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Renate wants to share a chocolate-covered orange with you, with the caveat that your
portion be selected in the following way: She will make two parallel cuts separated
by a fixed distance d (which you do not get to pick) and will give you the piece of
the orange in the slab in between—you get to pick where she makes the top cut. What
height should you pick to maximize the surface area of chocolate on your piece?

Allow yourself time to ponder this before reading on, because the answer may chal-
lenge your intuition. If you have some knowledge of calculus, in particular if you are
familiar with the formula for the area of a surface of revolution, then you might try to
work the answer out for yourself (and compare your work with the calculation below!).

In an effort to put more space between here and the resolution of the problem (in
case you want to think about it, but your eyes wander) and to put the problem on more
rigorous footing, we make the following definition.

Definition. We call the subset of a sphere S in a slab between two parallel planes P1
and P2, each of which intersects S, a spherical segment.

d

d

Figure 1. Which segment has larger area, the one at the pole or the one near the equator?
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Using this notation, we can rephrase our problem as follows: On a sphere of radius
r, which spherical segments with vertical separation d have the largest surface area?

To suggest some subtlety to the problem, consider the following: In the extreme
cases, the segment could be either a band around the equator or a cap at one of the poles,
as shown in Figure 1. On one hand, the sphere is widest at the region surrounding the
equator; on the other, while the sphere becomes narrower near the poles, it also becomes
flatter. Which competing factor dominates?

This problem has been considered since antiquity and was resolved by Archimedes
in what is known as his “hat box theorem” (we explain the name below). In the context
of the thought experiment, it ends up that Renate is devious—your choice has no effect
on the piece of chocolate’s area! In other words, any two spherical segments with the
same separation have equal areas. There is even a simple expression for the area.

Theorem 1 (Archimedes’s hat box theorem). The area of any spherical segment
formed by a sphere of radius r and two planes separated by distance d is 2πrd.

The conclusion is that the competing factors discussed above, the relative breadth
and flatness of the segment chosen, exactly balance. Perhaps you can see this cancel-
lation in the following proof.

Proof. First, recall that the area of a surface given by rotating a graph y = f (x) around
the x-axis between x = a and x = b is

2π
∫ b

a
f (x)

√
1 + ( f ′(x))2 dx.

We can realize a sphere with radius r centered at the origin by rotating the function
f (x) =

√
r2 − x2 defined on −r ≤ x ≤ r about the x-axis. Calculating f ′(x) and work-

ing it into the area expression gives

2π
∫ b

a

√
r2 − x2

r√
r2 − x2

dx = 2π
∫ b

a
r dx = 2πr(b− a). !

How did Archimedes prove this, without calculus? His ingenious argument shows
that the area of a spherical segment formed by two planes with separation d is equal
to the surface area cut from the cylinder of radius r enclosing the sphere whose axis is
orthogonal to the planes. The theorem’s name arises from imagining the cylinder as a
box and the top half of the sphere as a hat inside. See [1] for an excellent exposition of
this method.

A second thought experiment
Next, suppose that Mr. Z pilots a spaceship inside a planet-sized, hollow spherical shell
with uniform mass density. How does the net force of the shell on him depend on his
position? What if his ship is outside the shell?

Recall from elementary physics that the formula for the magnitude of the force F
between two point particles separated by distance r and with masses m1 and m2 is

|F| = G
m1m2

r2
(1)

where G is a gravitational constant.
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This time, I will immediately let the cat out of the bag (or the hat out of the box?)
and reveal the answer, which was discovered by Newton.

Theorem 2 (Newton’s shell theorem). Let p be a point particle with mass m and
S be a thin spherical shell with radius r, uniform mass density, and total mass M. Let R
be the distance between p and the center of S. The magnitude of the net gravitational
force of S on p is

|Fnet| =
{
0 if R < r,

GMm
R2 if R > r.

Let us appreciate, as we did with Theorem 1, how this result is also independent
of the geometric setup. In the language of the thought experiment above, the first part
of Newton’s shell theorem asserts that Mr. Z feels nothing from the shell, regardless of
his position inside. As far as the net force is concerned, the shell may as well not exist!

The second part, the case where p is outside of S, asserts that the net gravitational
force is the same as the situation where the entire shell S is replaced by a point mass
M at its center. This part of Theorem 2 dramatically simplifies calculations in celestial
mechanics because it allows planets to be replaced by point masses.

We begin with a heuristic understanding of the competing factors, as we did with
Archimedes’s result. Suppose p is inside S. If p is at the center of S, then the net force
is zero by symmetry. But suppose p is very close to part of S, which we may think of as
being composed of many point masses. On one hand, there are very large forces arising
from point particles of S close to p due to the very small radii r in (1). On the other
hand, there are oppositely directed forces arising from point particles on the other side
of S. These forces are smaller in magnitude because the particles are further from p, but
there are many more of these second type of points. The first part of Newton’s result
shows that there is a perfect net cancellation.

