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Motivation

In research surrounding definability, decidability and
computability, most often global objects are considered:
number fields, function fields, their rings of (S-)integers
Here global means: presence of infinitely many valuations with a
product formula

Algebraic number theory/arithmetic geometry/commutative
algebra tell us: Often helpful to first understand local objects,
which tend to be simpler
Qp instead of Q, Zp instead of Z, F ((t)) instead of F (t), F [[t]]
instead of F [t]
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Objects of study

We consider complete discretely valued fields K; that is, K is
fraction field of a PID O with a unique maximal ideal m ̸= 0
(discrete valuation ring), and O ∼= lim←−n

O/mn (completeness)
κ := O/m is the residue field

If char(K) = char(κ), all examples are of the form O = κ[[t]],
K = κ((t)), and (parameterfree) H10 is well-understood
(Anscombe–Fehm 2016)

Thus assume mixed characteristic: char(K) = 0, char(κ) = p > 0
Examples: Qp with O = Zp, κ = Fp, finite extensions of Qp

There exists CDVF K with κ any given field of char. p: E.g. for
κ = Fp(X1, . . . , Xn) take the completion of Z[X1, . . . , Xn](p) for
O

(Model-theoretically correct generality: henselian finitely ramified valued fields)



Objects of study

We consider complete discretely valued fields K; that is, K is
fraction field of a PID O with a unique maximal ideal m ̸= 0
(discrete valuation ring), and O ∼= lim←−n

O/mn (completeness)
κ := O/m is the residue field

If char(K) = char(κ), all examples are of the form O = κ[[t]],
K = κ((t)), and (parameterfree) H10 is well-understood
(Anscombe–Fehm 2016)

Thus assume mixed characteristic: char(K) = 0, char(κ) = p > 0
Examples: Qp with O = Zp, κ = Fp, finite extensions of Qp

There exists CDVF K with κ any given field of char. p: E.g. for
κ = Fp(X1, . . . , Xn) take the completion of Z[X1, . . . , Xn](p) for
O

(Model-theoretically correct generality: henselian finitely ramified valued fields)



Objects of study

We consider complete discretely valued fields K; that is, K is
fraction field of a PID O with a unique maximal ideal m ̸= 0
(discrete valuation ring), and O ∼= lim←−n

O/mn (completeness)
κ := O/m is the residue field

If char(K) = char(κ), all examples are of the form O = κ[[t]],
K = κ((t)), and (parameterfree) H10 is well-understood
(Anscombe–Fehm 2016)

Thus assume mixed characteristic: char(K) = 0, char(κ) = p > 0
Examples: Qp with O = Zp, κ = Fp, finite extensions of Qp

There exists CDVF K with κ any given field of char. p:

E.g. for
κ = Fp(X1, . . . , Xn) take the completion of Z[X1, . . . , Xn](p) for
O

(Model-theoretically correct generality: henselian finitely ramified valued fields)



Objects of study

We consider complete discretely valued fields K; that is, K is
fraction field of a PID O with a unique maximal ideal m ̸= 0
(discrete valuation ring), and O ∼= lim←−n

O/mn (completeness)
κ := O/m is the residue field

If char(K) = char(κ), all examples are of the form O = κ[[t]],
K = κ((t)), and (parameterfree) H10 is well-understood
(Anscombe–Fehm 2016)

Thus assume mixed characteristic: char(K) = 0, char(κ) = p > 0
Examples: Qp with O = Zp, κ = Fp, finite extensions of Qp

There exists CDVF K with κ any given field of char. p: E.g. for
κ = Fp(X1, . . . , Xn) take the completion of Z[X1, . . . , Xn](p) for
O

(Model-theoretically correct generality: henselian finitely ramified valued fields)



Objects of study

We consider complete discretely valued fields K; that is, K is
fraction field of a PID O with a unique maximal ideal m ̸= 0
(discrete valuation ring), and O ∼= lim←−n

O/mn (completeness)
κ := O/m is the residue field

If char(K) = char(κ), all examples are of the form O = κ[[t]],
K = κ((t)), and (parameterfree) H10 is well-understood
(Anscombe–Fehm 2016)

Thus assume mixed characteristic: char(K) = 0, char(κ) = p > 0
Examples: Qp with O = Zp, κ = Fp, finite extensions of Qp

There exists CDVF K with κ any given field of char. p: E.g. for
κ = Fp(X1, . . . , Xn) take the completion of Z[X1, . . . , Xn](p) for
O

(Model-theoretically correct generality: henselian finitely ramified valued fields)



Questions

Let K, O as above

Question (Hilbert 10 over K)
Is there an algorithm to decide which polynomials in Z[X1, . . . ]
have zeroes in K? Equivalently, is Th∃(K) decidable? More
precisely, how hard is Th∃(K) to decide?

