Hilbert's 10th Problem for complete discretely valued fields

Philip Dittmann

Technische Universität Dresden
21 June 2023

Motivation

In research surrounding definability, decidability and computability, most often global objects are considered: number fields, function fields, their rings of (S-)integers
Here global means: presence of infinitely many valuations with a product formula

Motivation

In research surrounding definability, decidability and computability, most often global objects are considered: number fields, function fields, their rings of (S-)integers
Here global means: presence of infinitely many valuations with a product formula

Algebraic number theory/arithmetic geometry/commutative algebra tell us: Often helpful to first understand local objects, which tend to be simpler
\mathbb{Q}_{p} instead of $\mathbb{Q}, \mathbb{Z}_{p}$ instead of $\mathbb{Z}, F((t))$ instead of $F(t), F \llbracket t \rrbracket$ instead of $F[t]$

Objects of study

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \lim _{\ddagger} \mathcal{O} / \mathfrak{m}^{n}$ (completeness) $\kappa:=\mathcal{O} / \mathfrak{m}$ is the residue field

Objects of study

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \lim _{\ddagger} \mathcal{O} / \mathfrak{m}^{n}$ (completeness) $\kappa:=\mathcal{O} / \mathfrak{m}$ is the residue field

If $\operatorname{char}(K)=\operatorname{char}(\kappa)$, all examples are of the form $\mathcal{O}=\kappa \llbracket t \rrbracket$, $K=\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe-Fehm 2016)

Objects of study

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \lim _{\ddagger} \mathcal{O} / \mathfrak{m}^{n}$ (completeness) $\kappa:=\mathcal{O} / \mathfrak{m}$ is the residue field

If $\operatorname{char}(K)=\operatorname{char}(\kappa)$, all examples are of the form $\mathcal{O}=\kappa \llbracket t \rrbracket$, $K=\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe-Fehm 2016)
Thus assume mixed characteristic: $\operatorname{char}(K)=0, \operatorname{char}(\kappa)=p>0$ Examples: \mathbb{Q}_{p} with $\mathcal{O}=\mathbb{Z}_{p}, \kappa=\mathbb{F}_{p}$, finite extensions of \mathbb{Q}_{p} There exists CDVF K with κ any given field of char. p :

Objects of study

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \lim _{\ddagger} \mathcal{O} / \mathfrak{m}^{n}$ (completeness) $\kappa:=\mathcal{O} / \mathfrak{m}$ is the residue field

If $\operatorname{char}(K)=\operatorname{char}(\kappa)$, all examples are of the form $\mathcal{O}=\kappa \llbracket t \rrbracket$, $K=\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe-Fehm 2016)
Thus assume mixed characteristic: $\operatorname{char}(K)=0, \operatorname{char}(\kappa)=p>0$ Examples: \mathbb{Q}_{p} with $\mathcal{O}=\mathbb{Z}_{p}, \kappa=\mathbb{F}_{p}$, finite extensions of \mathbb{Q}_{p} There exists CDVF K with κ any given field of char. p: E.g. for $\kappa=\mathbb{F}_{p}\left(X_{1}, \ldots, X_{n}\right)$ take the completion of $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]_{(p)}$ for \mathcal{O}

Objects of study

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \lim _{{ }_{n}} \mathcal{O} / \mathfrak{m}^{n}$ (completeness) $\kappa:=\mathcal{O} / \mathfrak{m}$ is the residue field

If $\operatorname{char}(K)=\operatorname{char}(\kappa)$, all examples are of the form $\mathcal{O}=\kappa \llbracket t \rrbracket$, $K=\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe-Fehm 2016)

Thus assume mixed characteristic: $\operatorname{char}(K)=0, \operatorname{char}(\kappa)=p>0$ Examples: \mathbb{Q}_{p} with $\mathcal{O}=\mathbb{Z}_{p}, \kappa=\mathbb{F}_{p}$, finite extensions of \mathbb{Q}_{p} There exists CDVF K with κ any given field of char. p: E.g. for $\kappa=\mathbb{F}_{p}\left(X_{1}, \ldots, X_{n}\right)$ take the completion of $\mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]_{(p)}$ for \mathcal{O}

Questions

Let K, \mathcal{O} as above
Question (Hilbert 10 over K)
Is there an algorithm to decide which polynomials in $\mathbb{Z}\left[X_{1}, \ldots\right]$ have zeroes in K ? Equivalently, is $\mathrm{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?

