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ABSTRACT

We define a discrete-time random process on a finite number of states. The transition

probabilities at each time are influenced by the number of times each state has been
visited, and by a fixed a priori likelihood matrix, R. If Si(t) keeps track of the number
of visits to state ¢ up to time ¢, then we can form the fractional occupation vector,
U(t), where v;(t) = Si(t)/(L7, Si(t)). Under conditions on the non-degeneracy of R,
U(t) converges as t — oo to a random vector in some finite set of points (theorem 5.8).
The size of this finite set can be further reduced by ruling out some types of points it
contains as possible places for #(t) to converge (theorems 5.11 and 5.12). The points
of convergence that theorems 5.11 and 5.12 rule out are ones where the deterministic

differential equation approximating the stochastic process has an unstable equilibrium.
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5.1 Introduction

Imagine a visiting scholar newly arrived at UCLA. She drives back and forth between
her o.fﬁces at UCLA, USC and Cal Tech, always visiting different campuses on con-
secutive days. Her visits are initially random and unbiased, but she tends to visit a
department more frequently the better she gets to know it. To model this, define a
random walk on the vertices of a triangle. Initially all vertices are given weig,ht 1, but
the weight of a vertex increases by one every time the walk visits that vertex ’The
random walk begins at a specified vertex and moves by choosing among all neighl.ooring

vertices with probabilities proportional to the weights of the vertices.

To make things more interesting, let’s change the process so that visiting different

campuses on different days is a preference but is not mandatory. Also, suppose that the

VlSltmg scholar hates to drive from LA to Pasedena or vice versa. To model the new

process, add a loop at each vertex (i.e. an edge connecting the vertex to itself) and put

weights on all the edges that represent an a priors likelihood of her driving along that

edge. In figure 5, the graph G has been assigned weights that might realistically model
the visiting scholar process. The process proceeds similarly, with the vertices having
initial weight 1 but increasing by 1 after each visit. This time, however the probability
of a transition from a vertex to a given neighbor is proportional to the product of the a
priori likelihood of a transition along the edge leading to that vertex and the weight of
the vertex. Absent edges are taken to have likelihood zero. As an example, if the visitor
begins at UCLA, the probabilities of her spending the first day at Cal Tech, UCLA and

USC respectively are 1/7,2 /7 and 4/7. Say she spends the first day at USC; then the

probabilities for the second day are respectively 1/9,4 /9 and 4/9. The likelihoods may
which will always be denoted R. The

be coded 1nto a symmetric pon-negative matnx' e e
visiting scholar process will be called vertem-remforced random wa | ) s
he figure 5 represents the simpler version of the
: dom walk (or VRRW)

. R. The first graph in -
malrT R 1ed ,Ue-rtea;-reznfO'f'ced TN

scholar problem, which will also be cal
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on the triangle. In general, VRRW on a graph means VRRW with the incidence matrix
for that graph.

Mare formallv. define the nrocess. vertex-reinforced random walk, to be a sequence

d x d matrix with non-negative entries. Think of R as the matrix of conductivity

between pairs of states. Let Y; = 1 and let $(n) be a vector with coordinates S;(n) = 1

plus the total number of times that Y; has been in each state for time between d + 1
and n, so for example §(d +1)=(1,1,---,2) whenever Y;4; = d. Formally,

Sin) =1+ > &y, (1)

j=d+1

Let the transition probabilities for Y be defined by prob(Yp41 = r|Y, = 5,5 (n)) =
R, 5(r)/ o ReaS(a). Formally the process is defined on a measure space Q; we will

use w to denote points in €2, the few times the need arises.

Remark: The initial condition S(d) = (1,...,1) is completely immaterial. All the
theorems in this chapter describe which kinds of limiting behaviour are possible and

which are not. The are equally valid for any nonzero starting weights and the particular

choice of all 1’s is just for convenience.

Remark: The symmetry of R is important for all the calculations involving eigenvalues
and fixed points. I believe that the main theorems are true as well when R is not
symmetric but I have been unable to prove them since they rely on proposition 5.4

which involves a calculation of a fixed point.

Define
v(n) = S(n)/n (2)
so that @ is just S normalized to have its components sum to 1. Often we treat 7 as

the object of study, rather than Y or S , so the sample paths of the process are viewed
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as sequences of points in the n — 1-simplex A C R"™. If some diagonal entries of R are
0, then the coordinates of ¥ for those states can never be more than 1/2. Nevertheless,
most of the theorems in this chapter are true for vectors ranging over the entire simplex

A. One important quantity has a special notation because it is used so often.

Definition 5.1 Let N;(9) = ¥, Riv,. Let Ni(n) (or just N; when the n 1s understood)
denote Ni(%(n)).

In the case where R is an incidence matrix, N;(?) is just the sum of values of ¥’ over
all neighbors of i. At the risk of abusing notation ¥ will be used for a generic point in

A, while 9(n) denotes the sample occupation vectors of the vertex-reinforced random
walk.

Vertex-reinforced random walks behave quite differently from edge-reinforced ran-
dom walks, even though the set-up is apparently similar. Recall that for edge-reinforced
random walks ¥(n) converges as n — oo to a random vector whose distribution over
the simplex is absolutely continuous with a density that can be explicitly described.
In the case of Vertex reinforcement, for most matrices R, it is still true that ¥(n) con-
verges to a random vector, but the distribution of the random vector is far from being
absolutely continuous. In general, the measure is supported on a discrete set of points

(theorem 5.8 and corollary 5.9).

Most of what follows can be intuitively understood by seeing what is special about
this discrete set of points. Here is the heuristic explanation. Suppose n is large. Then
the transition probabilities vary slowly, and the process looks like a Markov chain over
a span of L steps, for L <« n. Furthermore, if 1 « L <« n then no matter what state
the process is in at time n, the numbers of visits to each state over the next L steps
is approximately L times the stationary distribution, call it =, for the Markov chain.

Later in this chapter, in the proofs of lemma 5.7 and proposition 5.21, versions of the
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8 approximation

E(#(n + L) — 9(n)[#(n)) =~ %(W(ﬁ(n)) — 9(n)).