Th∃(K) is precisely as hard as (1-equivalent to) Th∃(O)
NB: Work parameterfreely (coefficients in Z) – otherwise easy
undecidability even for Qp

Question
Is Th(K) decidable?
In both cases, want to reduce questions to properties of the
residue field.
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Pathologies

Theorem (D. 2022)
There exists K CDVF with Th∃(K) undecidable, even though
Th∃(κ) decidable.
Thus Hilbert 10 over K is in a strong sense not controlled by κ.

Such K is necessarily of mixed characteristic (Anscombe–Fehm
2016) Proof idea:

Theorem (D. 2022, after K. Thanagopal 2019)
Let p prime. There exists κ of characteristic p and λ/κ
separable quadratic with Th∃(κ) decidable, Th∃(λ) undecidable.
Then construct K CDVF with residue field κ which encodes
(∃-∅-interprets) λ
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Previous work

Let K CDVF of characteristic 0, residue characteristic p > 0, O,
κ as above

Theorem (Ershov 1966; Anscombe–Jahnke 2022)
Assume p generates the maximal ideal of O (“K is unramified”).
Then Th(K) is axiomatised by fixing Th(κ). In particular,
Th(K) is decidable if and only if Th(κ) is decidable.
Formally implies analogue for Th∃ in place of Th.

Theorem (Basarab 1978)
Th(K) is axiomatised by the data of the Th(O/pn) for all
n > 0. In particular: Th(K) is decidable if and only if the
Th(O/pn) are uniformly decidable.
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New results (Anscombe–D.–Jahnke 2023)

Goal: Find invariants in terms of the residue field for Th∃(K),
Th(K), without assuming unramified or κ perfect

Let K, O, κ as above, e ∈ N the initial ramification index, i.e.
pO = me

Thus e = 1 in Qp, since pZp is the maximal ideal of Zp; e = 2 in
Q3(
√
6), since the maximal ideal of O = Z3[

√
6] is

√
6Z3, and

3Z3[
√
6] =

√
6
2Z3[
√
6]

We solve the problem above for fixed p and e.
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New results (Anscombe–D.–Jahnke 2023)

Theorem
There is m = m(p, e) ≥ 0 such that, for a certain Ω ⊆ κm:
▶ Th∃(K) is as hard as (1-equivalent to) Th∃+(κ,Ω)

▶ Th(K) is as hard as (1-equivalent to) Th(κ,Ω)

Th∃+(κ,Ω) encodes for which
f1, . . . , fk ∈ Fp[X1, . . . , Xn, Y1, . . . , Yml] we have

∃x1, . . . , xn ∈ κ∃(y1, . . . , ym), . . . , (yml−m+1, . . . , yml) ∈ Ω:∧
i

fi(x, y) = 0

Th(κ,Ω) also allows universal quantification, and asserting that
certain tuples do not lie in Ω
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Whence Ω?

The set Ω ⊆ κm is itself defined in a natural way:

there exists Ξ ⊆ Om, ∃-∅-definable (parameterfreely
diophantine) in K such that Ω is the reduction of Ξ;
and the definition of Ξ only depends on p, e (not K)
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Model-theoretic formulation

The computability-theoretic results are corollaries of
axiomatisability results:

Theorem (A–D–J)
Let K, L both CVDFs with residue fields κ, λ of characteristic
p, with the same initial ramification index e.
▶ Th∃(K) = Th∃(L) ⇐⇒ Th∃+(κ,ΩK) = Th∃+(λ,ΩL)

▶ Th(K) = Th(L) ⇐⇒ Th(κ,ΩK) = Th(λ,ΩL)

Various bonus statements: ΩK precisely describes the structure
induced by K on κ, and (κ,ΩK) is stably embedded in K



Commentary

▶ The reduction of Th∃(K) to Th∃+(κ,Ω) is purely
theoretical

▶ Even the arity m = m(p, e) of Ω grows extremely quickly
with e

▶ Further results concerning Hilbert 10/full theories with
parameters (quantifier elimination) would be desirable


