Hilbert's 10th Problem for complete discretely valued fields

Philip Dittmann

Technische Universität Dresden

21 June 2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Motivation

In research surrounding definability, decidability and computability, most often *global* objects are considered: number fields, function fields, their rings of (S-)integers Here global means: presence of infinitely many valuations with a product formula

Motivation

In research surrounding definability, decidability and computability, most often *global* objects are considered: number fields, function fields, their rings of (S-)integers Here global means: presence of infinitely many valuations with a product formula

Algebraic number theory/arithmetic geometry/commutative algebra tell us: Often helpful to first understand *local* objects, which tend to be simpler \mathbb{Q}_p instead of \mathbb{Q} , \mathbb{Z}_p instead of \mathbb{Z} , F((t)) instead of F(t), F[[t]]instead of F[t]

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \varprojlim_n \mathcal{O}/\mathfrak{m}^n$ (completeness) $\kappa := \mathcal{O}/\mathfrak{m}$ is the residue field

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \varprojlim_n \mathcal{O}/\mathfrak{m}^n$ (completeness) $\kappa := \mathcal{O}/\mathfrak{m}$ is the residue field

If char(K) = char(κ), all examples are of the form $\mathcal{O} = \kappa \llbracket t \rrbracket$, K = $\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe–Fehm 2016)

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \varprojlim_n \mathcal{O}/\mathfrak{m}^n$ (completeness) $\kappa := \mathcal{O}/\mathfrak{m}$ is the residue field

If char(K) = char(κ), all examples are of the form $\mathcal{O} = \kappa[[t]]$, K = $\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe–Fehm 2016)

Thus assume mixed characteristic: $\operatorname{char}(K) = 0$, $\operatorname{char}(\kappa) = p > 0$ Examples: \mathbb{Q}_p with $\mathcal{O} = \mathbb{Z}_p$, $\kappa = \mathbb{F}_p$, finite extensions of \mathbb{Q}_p There exists CDVF K with κ any given field of char. p:

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \varprojlim_n \mathcal{O}/\mathfrak{m}^n$ (completeness) $\kappa := \mathcal{O}/\mathfrak{m}$ is the residue field

If char(K) = char(κ), all examples are of the form $\mathcal{O} = \kappa[[t]]$, K = $\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe–Fehm 2016)

Thus assume mixed characteristic: $\operatorname{char}(K) = 0$, $\operatorname{char}(\kappa) = p > 0$ Examples: \mathbb{Q}_p with $\mathcal{O} = \mathbb{Z}_p$, $\kappa = \mathbb{F}_p$, finite extensions of \mathbb{Q}_p There exists CDVF K with κ any given field of char. p: E.g. for $\kappa = \mathbb{F}_p(X_1, \ldots, X_n)$ take the completion of $\mathbb{Z}[X_1, \ldots, X_n]_{(p)}$ for \mathcal{O}

We consider complete discretely valued fields K; that is, K is fraction field of a PID \mathcal{O} with a unique maximal ideal $\mathfrak{m} \neq 0$ (discrete valuation ring), and $\mathcal{O} \cong \varprojlim_n \mathcal{O}/\mathfrak{m}^n$ (completeness) $\kappa := \mathcal{O}/\mathfrak{m}$ is the residue field

If char(K) = char(κ), all examples are of the form $\mathcal{O} = \kappa[[t]]$, K = $\kappa((t))$, and (parameterfree) H10 is well-understood (Anscombe–Fehm 2016)

Thus assume mixed characteristic: $\operatorname{char}(K) = 0$, $\operatorname{char}(\kappa) = p > 0$ Examples: \mathbb{Q}_p with $\mathcal{O} = \mathbb{Z}_p$, $\kappa = \mathbb{F}_p$, finite extensions of \mathbb{Q}_p There exists CDVF K with κ any given field of char. p: E.g. for $\kappa = \mathbb{F}_p(X_1, \ldots, X_n)$ take the completion of $\mathbb{Z}[X_1, \ldots, X_n]_{(p)}$ for \mathcal{O}

イロト (雪) (ヨ) (ヨ) (ヨ) ()

(Model-theoretically correct generality: henselian finitely ramified valued fields)

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}[X_1,...]$ have zeroes in K? Equivalently, is $\operatorname{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?

イロト (雪) (ヨ) (ヨ) (ヨ) ()

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}[X_1,...]$ have zeroes in K? Equivalently, is $\operatorname{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?

うして ふゆ く 山 マ ふ し マ う く し マ

 $\operatorname{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\operatorname{Th}_{\exists}(\mathcal{O})$

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}[X_1,...]$ have zeroes in K? Equivalently, is $\operatorname{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?