Questions

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}\left[X_{1}, \ldots\right]$ have zeroes in K ? Equivalently, is $\mathrm{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?
$\mathrm{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\mathrm{Th}_{\exists}(\mathcal{O})$

Questions

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}\left[X_{1}, \ldots\right]$ have zeroes in K ? Equivalently, is $\mathrm{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?
$\mathrm{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\mathrm{Th}_{\exists}(\mathcal{O})$ NB: Work parameterfreely (coefficients in \mathbb{Z}) - otherwise easy undecidability even for \mathbb{Q}_{p}

Questions

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}\left[X_{1}, \ldots\right]$ have zeroes in K ? Equivalently, is $\mathrm{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?
$\mathrm{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\mathrm{Th}_{\exists}(\mathcal{O})$ NB: Work parameterfreely (coefficients in \mathbb{Z}) - otherwise easy undecidability even for \mathbb{Q}_{p}

Question
Is $\operatorname{Th}(K)$ decidable?

Questions

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}\left[X_{1}, \ldots\right]$ have zeroes in K ? Equivalently, is $\operatorname{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?
$\mathrm{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\mathrm{Th}_{\exists}(\mathcal{O})$ NB: Work parameterfreely (coefficients in \mathbb{Z}) - otherwise easy undecidability even for \mathbb{Q}_{p}

Question

Is $\operatorname{Th}(K)$ decidable?
In both cases, want to reduce questions to properties of the residue field.

Pathologies

Theorem (D. 2022)
There exists $K C D V F$ with $\operatorname{Th}_{\exists}(K)$ undecidable, even though $\mathrm{Th}_{\exists}(\kappa)$ decidable.
Thus Hilbert 10 over K is in a strong sense not controlled by κ.

Pathologies

Theorem (D. 2022)
There exists $K C D V F$ with $\operatorname{Th}_{\exists}(K)$ undecidable, even though $\mathrm{Th}_{\exists}(\kappa)$ decidable.
Thus Hilbert 10 over K is in a strong sense not controlled by κ. Such K is necessarily of mixed characteristic (Anscombe-Fehm 2016)

Pathologies

Theorem (D. 2022)
There exists $K C D V F$ with $\mathrm{Th}_{\exists}(K)$ undecidable, even though $\mathrm{Th}_{\exists}(\kappa)$ decidable.
Thus Hilbert 10 over K is in a strong sense not controlled by κ. Such K is necessarily of mixed characteristic (Anscombe-Fehm 2016) Proof idea:

Theorem (D. 2022, after K. Thanagopal 2019)
Let p prime. There exists κ of characteristic p and λ / κ separable quadratic with $\mathrm{Th}_{\exists}(\kappa)$ decidable, $\mathrm{Th}_{\exists}(\lambda)$ undecidable.

Pathologies

Theorem (D. 2022)

There exists $K C D V F$ with $\operatorname{Th}_{\exists}(K)$ undecidable, even though $\mathrm{Th}_{\exists}(\kappa)$ decidable.
Thus Hilbert 10 over K is in a strong sense not controlled by κ. Such K is necessarily of mixed characteristic (Anscombe-Fehm 2016) Proof idea:

Theorem (D. 2022, after K. Thanagopal 2019)
Let p prime. There exists κ of characteristic p and λ / κ separable quadratic with $\mathrm{Th}_{\exists}(\kappa)$ decidable, $\mathrm{Th}_{\exists}(\lambda)$ undecidable. Then construct K CDVF with residue field κ which encodes ($\exists-\emptyset$-interprets) λ

Previous work

Let K CDVF of characteristic 0 , residue characteristic $p>0, \mathcal{O}$, κ as above

Theorem (Ershov 1966; Anscombe--Jahnke 2022)
Assume p generates the maximal ideal of \mathcal{O} ("K is unramified"). Then $\operatorname{Th}(K)$ is axiomatised by fixing $\operatorname{Th}(\kappa)$. In particular, $\mathrm{Th}(K)$ is decidable if and only if $\operatorname{Th}(\kappa)$ is decidable.
Formally implies analogue for Th_{\exists} in place of Th .

Previous work

Let K CDVF of characteristic 0 , residue characteristic $p>0, \mathcal{O}$, κ as above

Theorem (Ershov 1966; Anscombe-Jahnke 2022)
Assume p generates the maximal ideal of \mathcal{O} ("K is unramified"). Then $\operatorname{Th}(K)$ is axiomatised by fixing $\operatorname{Th}(\kappa)$. In particular, $\operatorname{Th}(K)$ is decidable if and only if $\operatorname{Th}(\kappa)$ is decidable.
Formally implies analogue for Th_{\exists} in place of Th .

Theorem (Basarab 1978)

$\operatorname{Th}(K)$ is axiomatised by the data of the $\operatorname{Th}\left(\mathcal{O} / p^{n}\right)$ for all $n>0$. In particular: $\operatorname{Th}(K)$ is decidable if and only if the $\operatorname{Th}\left(\mathcal{O} / p^{n}\right)$ are uniformly decidable.

