A Diophantine definition of \mathbb{Q} in $\mathbb{Q}(z)$

Héctor Pastén

Pontificia Universidad Católica de Chile

Joint work with Natalia Garcia-Fritz

Definability, Decidability and Computability over Arithmetically Significant Fields (Semi penular opinion: overy field is arithmetically significant)

(Semi-popular opinion: every field is arithmetically significant)

A result of Raphael Robinson

Theorem (R. Robinson 1964)

The field \mathbb{Q} is first order definable in the field $\mathbb{Q}(z)$.

Proof.

Using an elliptic curve, one defines an infinite set $S \subseteq \mathbb{Q}$ which is dense in the \mathbb{R} -topology (take *y*-coordinates of rational points). Then $f \in \mathbb{Q}(z)$ is constant if and only if:

$$\forall g, [g \in S \rightarrow (f \leq_4 g \lor g \leq_4 f)]$$

where \leq_4 is the partial order defined by sums of 4 squares.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Motivated by the previous result, the following question has been around for quite some time:

Problem

Is \mathbb{Q} Diophantine in $\mathbb{Q}(z)$?

Natalia and I learned about this question from Thanases Pheidas's talk at the MSRI DDC meeting in 2022.

The problem remains open, but I'll explain a partial answer.

Diophantine definition of k in k(z)

More generally, if k is a field we can ask whether k is Diophantine in k(z).

A positive answer is known in the following cases (cf. work by Koenigsmann 2002 and Fehm-Geyer 2009):

- k is large (in the sense of Pop)
- For some $n \ge 2$ the quotient group $k^{\times}/(k^{\times})^n$ is finite.

Unfortunately this says nothing about $k = \mathbb{Q}$.

Elliptic surfaces: the basics

Before stating our main result we need some background on elliptic surfaces. We'll only consider the base \mathbb{P}^1 .

Let k be a field. An **elliptic surface** over k is a smooth projective surface X/k along with:

- A surjective morphism $\pi: X \to \mathbb{P}^1$ whose fibres are smooth curves of genus 1, up to finitely many; and
- a distinguished section $\sigma_0 : \mathbb{P}^1 \to X$ of π , that is, $\pi \circ \sigma_0 = Id_{\mathbb{P}^1}$.

Technical conditions: there are bad fibres, and the fibres of π contain no (-1)-curves.

Elliptic surfaces: the basics

Slogan:

An elliptic surface is a 1-parameter family of elliptic curves (with singular fibres.)

▶ < ∃ ▶</p>

Elliptic surfaces: the basics

Important facts:

- For each v ∈ P¹(k) with X_v smooth, the fibre X_v is an elliptic curve with neutral element σ₀(v).
- The sections $MW(X/k, \pi)$ form a f.g. abelian group (Lang-Neron). Elliptic surfaces can be given (birationally) by a Weierstrass equation

$$E_t$$
: $y^2 = x^3 + a(t)x^2 + b(t)x + c(t)$

with $a, b, c \in k(t)$. The group of sections can be seen very concretely:

$$MW(X/k,\pi)\simeq E_t(k(t)).$$

Example: E_t : $y^2 = x^3 + tx + t^2$ has the section $P_t = (0, t) \in E_t(k(t))$. This is like giving a point in each X_v which varies algebraically.

Elliptic surfaces: geometry

Conjecture (Ulmer)

Let X/\mathbb{C} be a smooth projective surface with canonical sheaf K_X . There is a constant M such that for every (possibly singular) rational curve $C \subseteq X$ we have $C.K_X \leq M$.

Natalia and I proved:

Theorem (GF-P)

If Ulmer's conjecture holds, then there is an elliptic surface X/\mathbb{Q} with a bad fibre of multiplicative type, such that X contains only finitely many rational curves over \mathbb{C} .

This consequence of Ulmer's conjecture is what we need.

< □ > < □ > < □ > < □ > < □ > < □ >

Elliptic surfaces: arithmetic

Assume $k = \mathbb{Q}$. The rational points of an elliptic curve over \mathbb{Q} form a finitely generated abelian group (Mordell).

Theorem (Silverman)

Let $\pi: X \to \mathbb{P}^1$ be an elliptic surface over \mathbb{Q} . For all but finitely many $v \in \mathbb{P}^1(\mathbb{Q})$ we have

$\operatorname{rk} MW(X/\mathbb{Q},\pi) \leq \operatorname{rk} E_{\nu}(\mathbb{Q}).$

How often do we have equality? How often do we have strict inequality? There are conjectures on this. Under mild assumptions both cases are expected to occur quite often.

< □ > < 同 > < 回 > < 回 > < 回 >

Elliptic surfaces: arithmetic

We need the next conjecture which follows from conjectures by Helfgott and Silverman

Conjecture (Positive rank conjecture)

Let $\pi : X \to \mathbb{P}^1$ be an elliptic surface over \mathbb{Q} given in Weierstrass form with polynomial coefficients, having some bad fibre of multiplicative type in the affine part. For x > 1 define

$$N(x) = \#\{n \in \mathbb{N}_{\leq x} \subseteq \mathbb{P}^1(\mathbb{Q}) : \operatorname{rk} X_n(\mathbb{Q}) > 0\}.$$

Then N(x) grows linearly: there is c > 0 with N(x) > cx for $x \gg 1$.