 $\operatorname{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\operatorname{Th}_{\exists}(\mathcal{O})$ NB: Work parameterfreely (coefficients in \mathbb{Z}) – otherwise easy undecidability even for \mathbb{Q}_p

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}[X_1,...]$ have zeroes in K? Equivalently, is $\operatorname{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?

 $\operatorname{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\operatorname{Th}_{\exists}(\mathcal{O})$ NB: Work parameterfreely (coefficients in \mathbb{Z}) – otherwise easy undecidability even for \mathbb{Q}_p

うして ふゆ く 山 マ ふ し マ う く し マ

 $\frac{\text{Question}}{\text{Is Th}(K) \text{ decidable}?}$

Let K, \mathcal{O} as above

Question (Hilbert 10 over K)

Is there an algorithm to decide which polynomials in $\mathbb{Z}[X_1, ...]$ have zeroes in K? Equivalently, is $\operatorname{Th}_{\exists}(K)$ decidable? More precisely, how hard is $\operatorname{Th}_{\exists}(K)$ to decide?

 $\operatorname{Th}_{\exists}(K)$ is precisely as hard as (1-equivalent to) $\operatorname{Th}_{\exists}(\mathcal{O})$ NB: Work parameterfreely (coefficients in \mathbb{Z}) – otherwise easy undecidability even for \mathbb{Q}_p

Question

Is Th(K) decidable?

In both cases, want to reduce questions to properties of the residue field.

Theorem (D. 2022)

There exists K CDVF with $\text{Th}_{\exists}(K)$ undecidable, even though $\text{Th}_{\exists}(\kappa)$ decidable.

Thus Hilbert 10 over K is in a strong sense not controlled by κ .

Theorem (D. 2022)

There exists K CDVF with $\operatorname{Th}_{\exists}(K)$ undecidable, even though $\operatorname{Th}_{\exists}(\kappa)$ decidable.

Thus Hilbert 10 over K is in a strong sense not controlled by κ . Such K is necessarily of mixed characteristic (Anscombe–Fehm 2016)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (D. 2022)

There exists K CDVF with $\text{Th}_{\exists}(K)$ undecidable, even though $\text{Th}_{\exists}(\kappa)$ decidable.

Thus Hilbert 10 over K is in a strong sense not controlled by κ . Such K is necessarily of mixed characteristic (Anscombe–Fehm 2016) Proof idea:

Theorem (D. 2022, after K. Thanagopal 2019)

Let p prime. There exists κ of characteristic p and λ/κ separable quadratic with $\text{Th}_{\exists}(\kappa)$ decidable, $\text{Th}_{\exists}(\lambda)$ undecidable.

Theorem (D. 2022)

There exists K CDVF with $\text{Th}_{\exists}(K)$ undecidable, even though $\text{Th}_{\exists}(\kappa)$ decidable.

Thus Hilbert 10 over K is in a strong sense not controlled by κ . Such K is necessarily of mixed characteristic (Anscombe–Fehm 2016) Proof idea:

Theorem (D. 2022, after K. Thanagopal 2019)

Let p prime. There exists κ of characteristic p and λ/κ separable quadratic with $\operatorname{Th}_{\exists}(\kappa)$ decidable, $\operatorname{Th}_{\exists}(\lambda)$ undecidable. Then construct K CDVF with residue field κ which encodes $(\exists-\emptyset-interprets) \lambda$

イロト (雪) (ヨ) (ヨ) (ヨ) ()

Previous work

Let K CDVF of characteristic 0, residue characteristic p > 0, \mathcal{O} , κ as above

Theorem (Ershov 1966; Anscombe–Jahnke 2022)

Assume p generates the maximal ideal of \mathcal{O} ("K is unramified"). Then $\operatorname{Th}(K)$ is axiomatised by fixing $\operatorname{Th}(\kappa)$. In particular, $\operatorname{Th}(K)$ is decidable if and only if $\operatorname{Th}(\kappa)$ is decidable. Formally implies analogue for $\operatorname{Th}_{\exists}$ in place of Th.

イロト (雪) (ヨ) (ヨ) (ヨ) ()

Previous work

Let K CDVF of characteristic 0, residue characteristic p > 0, \mathcal{O} , κ as above

Theorem (Ershov 1966; Anscombe–Jahnke 2022)

Assume p generates the maximal ideal of \mathcal{O} ("K is unramified"). Then $\operatorname{Th}(K)$ is axiomatised by fixing $\operatorname{Th}(\kappa)$. In particular, $\operatorname{Th}(K)$ is decidable if and only if $\operatorname{Th}(\kappa)$ is decidable. Formally implies analogue for $\operatorname{Th}_{\exists}$ in place of Th.

