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A result of Raphael Robinson

Theorem (R. Robinson 1964)
The field Q is first order definable in the field Q(z).

Proof.

Using an elliptic curve, one defines an infinite set S C Q which is dense in
the R-topology (take y-coordinates of rational points).
Then f € Q(z) is constant if and only if:

Vg,[g €S — (f<agVg<asf)

where <, is the partial order defined by sums of 4 squares. O
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A folklore question

Motivated by the previous result, the following question has been around
for quite some time:

Problem
Is Q Diophantine in Q(z)? J

Natalia and | learned about this question from Thanases Pheidas's talk at
the MSRI DDC meeting in 2022.

The problem remains open, but I'll explain a partial answer.
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Diophantine definition of k in k(z)

More generally, if k is a field we can ask whether k is Diophantine in k(z).

A positive answer is known in the following cases (cf. work by
Koenigsmann 2002 and Fehm-Geyer 2009):

@ k is large (in the sense of Pop)
e For some n > 2 the quotient group k™ /(k*)" is finite.
Unfortunately this says nothing about k = Q.
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Elliptic surfaces: the basics

Before stating our main result we need some background on elliptic
surfaces. We'll only consider the base P!.

Let k be a field. An elliptic surface over k is a smooth projective surface
X/k along with:

@ A surjective morphism 7 : X — P! whose fibres are smooth curves of
genus 1, up to finitely many; and
e a distinguished section g : P! — X of 7, that is, 7 0 g = ldp1.

Technical conditions: there are bad fibres, and the fibres of @ contain no
(—1)-curves.
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Elliptic surfaces: the basics
Slogan:

An elliptic surface is a 1-parameter family of elliptic curves (with singular
fibres.)

]}Dl
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Elliptic surfaces: the basics

Important facts:

e For each v € P1(k) with X, smooth, the fibre X, is an elliptic curve
with neutral element og(v).

@ The sections MW/(X/k, ) form a f.g. abelian group (Lang-Neron).

Elliptic surfaces can be given (birationally) by a Weierstrass equation
E.: y?>=x3+a(t)x* + b(t)x + c(t)
with a, b, c € k(t). The group of sections can be seen very concretely:

MW(X /k, ) ~ E:(k(t)).

Example: E;: y? = x3 + tx + t2 has the section P; = (0, t) € E;(k(t)).
This is like giving a point in each X, which varies algebraically.
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Elliptic surfaces: geometry

Conjecture (Ulmer)

Let X/C be a smooth projective surface with canonical sheaf Kx. There is
a constant M such that for every (possibly singular) rational curve C C X
we have C.Kx < M.

Natalia and | proved:

Theorem (GF-P)

If Ulmer’s conjecture holds, then there is an elliptic surface X/Q with a
bad fibre of multiplicative type, such that X contains only finitely many
rational curves over C.

This consequence of Ulmer's conjecture is what we need.
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Elliptic surfaces: arithmetic

Assume k = Q. The rational points of an elliptic curve over Q form a
finitely generated abelian group (Mordell).

Theorem (Silverman)

Let m: X — P! be an elliptic surface over Q. For all but finitely many
v € P1(Q) we have

rk MW(X/Q, ) < 1k E,(Q).

How often do we have equality? How often do we have strict inequality?
There are conjectures on this. Under mild assumptions both cases are
expected to occur quite often.
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Elliptic surfaces: arithmetic

We need the next conjecture which follows from conjectures by Helfgott
and Silverman

Conjecture (Positive rank conjecture)

Let m: X — P! be an elliptic surface over Q given in Weierstrass form
with polynomial coefficients, having some bad fibre of multiplicative type
in the affine part. For x > 1 define

N(x) = #{n € N<, C P}(Q) : rk X,(Q) > 0}.

Then N(x) grows linearly: there is ¢ > 0 with N(x) > cx for x > 1.
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Main result

Theorem (GF-P 2022)

If Ulmer's conjecture and the Helfgott-Silverman conjecture hold, then Q
is Diophantine in Q(z).

We'll sketch a proof. First we need some notions from additive number
theory.
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Density

Let S C N. We have the following notions of density:

0*(S) = lim sup 1 #{ne€S:n<x} upper density

X—00

0+(S) = lim |nf —-#{neS:n<x} lower density

X—00

o(S) = ll(r;fl Z . {n €S5:1<n<k} Schnirelmann density

Example. S = 2N. Then §*(S) = 0.(S) = 1/2 while o(S) = 0.

It might seem artificial to call o a density. Nevertheless, it is quite useful.
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Density

Lemma
If 6,(S) >0 and 1€ S then o(S) > 0. J

A set S C N is called additive basis of finite order if there is a uniform
M such that every n € N is the sum of < M elements of S.

Theorem (Schnirelmann)
If o(S) >0 and 0 € S then S is an additive basis of finite order. J
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Density

Corollary (Criterion for checking that @ is Diophantine)

Let A be a commutative Q-algebra. Suppose that there is a set T C Q

which is Diophantine in A and satisfies 6,(T NN) > 0. Then Q is
Diophantine in A.

Proof.

@ We can add 0,1 to T, so that now T NN is an additive basis of finite
order.

@ We can give a Diophantine definition of a set T’ C Q that contains N.
o Taking fractions, now we get Q.

O]

v

So we need to produce such a T for A = Q(z).
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Sketch of the Diophantine definition of Q in Q(z)

@ By Ulmer's conjecture there is X /Q elliptic surface with finitely many
rational curves and with a bad multiplicative fibre, say

E:: y?>=x3+A(t)x + B(1).
e For any non-constant f € Q(z) the new elliptic surface
Er: y?>=x3+ A(f)x + B(f)

has torsion group of sections: each section gives a rational curve in
the surface X. Thus, rk Ef(Q(z)) = 0.

e For all but finitely many constant ¢ € Q C Q(z) the substitution
t = c gives an elliptic curve E./Q which has E.(Q(z)) = E.(Q).
These might have positive rank: that would be

1k E(Q(2)) =k E(Q) > 0. (?)
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Sketch of the Diophantine definition of Q in Q(z)

e By Mazur's torsion theorem, “to have positive rank over Q or Q(z)"
is a Diophantine condition over Q(z).

@ Therefore, the set

T ={f € Q(z) : 1k Er(Q(2)) > 0}
={ceQ:1kE(Q)>0}CQ

is Diophantine over Q(z).
@ Under the Helfgott-Silverman conjecture, d.(T N N) > 0.

@ We conclude by the “criterion for checking that Q is
Diophantine”. []
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Some possible directions

@ Construct the required elliptic surface unconditionally. Recall: we
need

» X — P! defined over Q
» with a bad multiplicative fibre
» with only finitely many rational curves on it.

@ What about number fields?
e What about Q in Q(z1,2) ?

e Let C/Q be a smooth projective curve of genus g. Is Q Diophantine
in Q(C)? We studied the case of C = P

e Find interesting subfields F C Q((z)) where Q is Diophantine.
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Thanks for your attention.

Hector Pasten (PUC)