In general, the stationary distribution 7(%(n)) is not the same as ¥(n), so ¥ begins

to change. In fact the process behaves like a multicolor nonlinear urn, or a stochastic

¥ approximation with correction term in the direction of 7(¢(n))—%{(n). For some choices

of 7' the stationary distribution m(¥) is just v again. This is a necessary condition for
convergence of #(n) to the point ¥, with non-zero probability. (This is where vertex-
reinforcement differs from edge-reinforcement: in edge—reinforcerﬁent, the stationary
distribution is always given by the current value of #{(n), so there is no bias in the
direction of drift of this vector. The set of points where there is no drift in the vertex-

reinforced case is typically discrete.)

Making an analogy with differential equations as in [NH], the motion of ¥(n) may be
thought of as an autonomous flow, 7(t) following a vector field F so that d/ di(v(t)) =
F(9(t)). Here, F(%) is the heuristic analogue of the expected change in the VRRW
form time n to time n + L, which depends only on ¥(n) after a time change.” The
previous paragraph identifies the direction of F(%), as being a vector pointing from
v toward m(¥). This flow has a discrete set of critical points ¢ for which 7(?) = v.
Some of these equilibria are unstable under small perturbations; it turns out that @(n)
cannot converge to these unstable points (theorems 5.11 and 5.12). Thus the necessary
condition 7(¥) = ¥ is not sufficient for convergence to ¥ with non-zero probability.
These theorems are almost a corollary of theorem 3.8 on non-convergence of generalized
urn processes to unstable equilibrium points of the associated flow. The same method
of proof is used, and the arguments are long only because of technical difficulties in

stting up VRRW as a generalized urn process.

To illustrate a few of the thigs that can happen, consider the three cases shown in
figure 5. When a VRRW is run on the graph Gy, the vector ¥(n) always converges to
(1/3,1/3,1/3), so the visiting scholar pends asymptotically equal time at each of the
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ree math departments. When the second VRRW is run, it turns out that ¢(n) must
fonverge to one of the two points (1,0, 0) or (0,1/2,1/2). In other words the visitor ends
up either spending asymptotically all her time at Cal Tech or asymptotically ignoring
¥ Cal Tech and dividing her time equally between UCLA and USC. It is random which
, of these actually happens.

' The VRRW for Gs is interesting because the theorems of this chapter do not cover
¢ it. In fact while the theorems apply to “almost all” symmetric non-negative matrices
i R, they often fail in the case that are naturally intéresting, since the two conditions
they require are that R not have entries of the diagonal that are zero and that its
eigenvalues be linearly independent over the rationals, and in particular distinct. (The
eigenvalue condition may not be difficult to remove eventually, but the other condition
is difficult to get around.) While the set of matrices that fail these conditions is small
— the union of several closed manifolds in matrix space — it contains all the examples
with a lot of symmetry, which are the ones that are natural to look at. In these cases,
we must be satisfied with information such as “if VRRW is run with a matrix given by
any small generic perturbation of R, then . . .” This is in fact what led me to study
VRRW with general matrices instead of sticking to VRRW on graphs: the general case

is solvable, though the particular case is not!

Although I cannot prove it, I will state what happens to VRRW on G3. The walk
asymptotically ignores two adjacent sites (which two is random) and visits the middle
of the remaining three on alternate moves, spending the remaining half the time at the
last two vertices in a random limiting proportion. So v(n) — (z,1/2,1/2 — z,0,0) for
; some z, or it converges to one of the other four types of vector gotten from this type
’ by cyclically permuting the indices. The foregoing examples, along with a few others

are worked out in section 5.6.
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.5,2 A Liapunov function for the motion of ¥(t)

The method of establishing the convergence of ¥(n) is to show that the distance between
(n) and a set of critical points converges to 0. When this set is discrete, the convergence
of #(n) follows. To do this, we find a function H : A — R*, which always increases
: when the vector #(t) changes infinitesimally in the direction of E((n+ L) |%(n)) for an
3 appropriate constant, L. In the analogy with a differential equation, this is a Liapunov

3 function for the flow

d N N
50 = x(@(@)) - 9(t) ~ TE@EE+ L) —o()|5(t). (3)

Lemma 5.7 identifies this function. The set that ¥(n) must approach is the set of
critical points for the potential function and the main work is showing that the actual
(stochastic) process ¥ behaves like the deterministic flow #(t). For those unfamiliar with
the method of Liapunov functions, here’s how the argument goes. In the continuous
time flow (3), H(¥(t)) is bounded and cannot increase forever except by increasing
more and more slowly. The rate of increase of H is just the gradient of H dotted
with the vector field. This must approach zero, and since the Liapunov function H is
chosen so its gradient is never perpendicular to the vector field, the vector field itself
must approach zero. In other words, the position vector must converge to the set of
points at which the vector field is zero, which are the critical points for the flow. In the
discrete-time stochastic version, namely the VRRW, it is the expectation of H(7(n))
that increases, so by breaking down H(%(n)) into a convergent martingale plus an

increasing process, a similar argument goes through.
Definition 5.2 For any vector U, let My denote the Markov chain with transition

matriz M(7) given by
M;; = prob(; — i) = Rijvi/N;. (4)
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Let 7(?¥) denote the stationary distribution for M;. (Later we will put a condition on

7 and R to ensure that 7(7) is unique.) It is easy to verify that =(7) is given by
m(0)i = viN:i/ H(0) (5)
where
H(%) =>_wuN;

normalizes the expression so the coordinates sum to 1. Define n(¥) by (5) when it is

not unique. Another way to write H is
H(©) = ZR”vrvs. (6)
r,s

In fact H(?) is the potential function mentioned earlier; it always increases as ¥ moves

towards 7(?%) as will now be demonstrated.