New results (Anscombe-D.-Jahnke 2023)

Goal: Find invariants in terms of the residue field for $\operatorname{Th}_{\exists}(K)$, $\mathrm{Th}(K)$, without assuming unramified or κ perfect

New results (Anscombe-D.-Jahnke 2023)

Goal: Find invariants in terms of the residue field for $\mathrm{Th}_{\exists}(K)$, $\operatorname{Th}(K)$, without assuming unramified or κ perfect
Let K, \mathcal{O}, κ as above, $e \in \mathbb{N}$ the initial ramification index, i.e. $p \mathcal{O}=\mathfrak{m}^{e}$
Thus $e=1$ in \mathbb{Q}_{p}, since $p \mathbb{Z}_{p}$ is the maximal ideal of $\mathbb{Z}_{p} ; e=2$ in $\mathbb{Q}_{3}(\sqrt{6})$, since the maximal ideal of $\mathcal{O}=\mathbb{Z}_{3}[\sqrt{6}]$ is $\sqrt{6} \mathbb{Z}_{3}$, and $3 \mathbb{Z}_{3}[\sqrt{6}]=\sqrt{6}^{2} \mathbb{Z}_{3}[\sqrt{6}]$
We solve the problem above for fixed p and e.

New results (Anscombe-D.--Jahnke 2023)

Theorem
There is $m=m(p, e) \geq 0$ such that, for a certain $\Omega \subseteq \kappa^{m}$:
$-\operatorname{Th}_{\exists}(K)$ is as hard as (1-equivalent to) $\operatorname{Th}_{\exists+}(\kappa, \Omega)$
$\rightarrow \operatorname{Th}(K)$ is as hard as (1-equivalent to) $\operatorname{Th}(\kappa, \Omega)$

New results (Anscombe-D.--Jahnke 2023)

Theorem

There is $m=m(p, e) \geq 0$ such that, for a certain $\Omega \subseteq \kappa^{m}$:

- $\operatorname{Th}_{\exists}(K)$ is as hard as (1-equivalent to) $\operatorname{Th}_{\exists^{+}}(\kappa, \Omega)$
- $\operatorname{Th}(K)$ is as hard as (1-equivalent to) $\operatorname{Th}(\kappa, \Omega)$
$\mathrm{Th}_{\exists+}(\kappa, \Omega)$ encodes for which
$f_{1}, \ldots, f_{k} \in \mathbb{F}_{p}\left[X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m l}\right]$ we have

$$
\begin{array}{r}
\exists x_{1}, \ldots, x_{n} \in \kappa \exists\left(y_{1}, \ldots, y_{m}\right), \ldots,\left(y_{m l-m+1}, \ldots, y_{m l}\right) \in \Omega: \\
\bigwedge_{i} f_{i}(\underline{x}, \underline{y})=0
\end{array}
$$

$\operatorname{Th}(\kappa, \Omega)$ also allows universal quantification, and asserting that certain tuples do not lie in Ω

Whence Ω ?

The set $\Omega \subseteq \kappa^{m}$ is itself defined in a natural way:

Whence Ω ?

The set $\Omega \subseteq \kappa^{m}$ is itself defined in a natural way: there exists $\Xi \subseteq \mathcal{O}^{m}, \exists$ - -definable (parameterfreely diophantine) in K such that Ω is the reduction of Ξ; and the definition of Ξ only depends on $p, e($ not $K)$

Model-theoretic formulation

The computability-theoretic results are corollaries of axiomatisability results:
Theorem (A-D-J)
Let K, L both CVDFs with residue fields κ, λ of characteristic p, with the same initial ramification index e.

- $\operatorname{Th}_{\exists}(K)=\operatorname{Th}_{\exists}(L) \Longleftrightarrow \operatorname{Th}_{\exists+}\left(\kappa, \Omega_{K}\right)=\operatorname{Th}_{\exists^{+}}\left(\lambda, \Omega_{L}\right)$
- $\operatorname{Th}(K)=\operatorname{Th}(L) \Longleftrightarrow \operatorname{Th}\left(\kappa, \Omega_{K}\right)=\operatorname{Th}\left(\lambda, \Omega_{L}\right)$

Various bonus statements: Ω_{K} precisely describes the structure induced by K on κ, and $\left(\kappa, \Omega_{K}\right)$ is stably embedded in K

Commentary

- The reduction of $\operatorname{Th}_{\exists}(K)$ to $\operatorname{Th}_{\exists+}(\kappa, \Omega)$ is purely theoretical
- Even the arity $m=m(p, e)$ of Ω grows extremely quickly with e
- Further results concerning Hilbert 10/full theories with parameters (quantifier elimination) would be desirable