We can make the argument in the previous paragraph slightly more convincing with-
out much more work: Fix p inside S and subtend from p an infinitesimal coneC which
intersects S in capsC1 andC2 on opposite sides of S as shown in Figure 2. The points on
C1 are a fixed distance r1 from p, hence by (1), the magnitude |F1| of the force fromC1
scales like r−2

1 . On the other hand, |F1| is proportional to the area of C1, which scales
like r21. Combining these observations means |F1| is independent of r1, and by using

p

C2

C1

Figure 2. The forces from the capsC1 andC2 cancel.
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the same argument to analyze the magnitude |F2| of the force from C2, we see that
F1 + F2 = 0, since C1 and C2 are on opposite sides of p.

Proving the shell theorem with the hat box theorem
We have observed qualitative similarities between Theorems 1 and 2, each asserting
that a particular geometric quantity is independent of the initial setup. In fact, the con-
nection runs deeper—below, we use the hat box theorem to prove the shell theorem.

A common proof of Theorem 2 evaluates the force from the shell as a triple integral
in spherical coordinates [2, p. 40]. By symmetry considerations, it is possible to write
the latter as a single, one-variable integral. In our case, Archimedes’s theorem removes
the necessity to set up this integral in angular coordinates, which would require invok-
ing the law of cosines and a later application of a change of variables. We find that this
makes the entire derivation more tractable and intuitive.

Proof of the shell theorem. After translating S and rotating p about S, we may suppose
S is centered at zero and p is on the negative x-axis as shown in Figure 3. Because
of this, symmetry implies that the y- and z-components Fy and Fz of the net force Fnet
vanish. Therefore, Fnet is directed along the x-axis and satisfies |Fnet| = |Fx|. We will
compute |Fnet| by integrating the magnitudes of the forces from spherical segments of
S with infinitesimal separation dx.

By (1), the magnitude |dF| of the force between p and an infinitesimal piece dS of
S with mass dM and distance d from p is

|dF| = Gm
d2

dM.

Since Fy = Fz = 0, we are interested only in the magnitude |dFx| of the x-components
of such infinitesimal forces. From Figure 3 (remember that x is negative there), we see

|dFx| = Gm
d2

R+ x
d

dM.

We now focus on spherical segments directed along the x-axis with infinitesimal
thickness dx. Since S has constant mass density, the infinitesimal mass dM of such a
segment is proportional to its area. By Theorem 1, all spherical segments with thickness
dx have the same infinitesimal area, so dM = c dx for some constant c. In fact, the
constant c = M/(2r), since M =

∫
dM =

∫ r
−r c dx = c(2r).

d

|x|

r

0p

R

Figure 3. Setup for the shell theorem.
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Integrating the forces |dFx| from these segments on [−r, r], we find

|Fnet| = GmM
2r

∫ r

−r

R+ x
d3

dx.

Using the Pythagorean theorem twice (or the law of cosines), we have

d2 = R2 + r2 + 2Rx,

hence

|Fnet| = GmM
2r

∫ r

−r

R+ x

(R2 + r2 + 2Rx)
3
2

dx.

Take a deep breath; the intricate setup is done and the upshot is that we have reduced
the entire problem to a single one-variable integral.

We integrate by parts, taking u = R+ x and C:
∫

R+ x

(R2 + r2 + 2Rx)
3
2

dx = − R+ x

R(R2 + r2 + 2Rx)
1
2

−
∫

dx

R(R2 + r2 + 2Rx)
1
2

= − R+ x

R
√
R2 + r2 + 2Rx

+
√
R2 + r2 + 2Rx

R2

= r2 + Rx

R2
√
R2 + r2 + 2Rx

.

Returning to the original integral and introducing the appropriate bounds, we have

|Fnet| = GmM
2r

r2 + Rx

R2
√
R2 + r2 + 2Rx

∣∣∣∣
r

−r
= GmM

2R2

[
r + R

√
(r + R)2

+ R− r
√
(r − R)2

]

.

We now interpret this answer in the two cases.
If R < r, so that p is inside the shell, then the second term in the brackets is −1 and

|Fnet| = 0.
If R > r, so that p is outside the shell, then the second term in the brackets is 1 and

|Fnet| = GMm/R2. !

Acknowledgment. The author thanks M. Gulian for an inspiring lunchtime conversation.

Summary. Newton’s shell theorem asserts that the net gravitational force between a point par-
ticle and a sphere with uniform mass density is the same as the force in the situation where the
sphere is replaced by a point particle at its center with the same total mass.We give an exposition
of this theorem using only tools from introductory one-variable calculus. A key simplification
is a result of Archimedes that the area of the region on a sphere between two parallel planes
depends only on the separation between the planes, not on their position relative to the sphere.

References

[1] Apostol, T., Mnatsakanian, M. (2004). A fresh look at the method of Archimedes. Am. Math. Monthly 111:
496–508. doi.org/10.2307/4145068.

[2] Menzel, D. H. (1961).Mathematical Physics. New York, NY: Dover.

VOL. 49, NO. 2, MARCH 2018 THE COLLEGE MATHEMATICS JOURNAL 113