Definition 5.3 Let face(v) = {&W € A : v; = 0 = w; = 0} be the unique face of A to

which U i3 interior. -

Proposition 5.4 For any v € A\, ﬁﬂ(ﬁ') (w(0) — V) > 0. Furthermore, the following

are equivalent:

() THE) (<)~ )=0

(12) 6Hlface(a) =0

(i12) for those i such that v; > 0, N; are equal (M
() for all i, v; = L ; Rijuivj/N;

(v) 7@ =7

where 0/0 = 0 in () by convention. We define a critical point to be one satisfying

these equivalent conditions.
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The equivalent conditions in equations (7) are really just a form of the Chapman-
Kolmogorov forward equation. For example, (iv) says that the expected fraction of
time spent in state ¢ in the future, gotten by summing the fraction of the time in state
j times the probability of a transition from j to 7 over all j, is equal to the current
value of v;. This equation says nothing when v; = 0. However, if we divide by v; and
replace the equality with an inequality, then theorem 5.11 says the inequality must hold
even when v; = 0 at any point ¥ to which 7(n) converges with non-zero probability.
In terms of the forward equation, this inequality says that if v; is to get to- zero, the
expected time at state ¢ in the future must not exceed the current value of v;. The
assumption H(¥) # 0 really costs nothing since the actual process ¥(n) always satisfies
H(v(n)) > 4I/(d® + d) where I = min{R,; : R;; > 0}. [Reason: there are (d* + d)/2
edges so some edge is traversed at least 2/(d? + d) of the time. If this edge connects
vertices ¢ and j then R;; > I since it is nonzero and v;,v; > 2/(d* + d).]

Proof of proposition 5.4: Since v € A, we know H(?) > 0. For fixed 7 and j and constant
¢, consider the operation of increasing v; by the quantity cv;v;(IV; — N;) and decreasing
v; by the same amount. If we let ¢ = 1/H(¥) and do this operation simultaneously for

every (unordered) pair i, j, then the resulting vector is 7(%): the next value of the it

coordinate is given by
v + (1/H(V)(Z; viviNi — 2; viv; N;)
= v;+ (1/H(@))(viN; — v;H(?)) = =(?).
So an infinitesimal move towards 7(¥) corresponds to doing these additions and sub-
tractions simultaneously with an infinitesimal ¢. To show that this increases H, it
suffices to show that for each unordered pair i, 7, the value of H is increased, since H

is smooth and therefore well approximated by its linearization near any point. So let

i, j be arbitrary. Writing (1) for the new vector, we have
H(ﬁ'(l)) — ZR«nvr(I)vs(l)
= z R,.,v,v, +2 2 R,‘,C’U,'vj(Ni — N]‘)'vs
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+2 2 R-,-jCU,"Uj(Nj — N,)

H(I_).) + 2cvivj(N,- — Nj)2
> H(?)

so H is nondecreasing. If there are any ¢ and j for which N; # N; and neither v; nor

vj 1s zero, then H strictly increases.

Thus (¢) & (4i7). Since
6H=(2N11"',2Nn), (8)

and restricting to face(¥) just throws out the coordinates 7 such that v; = 0, it is easy
to see that (i7) ¢ (4¢1). Assuming (i17), suppose the common value of the N; is ¢. Then
multiplying (iv) by ¢ gives ¥, vv; = c- v;, so (#41) = (iv). Now assume (iv). Letting
M3 denote the matrix as well as the Markov chain, (iv) just says that ¢ is stationary
for My. Then n(%) — %@ = 0 so (v) holds. And finally, (v) = (¢) trivially. O

Definition 5.5 Let C be the set of critical points for H (i.e. those satisfying the

equivalent conditions in proposition 5.4).

Proposition 5.6 The set C has finitely many connected components, each of which is

closed and on each of which H is constant.

Proof: By (7) (ii), C is the union over all 2¢ —1 faces F of the sets Cr = {7 : VH|r(7) =
0}. By (8) and the comment following, vH |F is linear on F, so Cr is a closed, convex,
connected set. It is easy to see that H is constant on Cr by integrating VH|r. The
proposition follows since each connected component of C is the union of some of the

Cr. g
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5.3 Convergence of 9(n)

We begin with a lemma stating that Liapunov function for the heuristic differential
equation also serves as a non-decreasing potential for the expected value of the discrete-

time process ¥(n), at least to within an error of order 1/n.

Lemma 5.7 Let N be a closed subset of the simplez, with NNC = 0, and not containing
any points where the Markov chain My i3 periodic or reducible (i.e. we require My to

have a unique stationary distribution). Then there exist an N, L and ¢ > 0 such that
for any n > N, E(H(3(n + L)) |v(n)) > H(¥(n)) + ¢/n whenever t(n) € N.

[Note: The non-degeneracy condition on My is required to rule out cases like the
following. Suppose R is the incidence matrix for a sparse graph and some v € A/ has
enough coordinates equal to zero so that the non-zero coordinates represent a subset
of the vertices of the graph that is not connected. Then My has at least two persistent
sets of states between which no transitions can occur. So the stationary distribution is
not unique and there is no guarantee that the behaviour over the next block of steps

is correctly described by equation (5).]

Proof: First we claim that the lemma is true with the Markov process My substituted
for ¥(n). Here ¢.can be any point in A and the claim is that the lemma holds if
the transition probabilities are frozen at tim n. Formally, define a process {f’]} for
j<n+Lby¥, =Y for j <n and letting Y be Markov with transition matrix
M(?) after time n. Define the twiddled variables 5 and § by puting twiddles on
equations (1) and (2). By proposition 5.4, (7(?) — 7) - VH is nonzero on A so by
compactness it is bounded below by some ¢g on A. Choosing N/L large enough, se
can get ©(n + L) arbitrarily close to ¥(n) when n > N. Then by differentiability of
H we will have H(¢ + (L/(N + L))(w(¥) — 7)) > ¢ for any ¢; < ¢o. By the Markov
property, (g’(n + L) - g(n))/L approaches a point-mass at n(¥) in distribution as L
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increases. In fact, the rate of convergence of M* to 7(¥) is exponential and controlled
by the second-largest eigenvalue of M. Since M varies continuously with ¥ and the
non-degeneracy hypothesis says that A/ contains no points where the second-largest
eigenvalue is 1, the second-largest eigenvalue is bounded away from 1. It follows that
we can pick a large enough L uniformly in ¥ so that E(H(Mz(n + L))|%(n)) > cz/n

for any c; < ¢, and the claim is established.

