

sa
t←− Zṽa|v

↓ qa
Kt ↓ qa

kt ↓ qa
Kt ↓ qa

kt

Zw̃a|w
pa

−↠ G(k̃a|kṽ) Zw̃a|w
sa
←− G(k̃a|kṽ)
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that is, sa
(G(k̃a|kṽ)) ⊂ Zw̃a|w . In particular, since k̃a|k satisfies Hypothesis (H), i.e., k̃a|k has

infinite degree, and kṽ|k has finite degree by the discussion above, one has the following:

(∗)sa im(sa) ∩ Zw̃a|w ⊃ sa
(G(k̃a|kṽ) ∩ Zw̃a|w are open subgroups of im(sa) .

In particular, if ṽ′ ∈ Valk(k̃t) and the resulting w̃′ṽ′ ∈ Valk(Kt) is such that w̃′ := w̃′ṽ′ |K
is non-trivial, then the corresponding kṽ′ |k is finite. Hence G(k̃ṽ′ |k) ⊂ G(k̃|k) is open and

sa
(G(k̃a|kṽ′)) = im(sa) ∩ Zw̃′a|w′ . Therefore, Gṽ,ṽ′ := G(k̃|kṽ) ∩ G(k̃ṽ′ |k) ⊂ G(k̃|k) is an open

subgroup as well, and we conclude: sa(Gṽ,ṽ′) ⊂ im(sa) is open, thus infinite, and one has:

sa(Gṽ,ṽ′) ⊂ sa
(G(k̃a|kṽ))∩ sa

(G(k̃a|kṽ′)) ⊂ Zw̃a|w ∩ Zw̃′a|w′

is an infinite group. On the other hand, the k -valuations of K̃ are discrete, because K = k(X)
is the function field of a k -curve X . Therefore, the non-equivalent k -valuation of K are inde-

pendent. Thus we conclude that w̃ = w̃′ by Lemma 2.8.

Hence Claim 2 is proved.

Claim 3. Kw|k and k̃|k are linearly disjoint over k .

Indeed, identify G(K̃|K) =: G := G(k̃|k) under G(K̃|K) ı→G(k̃|k) , and recall that kṽ|k ↪→ k̃|k
is a finite subextension, where kṽ := Kw ∩ k̃ . By Hilbert decomposition theory, G acts transi-

tively on the set Vw of prolongation w̃′|w of w to K̃|K by w̃σ = w̃ ◦ σ , and Zw̃|w is the stabi-

lizer of w̃ . Setting w̃′ := w̃σ
and ṽ′ := ṽσ

, one has: First, if σa 7→ σ under G(k̃a|k) → G , then

σ(kṽ) = kṽ′ , thus G(k̃|kṽ′) = G(k̃|kṽ)σa
is open subgroup of G(k̃|k). Second, if σa

K 7→ σ under

G(K̃a|k)→ G , then Zw̃′a|w = Zσa
K

w̃a|w inside G(K̃a|K) . In particular, choosing σa
K = s(σa) , thus

σa
K ∈ im(sa) , the following hold:

a) im(sa) ⊂ G(K̃a|K) is invariant under the σa
-conjugation.

b) sa
(G(k̃a|kṽ′)) ⊂ im(sa) is open, and so is sa

(G(k̃a|kṽ)) ⊂ im(sa).

c) sa
(G(k̃a|kṽ′) = sa

(G(k̃a|kṽ))
σa
⊂ Zσa

w̃a|w = Zw̃′a|w , because sa
(G(k̃a|kṽ)) ⊂ Zw̃a|w.

Conclude: Gṽ,ṽ′ := sa
(G(k̃a|kṽ′))∩ sa

(G(k̃a|kṽ)) ⊂ im(sa) is open in im(sa) , hence infinite, and

1 ̸= Gṽ,ṽ′ ⊂ sa
(G(k̃a|kṽ′))∩ sa

(G(k̃a|kṽ)) ⊂ Zw̃′a|w ∩ Zw̃a|w .

Hence arguing as in the proof of Claim 2, one gets w̃ = w̃′. Equivalently, σ ∈ Zw̃|w , thus finally,

implying that Kw∩ k̃ = k , as claimed.

This concludes the proof of Key Lemma 4.2. □

4.3. Concluding the proof of Theorem 1.5.
In the context/notation of Theorem 1.5, let sa : G(k̃a|k)→ G(K̃|K) be a t -bitationally liftable

section of pa : G(K̃a|K) → G(k̃|k) . Then by Key Lemma 4.2, there is a unique non-trivial

valuation w̃ ∈ Valk(K) which together with its restriction w := w̃|K satisfy:

(∗) Kw|k and k̃|k are linearly disjoint over k.

Since K = k(X) with X a complete k -curve and w ∈ Valk(K) , it follows that w has a center

xw ∈ X such that Ow = Oxw and mw = mxw , and similarly, w̃ has a center xw̃ ∈ X̃ = Xk̃
such that xw̃ 7→ xw under the canonical projection X̃ → X . In particular, κxw = Kw , and

therefore, by (∗) above, it follows that κxw |k and k̃|k are linearly disjoint over k . And w̃|w are
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defined by the points xw̃|xw as required in Theorem 1.5. Finally, the points xw̃|xw are unique

with the property that im(sa) ∩ Za
xw̃|xw

̸= 1 by the uniqueness part of the Key Lemma 4.2.

This concludes the proof of Theorem 1.5.

5. Final comments/Open questions

Naturally, the elephant in the room is whether the Section Conjecture holds in the geometric

case, i.e., form geometrically integral normal k -curves X , where k is a not ℓ -closed for some

ℓ ̸= char(k) . Here is a short list of questions which might be addressed with methods similar to

the ones developed in this manuscript. Here, the notations are as in sections 3 and 4 above.

0) Prove all the above results for ℓ = 2 , provided char ̸= 2 (after replacing µℓ by µ4 ).

1) Suppose that µ2ℓ ⊂ k̃ and k̃×/ℓ infinite. Does the k̃|k - t -BSC hold?

2) Replacing P1
t (in the t -BST) by a k -curve or a k -variety Z , formulate & prove the Z -BSC.

3) Let k be Hilbertian, X be proper smooth k -variety. Does the t -BSC hold for K = k(X) ?

4) Let k be as above. Does the BSC hold for Kt|kt , e.g., for k = k0(u) , k0 = k0 ?

• This would sharpen Bogomolov–Rovinsky–Tschinkel [BRT] over k := k0(t,u) , k0 = k0 .
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