Theorem (Basarab 1978)

Th(K) is axiomatised by the data of the Th(\mathcal{O}/p^n) for all n > 0. In particular: Th(K) is decidable if and only if the Th(\mathcal{O}/p^n) are uniformly decidable.

New results (Anscombe–D.–Jahnke 2023)

Goal: Find invariants in terms of the residue field for $\operatorname{Th}_{\exists}(K)$, Th(K), without assuming unramified or κ perfect

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Goal: Find invariants in terms of the residue field for $\operatorname{Th}_{\exists}(K)$, Th(K), without assuming unramified or κ perfect Let K, \mathcal{O} , κ as above, $e \in \mathbb{N}$ the *initial ramification index*, i.e. $p\mathcal{O} = \mathfrak{m}^e$ Thus e = 1 in \mathbb{Q}_p , since $p\mathbb{Z}_p$ is the maximal ideal of \mathbb{Z}_p ; e = 2 in $\mathbb{Q}_3(\sqrt{6})$, since the maximal ideal of $\mathcal{O} = \mathbb{Z}_3[\sqrt{6}]$ is $\sqrt{6}\mathbb{Z}_3$, and $3\mathbb{Z}_3[\sqrt{6}] = \sqrt{6}^2\mathbb{Z}_3[\sqrt{6}]$

We solve the problem above for fixed p and e.

New results (Anscombe–D.–Jahnke 2023)

Theorem

There is $m = m(p, e) \ge 0$ such that, for a certain $\Omega \subseteq \kappa^m$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- ▶ $\operatorname{Th}_{\exists}(K)$ is as hard as (1-equivalent to) $\operatorname{Th}_{\exists^+}(\kappa, \Omega)$
- Th(K) is as hard as (1-equivalent to) Th(κ, Ω)

New results (Anscombe–D.–Jahnke 2023)

Theorem

There is $m = m(p, e) \ge 0$ such that, for a certain $\Omega \subseteq \kappa^m$:

- ▶ $\operatorname{Th}_{\exists}(K)$ is as hard as (1-equivalent to) $\operatorname{Th}_{\exists^+}(\kappa, \Omega)$
- Th(K) is as hard as (1-equivalent to) Th(κ, Ω)

Th_{∃+}(
$$\kappa, \Omega$$
) encodes for which
 $f_1, \ldots, f_k \in \mathbb{F}_p[X_1, \ldots, X_n, Y_1, \ldots, Y_{ml}]$ we have
 $\exists x_1, \ldots, x_n \in \kappa \exists (y_1, \ldots, y_m), \ldots, (y_{ml-m+1}, \ldots, y_{ml}) \in \Omega:$
 $\bigwedge_i f_i(\underline{x}, \underline{y}) = 0$

 $\operatorname{Th}(\kappa,\Omega)$ also allows universal quantification, and asserting that certain tuples do not lie in Ω

The set $\Omega \subseteq \kappa^m$ is itself defined in a natural way:

The set $\Omega \subseteq \kappa^m$ is itself defined in a natural way: there exists $\Xi \subseteq \mathcal{O}^m$, \exists - \emptyset -definable (parameterfreely diophantine) in K such that Ω is the reduction of Ξ ; and the definition of Ξ only depends on p, e (not K)

Model-theoretic formulation

The computability-theoretic results are corollaries of axiomatisability results:

Theorem (A–D–J)

Let K, L both CVDFs with residue fields κ , λ of characteristic p, with the same initial ramification index e.

$$\blacktriangleright \operatorname{Th}_{\exists}(K) = \operatorname{Th}_{\exists}(L) \iff \operatorname{Th}_{\exists^+}(\kappa, \Omega_K) = \operatorname{Th}_{\exists^+}(\lambda, \Omega_L)$$

•
$$\operatorname{Th}(K) = \operatorname{Th}(L) \iff \operatorname{Th}(\kappa, \Omega_K) = \operatorname{Th}(\lambda, \Omega_L)$$

Various bonus statements: Ω_K precisely describes the *structure* induced by K on κ , and (κ, Ω_K) is stably embedded in K

Commentary

- ► The reduction of $\operatorname{Th}_{\exists}(K)$ to $\operatorname{Th}_{\exists^+}(\kappa, \Omega)$ is purely theoretical
- Even the arity m = m(p, e) of Ω grows extremely quickly with e
- ► Further results concerning Hilbert 10/full theories with parameters (quantifier elimination) would be desirable