Now we couple the Markov chain Mz (n) to #(n) in such a way as to move identically
for as long as possible. Formally, we define {Y;} and {¥;} on a common measure space
so that if ¥; = ¥; for all j <n + k then

Prob(Yops # Fure) | Yarect = i) = S(1/2)|Rigv/N: — My (5(m)).
i
Picking ¢ < ¢; and N/L large enough so that

(L/NYL/NYGH| < (2= /N, (9)

the coordinates of ¢ 'cannot change by more than L/N in L steps, so the probability of
an uncoupling is bounded by L?/N. Then E|H(¥(n+L))— H(Myz (n+L))| < (co—¢)/N

by (9), and combining this with the earlier claim proves the lemma. a
Theorem 5.8 Suppose Ri; > 0 for alli # 5. Then

d(v(n),C) — 0 almost surely as n — o

where d(U,C) as usual denotes min{|0'— &|: @ € C}. In particular, if C is discrete then

¥(n) converges almost surely.

Idea of proof: On any set A away from C, lemma 5.7 says the expected value of
H(¥(n)) grows, provided you sample at time intervals of size L. Actually, H(7(n))

itself increases for n sufficiently large because the differences between H(¢(n + L)) and
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E(H(¥(n + L)) |¥(n)) form a convergent martingale. The rate of increase is of order
1/n but so is the rate of change in position of ¥(n). So if #(n) goes from one given point
of N to another, H(¥(n)) increases by an amount independent of time. The only way
it can decrease again is for ¥(n) to leave A at a place where H is large and re-enter
where H is small. The effect of such a possibility can be made arbitrarily small because

H is constant on the connected components of A\ V.

Proof: Since the connected components, C;,...C; of C are closed, we have
m = min{d(C;,C;)} > 0. Pick any r < m/3. Let

M = {7:4(5,C) <7} (10)
k
M o= A\UM. (11)
=1
Note that
i % j = dWN, M) > (12)

By the preceding lemma with /' = Nj, we can find ¢;, Ly, N; for which n > N; implies
E(H(v(n + L))|9(n)) 2 H(¥(n)) + ¢/n. Pick any L' > L; and define

Ny = NN {5: |HE@) - HC)| < re/2L'} (13)
k

No = A\UNM. (14)
=1

Figure 2 gives an example of these definitions when d = 3; the heavy lines are the

boundary of V; and the lighter lines are the boundary of V.

Apply the lemma to A, to get Ny, c; and Ly. Define the process {#(n)} that samples

7(n) at intervals of L, on N; and L, elsewhere, by

un) = 9(f(n))

where

87




f(D = max{N;, N} and

{ f(n) + Ly if 9(f(n)) € My
F(n) + Ly if 9(f(n)) € No\ My

Clearly, @(n) converges if and only if ¥(n) converges. Letting U(n) = H(%(n)), we can
write U(n) = M(n) + A(n) where {M(n)} is a martingale and {A(n)} is a predictable
process (take the filtration as F,, = o{Y; : 7 < f(n)}). The key properties needed are

fn+1) =

M(n) converges almost surely (15)
A(n+1) > A(n) + ¢/n if 4(n) € My (16)
An+1) > A(n) ifd(n) ¢ M. (17

To verify (15), note that |U(n + 1) — U(n)| < sup |V H|max{L1, L,}/f(n) = O(1/n).
Then |M(n + 1) — M(n)| = O(1/n) as well, so M(n) converges in L?, hence almost

surely. Properties (16) and (17) are evident from the construction.

The next thing to show is that with probability 1, @(n) € N2° infinitely often for
at most one a. Consider any sample path #(1),%(2),.... For n < t, define the event

B(a,b,n,t,w) to occur if
#(n) € Ny® and @(t) € N3® with @(i) € Nz for n < i < t. (18)
If B(a,b,n,t,w) occurs, let
r =max{i:n <1<t and 4(¢) € V;*} and
s=max{i:n <i<tand @) ¢ M°} +1
The dotted path in figure 6 gives an example of this. By (16) and (17) we have
AG+ 1) —A@) 2cfifrr<i<s

A(i+1)—A@)20forn <t < t.
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Then

A(t) — A(n)
= [A(t) — A(s)] + [A(s) — A(r + 1)]
+[A(r+1) - A(n + 1)} + [A(n + 1 — A(n)]

> 0+ ( SZ—E c/z) +0—Ly/n
i=r+1
= O(i/n)+ (c/Ll)sg:Ll/i
> 0(1/n)+(¢/n) T G +1) - 70|
> O(1/n) + (¢/L1)|(s) — @(r)|
> O(1/n)+rc/ly

by (12). Now U(t) — U(n) < H(Cy) — H(C,) + rc/L' by the construction of NM,. So
M(t)—M(n) < H({Cy) — H(C,) +rc/L' —re/Li + O(1/n). If H(C,) < H(C,), the choice
of r guarantees that this expression is strictly negative and bounded away from 0 for
large n. Therefore if M(n)(w) converges, then B(a, b,n,?,w) happens only finitely often
for a, b such that H(Cy) < H(C,). But then it happens only finitely often for any a # b,
since @ can make only k& — 1 successive transitions from A;® to N3 with H (Cy) > H(C,).
Thus the almost sure convergence of M(n) implies that @(n) € A,? infinitely often for

at most one a, almost surely.

In other words, transitions between small neighborhoods of C; and C; eventually
cease for ¢ # j. It remains to show that ¥(n) may not remain far from C, nor may it
keep oscillating between a small neighborhood of C; and a set bounded away from C.
To do this, require now that r < m/6. With A} and A, defined as before, define N3
by (11) with 2r in place of r. Since 2r < m/3, equation (12) holds with A in place of

MNi. An argument identical to the one above now shows that with probability 1 there
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are only finitely many values of n,z and ¢t with n < ¢ < t for which
#(n)(w) € Mo, 4(z)(w) € N3 and d(t)(w) € N3®.