Main result

Theorem (GF-P 2022)

If Ulmer's conjecture and the Helfgott–Silverman conjecture hold, then \mathbb{Q} is Diophantine in $\mathbb{Q}(z)$.

We'll sketch a proof. First we need some notions from additive number theory.

Density

Let $S \subseteq \mathbb{N}$. We have the following notions of density:

$$\delta^*(S) = \limsup_{x \to \infty} \frac{1}{x} \cdot \#\{n \in S : n \le x\} \text{ upper density}$$

$$\delta_*(S) = \liminf_{x \to \infty} \frac{1}{x} \cdot \#\{n \in S : n \le x\} \text{ lower density}$$

$$\sigma(S) = \inf_{k \ge 1} \frac{1}{k} \cdot \{n \in S : 1 \le n \le k\} \text{ Schnirelmann density}$$

Example. $S = 2\mathbb{N}$. Then $\delta^*(S) = \delta_*(S) = 1/2$ while $\sigma(S) = 0$.

It might seem artificial to call σ a density. Nevertheless, it is quite useful.

< □ > < 同 > < 回 > < 回 > < 回 >

Density

Lemma

If $\delta_*(S) > 0$ and $1 \in S$ then $\sigma(S) > 0$.

A set $S \subseteq \mathbb{N}$ is called **additive basis of finite order** if there is a uniform M such that every $n \in \mathbb{N}$ is the sum of $\leq M$ elements of S.

Theorem (Schnirelmann)

If $\sigma(S) > 0$ and $0 \in S$ then S is an additive basis of finite order.

▲ □ ▶ ▲ □ ▶ ▲ □

Density

Corollary (Criterion for checking that \mathbb{Q} is Diophantine)

Let A be a commutative \mathbb{Q} -algebra. Suppose that there is a set $T \subseteq \mathbb{Q}$ which is Diophantine in A and satisfies $\delta_*(T \cap \mathbb{N}) > 0$. Then \mathbb{Q} is Diophantine in A.

Proof.

- We can add 0,1 to *T*, so that now *T* ∩ N is an additive basis of finite order.
- We can give a Diophantine definition of a set $T' \subseteq \mathbb{Q}$ that contains \mathbb{N} .
- Taking fractions, now we get \mathbb{Q} .

So we need to produce such a T for $A = \mathbb{Q}(z)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sketch of the Diophantine definition of \mathbb{Q} in $\mathbb{Q}(z)$

• By Ulmer's conjecture there is X/\mathbb{Q} elliptic surface with finitely many rational curves and with a bad multiplicative fibre, say

$$E_t: y^2 = x^3 + A(t)x + B(t).$$

• For any **non-constant** $f \in \mathbb{Q}(z)$ the new elliptic surface

$$E_f: y^2 = x^3 + A(f)x + B(f)$$

has torsion group of sections: each section gives a rational curve in the surface X. Thus, $\operatorname{rk} E_f(\mathbb{Q}(z)) = 0$.

• For all but finitely many **constant** $c \in \mathbb{Q} \subseteq \mathbb{Q}(z)$ the substitution t = c gives an elliptic curve E_c/\mathbb{Q} which has $E_c(\mathbb{Q}(z)) = E_c(\mathbb{Q})$. These **might** have positive rank: that would be

$$\operatorname{rk} E_c(\mathbb{Q}(z)) = \operatorname{rk} E_c(\mathbb{Q}) > 0. \quad (?)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Sketch of the Diophantine definition of \mathbb{Q} in $\mathbb{Q}(z)$

- By Mazur's torsion theorem, "to have positive rank over Q or Q(z)" is a Diophantine condition over Q(z).
- Therefore, the set

$$egin{aligned} T &= \{f \in \mathbb{Q}(z) : \operatorname{rk} E_f(\mathbb{Q}(z)) > 0\} \ &= \{c \in \mathbb{Q} : \operatorname{rk} E_c(\mathbb{Q}) > 0\} \subseteq \mathbb{Q} \end{aligned}$$

is Diophantine over $\mathbb{Q}(z)$.

- Under the Helfgott–Silverman conjecture, $\delta_*(T \cap \mathbb{N}) > 0$.
- We conclude by the "criterion for checking that \mathbb{Q} is Diophantine".

Some possible directions

- Construct the required elliptic surface unconditionally. Recall: we need
 - $X \to \mathbb{P}^1$ defined over \mathbb{Q}
 - with a bad multiplicative fibre
 - with only finitely many rational curves on it.
- What about number fields?
- What about \mathbb{Q} in $\mathbb{Q}(z_1, z_2)$?
- Let C/Q be a smooth projective curve of genus g. Is Q Diophantine in Q(C)? We studied the case of C = P¹.
- Find interesting subfields $F \subseteq \mathbb{Q}((z))$ where \mathbb{Q} is Diophantine.

Thanks for your attention.

æ

< □ > < □ > < □ > < □ > < □ >