[The argument again: A(z) is nondecreasing when @(n) € N1 and increases by at least
the fixed amount r¢/L; each time @ makes the transit from M® to 3. The increase
in A is greater than the greatest difference in values of H taken at two points of A3®,
so the martingale M must change by at least re¢/L; — r¢/L’ during every transit. Since

M converges, this happens finitely often.]

Similarly, we find that the event {w : @(t,w) € N; for all t > n} has probability 0
for each n. Putting all of this together, we find that for any small r there is precisely
one a for which @(n) € N,? infinitely often. But then for any r, A3 stops being visited,

so letting r — 0 proves the theorem. a

Corollary 5.9 Let R be any symmetric matriz. Then there are symmetric matrices

arbitrarily close to R (in the sup norm on entries) for which ¥(n) converges.

Proof: For Arbitrary symmetric R, add a small number to each entry symmetrically
so it is non-zero. Then add a small multiple of the diagonal matrix so that it and all

i1ts minors are invertible and hence there is only one critical point per face. Then apply

theorem 5.8. o

To point out what can go wrong when R has zeros off the diagonal, suppose Ry; =
Rz, = 0. Then H(z,1 — z,0,...,0) = Ryz? + Ry(1 — z)2. Now if ¢(n) is very
near (z,1 — z,0,...,0) for some z € (0,1) then the VRRW is likely to stay at vertex
1 for a while and then leak over to vertex 2 by way of some intermediate vertex j
with R;; # 0 # Rj;. If Ri; were greater than zero, the leakage could occur directly
and the leakage back and forth would occur often enough to be quantitatively taken

into account. In particular, the time spent at vertices 1 and 2 would be given by the

91




S

stationary distribution n(z,1 — z,0,...,0). But since Ri; = 0, the Markov chain M;
: 10 :
for ¥ = (z,1 — z,0,...,0) has transition matrix on the first two vertices, so

any distribution is stationary. In particular, the value of H(¥(n)) may decrease if z
is near 1 and leakage to vertex 2 occurs. Then the argument for theorem 5.8 breaks
down entirely, since ¥#(n) may continue to wander around A indefinitely, getting near
(1—¢,60,...,0) as H gets large and then “recharging” H to a smaller value by leaking
to vertex 2 for a while. While this behaviour can sometimes be ruled out on an ad hoc

basis, a general theorem is lacking.

5.4 Local behaviour of the Liapunov function at the

point of convergence

Suppose p'is a point for which prob(v(n) — p) > 0. It seems likely that H must have a
local maximum at P, or a weak local maximum if p'is not an isolated point of C. In this
section and the next two results are established in this direction. It will be shown that
if § is in the interior of A and R satisfies a non-degeneracy condition, then H must
have a local maximum at p’ (necessarily a strict one, since H is quadratic and its matrix
representation is non-degenerate). If p'is on a proper face of A, the linear approximation
to H at p is shown to have a weak maximum at p. To illustrate when these results
apply, consider the case d = 2 where H can be thought of as a function from [0, 1] to
itself. Then the critical points are 0,1, and anywhere where H' vanishes. The above
conditions would then say that H”(p) <0 for p € (0,1), H'(0) > 0 and H'(1) < 0 were
necessary for convergence to p,0 or 1 respectively. In higher dimensions, these results
do not address the case where H fails to be a maximum on face(?) but is a maximum

in every direction normal to face(?).

To state these conditions formally, let e;,...,es be the standard basis vectors.
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Definition 5.10 A critical point p on a proper face of A is a linear non-maximum if

VH - (ex — ¢j) > 0 for some ex ¢ face(p),e; € face(P). (19)
Let W = {w € R%: ;w; = 0}. Then we have

! Theorem 5.11 Suppose § is on a proper face of A and is a linear

¥ non-mazimum. Then prob(v(n) — p) = 0. In fact there is some neighborhood of
that 9(n) ezits almost surely (i.e. even when U(n) has a limit with o non-atomic dis-
| tribution, P is not in the support. If G(n) is known to converge, we may say that U(n)

visits this neighborhood finitely often rather than just eziting it almost surely.)

Remark: The condition on the eigenvalues of diag(p)R is only needed for a technical
lemma, namely the Sternberg linearization theorem (5.24 below). I do not believe it is

really necessary and hope to remove it in the near future.

Theorem 5.12 Suppose that R 1s nonsingular and let p be the critical point in the
interior of . Suppose in addition that the eigenvalues of diag(p)R are distinct and
linearly independent over the rationals, where diag(p) ts the diagonal matriz with i,t
entry equal to p;. Then prob(v(n) — p) = 0 whenever p fails to be a mazimum for H.

This happens if and only if the matriz R has only one positive eigenvalue.

Corollary 5.13 Let R be any symmetric non-singular matriz and let § be a critical
point for the vertez-reinforced random walk defined from R. If p is in the interior of
A and i3 not ¢ mazimum for H, then there is a neighborhood N of § and there are
symmetric matrices arbitrarily close to R (in the sup norm on entries) for which the

process U(n) cannot converge to any point in N.
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‘roof of corollary 5.13: Since 7= AR™!(1,...,1)T by proposition 5.4 (iii) and R is non-
mgular p is an isolated critical point. By the same reasoning, small perturbations of

IR have precisely one critical point in a neighborhood of p. A generic perturbation of

In will satisfy the hypotheses of theorem 5.12. |

Before proving theorem 5.11, we need to translate the condition (19) into a more
usable form. If p'is a critical point then equation (7) (iii) says that the N; for ¢ such that

" > 0 have a common value, A. Assuming (19) for a given e; and using equation (8)
for vH, we see that Ny > N; = A. So

E RkaJ/N Z RkaJ//\ Ne/A=1+4+b (20)

pj>0

‘ifor some b > 0, k such that pp = 0. A skeleton for the proof of theorem 5.11 will be as
b follows.

Let 7 be as above. For any § > 0, the occupation vector (S(n + 6n) — S(n))/én can

 be forced to be in a neighborhood of 7 by assuming that #(n) stays in a smaller neigh-

L 6)Ni(n) to be greater than §Si(n) (proposition 5.15 below), where this quantity rep-
resents in some sense the expected number of visits to vertex & between times n and
Fn 4+ 6n. This implies that In(vy(n)) grows at a rate that is bounded below when #(n)

 is in a small enough neighborhood of p, so #(n) cannot stay in this neighborhood for
¥ ever.

. To avoid bogging down in trivialities assume that S (t) is defined for non-integral ¢
by linear interpolation with #(¢) = S (t) /t. The approximations will be verified only in
¥ the cases where the arguments are integral; it is always possible to choose epsilons and

deltas a little bit smaller to compensate for the roundoff errors.

Theorem 5.11 is proved as a sequence of propositions. The first of these says that

 if v(n) always stays in some neighborhood N then tlic fractional occupation vector for
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the walk between the times n and n + én
(S(n + 8n) — S(n))/én

must stay in a slightly larger neighborhood, A;. Actually, N7 and § are given, and /

is found so that the above is true uniformly in n.

Proposition 5.14 Fiz p and let N7 be a neighborhood of p. For any § > 0 there is a
neighborhood N of p included in N such that for alln > 1/8, the two conditions

(?) v(n) e N and
(i) F(n+ébn)eN

imply

(i11) (S(n + én) — §(n))/én € Ny

Proof: The term in (i7) is a convex combination of the terms in (¢) and (4i7):

§ S(n+6én)—5(n)
1456 on )

Solving for the last term gives

S(n + én) — S(n)
oén

= v(n +én)+ (1/6)(¥(n + én) — 7(n)).

Since N; contains some ball centered at p, we can choose N to be a ball whose radius
is (1 4+2/6)7! times as big. a

The next step is to show that if the fractional occupation vector between times n
and n + én is in an appropriate neighborhood A/ of p, then the number of expected
transitions to vertex k is large. To elaborate, k is the vertex referred to in the definition

of a linear non-maximum 5.10. The “expected number of transitions” means the sum of
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prob(v(i+1) = k|9(2)) over all © between n and n+én. This is a random variable, but it
is shown to be always sufficiently large under the hypotheses of the proposition (no set
of measure needs to be excluded). The quantity on the right hand side of equation 21

is sufficiently large because it makes proposition 5.17 true.

Proposition 5.15 Let 5, k be such that (20) holds and let D be any vector function of
n. Then there is an € > 0 and & neighborhood Ny = {7 € A : |T— p| < €} such that for
all § > 0 and for all n, the conditions v(n) € Ny and (D;(n+ én) — D;(n))/én > p; —¢
for all i imply

2_(Di(n + én) — Di(n))Rixvi(n)/(1 + §)Ni(n) > 11++b</52

Sk(n). (21)
Proof: As e — 0, 1/n times the left-hand side converges to §px(n)/(148) 3; pi(n)Rix/Ni(n)
= 8pe(n)(1 + b)/(1 + §) while 1/n times the right-hand side converges to dpx(n)(1 +
b/2)/(1 + 8). Since the convergence is uniform in §, the result follows. o

To make use of this proposition, we need to show that the number of visits to vertex
k will be large when its expected value is large. To do this the following facts about

sums of Bernoulli variables are required.

Proposition 5.16 Letb > 0 and € > 0 be given. let {B,} be a collection of independent
Bernoulli random variables with E(}", B,) > (1 + b)L.

(1) There ezists an Loy such that whenever L > Lg, we have prob(y, B,/L >
14+58/2)>1—e

(2) For any ¢ < 1+ b there is an € > 0 such that whenever L > 1 and A is
an event with prob(A) > 1+ € then E(X, B, | A) > cL.
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Proof: Let p, = prob(B, = 1), so the hypothesis says that }_, ps = (1 + b)L; assume
without loss of generality that the sum is in fact equal to (1 + b)L. The variance
of Bg is given by py — pa?, so the variance of > B, is finite and less than (1 + 5)L.
Then the variance of 3_ B,/L is less than (1 4+ b)/L, so by Tschebysheff’s inequality,
prob(3 Ba < 14 b/2) < 4(1 + b)/Lb*. So we can choose L = 4(1 + b)/b%e.

For the second part, we have

E(Y. Ba/L| A) = E(Y Ba/L) — E(Y Balz/L)/prob(A).

But letting F' be the distribution function for ¥~ B,/L, we have
BT BAx/L) < [ prob(3 Be/L > y)dy

/m 1+bd
by Tschebysheff’s inequality, using the bound on the variance calculated in the preced-
ing paragraph. Since this is at most y/¢/(1 + b), the result follows. 0

The next propostion uses the above calculation to show that the geometric mean

of the fractional occupation vx(n) at vertex k increases at a fixed rate.

Proposition 5.17 Let b > 0 and v € (0,1/2). There are an Lo(b) and an F(b,7)
such that the following holds: if {B,} are a collection of independent Bernoulli random
variables with E(T, By) 2 (1 + b)L and L > Lo, then E(In(y Y, Bo/L +1 —7%)) >
F(b,v) > 0.

Proof: Pick k > 0 so that In(1 +2) > kz on (1,1 +5/2). Let e < min(i5, Firgy)-
Apply proposition 5.16 to find an Ly for these values of b and €. Then for any L > Lo

the random variable 3°, B, /L stochastically dominates the variable # which is 0 with
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probability € and 1 + b/2 with probability 1 — e. Then

E(ln(yZa Ba/L +1—17))

E(ln(v8 + 1 — 7))

eln(l —~)+ (1 —€)In(1 + v5/2) (22)
e(2v1n(1/2)) + (9/10)(kvb/2)

v(9kb/20 — 2¢ln(1/2))

so letting F(b,v) = v(9kb/20 — 2¢1n(1/2)), the proposition is proved. O

AVARAY

Proof of theorem 5.11: By hypothesis, condition (19) and hence (20) hold. Pick € and
N according to proposition 5.15. Pick any § < b/4 where b is as in (20). Now apply
proposition 5.14 to get an N/ C N; with the appropriate properties. Fix n and define

a set of Bernoulli random variables {B;,} as follows.

Let 7;, < co be the r* time after n that ¥; = i, so formally 7;9 = n and
Tir+1 = inf{j > 7, : Y; = i}. Let B;, be independent and Bernoulli with

prob(B;, = 1) = Ruve(n)/(1 + 8§)Ni(n) (23)
and coupled to the variables {Y;} so that if B;, =1 and 7;, < n + én then
Yr',r"“l = k‘

To verify that this construction is possible, check that the probability of a transition

from vertex i to vertex k never drops below the quantity in (23):

prob(Ye 1 =k|Fr,) 2 (n/7i)Ruve(n)/Ni(n)
2 (1/(1 + &))Ryivi(n)/Ni(n)

for 7;, < n+ én.

Now consider the subcollection {B;, : r < én(p; — €)}. Letting A denote the index

set for this subcollection and writing « for a generic pair ¢,r in A, we have

E(}_B.) = >~ én(p; — €)Riive(n)/(1 + 6)Ni(n).
A i
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(As promised, we are ignoring the roundoff error when én(p; — €) is not an integer.) By
the construction of € from proposition 5.15, this quantity is at least (1+5/2)Sk(n)/(1+
§). By the second part of proposition 5.16, 7 can be chosen independently of Si(n) so
that if A is any event with probability at least 1 — r then

E(Q_Ba|A)z(1+ b/4)Sk(n)/(1 + ). (24)

We now show that Si(n) — oo if ¥(n) does not leave M. Assume to the contrary.

Then there is an event A € Fy for some N such that prob(A) > 1 —r and A is the

event

¥(n) € N for all n > N and Sk(n) = Sp(N) for all n > N.

By proposition 5.14, Si(n + én) — Si(n) > (p; — €)én for all n > N when A occurs, so
by the coupling of {Y;} and {Bi.}, Sk(n + én) # Si(n) whenever 34 B, > 0. Then
equation (24) contradicts the fact that 34 B, =0 on A.

Now to show that v(n) eventually leaves N, assume to the contrary. For an Sy to
be determined later, we pick N so that the event that ¥(n) € N for all n > N and
Sk(N) > So has probability at least 1 — r. Call this event A. For n > N, calculate

E(ln(vi(n + én)) | A, Fn)

E(In(vi(n) + (6/(1 + 6))[(Sk(n + én) — Sk(n))/(6n) — ve(n)]) | A, Fn)
E(In(vi(n)/(1 +6) + (6/(1 + 6)) 4 Ba/én) | Fr)

In(vi(n)) + E(In(1/(1 + 6)) + (8/(1 + 6)) T a Ba/8Sk(n)) | Fa).

v

I

Using proposition 5.17 with v = §/(1 + §), this is bounded below by In(vi(n)) +
F(b,6/(1 + 6)) > 0 as long as 6Sk(n) is larger than some Ly depending only on b. But
since Sk(n) grows without bound when #(n) stays in /, N can be chosen large enough
so that Sp can be taken to be at least Ly/é and the hypotheses of proposition 5.17 will
be satisfied. This gives a contradiction, since In(vi(n)) is bounded above by zero, but
its expected value increases without bound on a set of non-zero measure, when sampled
at consecutive times, N, (1 + §)N,(1 + §)%N,.... a
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5.5 Proof of theorem 5.12

The last equivalence in theorem 5.12 is easy. The matrix R can be viewed as a sym-

metric bilinear form whose quadratic form gives H when restricted to W. For w € W,
R(%,p) = W' Rp=w-XA-(1,...,1) =0
where A is thé common value of the N;. Then
R(W + ¢cp, W + cp) = R(W, W) + R(cp, cp) = H(w) + o)

so the quadratic form R(7,?) decomposes into the sum of H and a positive form on
the one-dimensional subspace spanned by p. Then R has precisely one more positive
eigenvalue then the quadratic form H. Since R has no zero eigenvalues, this means

that H will have a strict maximum when it has a maximum, which will be when it has

no positive eigenvalues. a

To begin proving the main part of the theorem, we start with a lemma that allows

us to shift our focus from H to the vector field 7 — I which maps ¥ to =(%) — v.

Lemma 5.18 Let T : W — W be the linear operator approrimating 7 (¥) — U nearlr',
30

m(f + @) — (5 + &) = p+ T(@) + O(|3]*). (26)
Then T has real eigenvalues and T has a positive eigenvalue if and only if R has more

than one positive eigenvalue.

Proof: First note that = is smooth on the interior of A, so T exists. We find a matrix

M representing an extension of T to all of R?. Using formula (5) for = we have

a ., ..
My = ()]~

i=p
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_ 9 uli Ny

T 0 H(O) |y

_ R,-,jvj + 5,'J'N,' _ 'U,'N,'@H/aej y
B H H H? P Y
= Rypi/A—2p:

using the fact that all the N; have a common value A = H(p).
Now the operator 7' whose matrix is given by
T;j = Ri;pi/ A

agrees with 7" on W since the difference is a matrix with constant rows, hence is zero
on W. Letting diag(p) be the diagonal matrix with ¢,7 entry equal to p;, we have
T = diag(F)R/\. Since R is symmetric and diag(p) is positive definite, we get that
T is diagonalizable with real eigenvalues and has the same signature as R (see [Or]
theorem 6.23 and 6.24 p. 232). Since T has 7 as a positive eigenvalue and W as

an invariant subspace, it has one more positive eigenvalue than 7' and the conclusion

follows. . 0

To finish proving theorem 5.12 we need to show that ¥(n) cannot converge to an
interior point where the linear approximation T' to the drift n(¢) — ¥ has a positive
eigenvalue. We follow the methods of chapter three. To turn the sequence {#(n)} into
a randomized nonlinear urn scheme with tractable properties, we find a sequence of
times 7, Tr41,. .. at which to sample, and consider instead the sequence {7(7,)}. Then
in the terminology of chapter three, C_}"(n) would be given by (r41) — 0(7,). We then
need to show that conditions (20) - (22) of chapter three are satisfied and to construct
an n for which (23) of chapter three is satisfied. Then we can apply theorem 3.8.

This approach obscures the ideas more than is necessary, seeing as theorem 3.8 is
just a way of verifying conditions (26) - (29) of chapter three. Since it is just as easy

to verify them directly, we will do so. In addition, we would like to use (7 — I)v(n)
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ffor G(n), but since this is only approximately true we must delve once more into the
guts of the argument, which are therefore better exposed than hidden. We begin by
¥ restating what is to be shown. We must find a bounded function 7 : A — R and times
Tr, Tr+1, - - - Such that if n(p) =0 and if

Sn =n(9(r)) and X, = S, — Sn (27)

then condition (32) below is satisfied. To state (32) we first state four other conditions.

:E(‘Xn+12 + 2}(n«}-lsn. l fn) 2 bl/n2 (28)
E(Xn+15n1|3,.|>c/n Ifn) 2 0 (29)
|Xa] < 1/n7 (30)
’ E(Xn+12 ’fn) S bg/n2 (31)
where
bi,bo,c > 0
vy > 1/2
F. = o/(all events up to time 7,).

Now the condition we want is that there is a neighborhood N of 0 such that for any

€ there is an n sufficiently large so that
prob(B|F,) >1—¢ (32)

where B C i>o Br and By € F; is the event that either (28) - (31) are satisfled, or
Sp ¢ N. Assuming (32) we sketch the argument that S, cannot converge to 0. (For a

more detailed version, read through the proof of theorem 3.5.)

First assume (28) - (31).




(A) Given any S,, the probability of finding | S| > k/+/n for k < \/m and
some M > n is at least 1/2 : The expected square of S,4;, stopped at the
exit time 7 of the interval |z| < k/+/n, grows by at least (b, /n?)prob(r > i)
at step 7, since the left-hand side of (28) is just E(Sp41® — S22 | Fn). If
prob(t = oo) > 1/2 then by summing b;/n? we see that the expected
square of the stopped process eventually exceeds S,° + b;/2n. But by (30),
the stopped process never leaves an interval slightly bigger than |z| < k//n

so we have a contradiction when k2 < b,/2 .

(B) Given that |S,| > k/v/n the probability that Sy will never return
to the interval |z| < k/\/n for M > n is at least a = 4b,/(4by + k? :
Assume without loss of generality that S, > k/+/n. The sequence S,
stopped upon re-entering the interval ¢ < k/2+/n is a submartingale by (29).
When decomposed into a martingale plus an increasing sequence, sum-
ming (31) shows that the martingale péurt has variance never exceeding
bz/n. Then by using the one-sided Tschebysheff estimate prob(f — Ef >
s) < Var(f)/(Var(f) + s?) and stopping the process if it re-enters the
intervalr < k/y/n, we see the probability of the martingale (hence the
submartingale) re-entering the interval z < k/+/n is bounded above by the
constant 4b,/(4b; + k?).

(C) If S, converges to 0 with non-zero probability, then there is an n
which can be chosen arbitrarily large and an event A € F,, for which
prob(S, — 0|.A) is arbitrarily close to 1. When it is greater than 1 — a/2;
this contradicts (A) and (B).

Now assume (32) instead of (28) - (31).

(D) Choose A as in (C) and choose ¢ < a/2 where a is as in (B). Let
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{X*.,S*.} be any process that always satisfies (28) - (31) and is coupled to
the process {X,,S,} so that S, = 5.," on By N---N B,. Then convergence
of S, to 0 with probability 1 — a/2 + € implies convergence of S,* with
probability at least 1 — a/2, contradicting (A) and (B).

For the remainder of this section we will mainly be taking expectations with respect

to F,, so the following notation is convenient.
Definition 5.19 Let E(-) denote E(-|F,).

We must now construct  and 7, 7r41,. .. satisfying (32). For any Ny, let Let 7. =
inf{k > No : Yx = 1} be the first time after Ny that the walk visits vertex 1. Let
Tnt1 = Inf{k > 7, : Y, = 1} be the successive hitting times for vertex 1. We will specify
r when necessary. Choose N small enough so that all coordinates of all points in N
are at least b for some b3 > 0. Let 7 = inf{k > Ny : ¥(k) ¢ N} and replace the old

values of 7; with 7 A 7;. For ease of notation, let
(AD)p = 0(Tn41) — 0(70).

Once again, let My be the markov chain prob(: — j) = v;/N; and let L(¥) be the
mean recurrence time for My. Let Ly, be the supremum of L(%) over M and pick

No > 2L,,c. We record a few facts about the times 7, 741, .. ..

Proposition 5.20 The distribution of 7,41 — T, has ezponential tails. Specifically,
prob(tpsr — T 2 k+1) < e~k
for some a. In particular,

E(rp1 = ™) < 1/(1 ~ ™) and E(Tny1 — m)? < 3e7%/(1 — )2
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Proof:

prob(Thyr — Th 2 k+ 1)
= prob(tn4r —Ta 2k —1)-prob(Y,, 4k #lor &(r, + k) ¢ V)
< 1-b;

by choice of A. So choose a = —In(1 — b3). O

Proposition 5.21

B(A),) — L) L= o7,

n

Proof: Couple the random walk to a Markov chain Y (7,,),Y (7, +1), ... with transition
matrix My(,,) starting at time 7, so that the processes remain coupled as long as
possible. Define the twiddled variables 7,4; = inf{k > 7, : Y. = 1}, §' to be a
vector such that 5; = Si(r,) plus the number of times Y3 =i for 7, < k < 741, and

§ = §/#n41. The Markov property for {¥i} yields the identity
E(S(Fat1) — S(ma)) = L(5(7a))m(¥(72)). (33)
The probability of the process coming uncoupled before time 7,4, is bounded by

> prob(tasr — T > k)k /T < e7/(1 — %), (34)

k>0

since the transition probabilities for the two processes differ by at most k/7, at time
Tn + k. But for any k&,

E(#.41 — (T + k)| uncoupling occurs at 7, + k) < Lax

and

E(7n41 — (Tn + k)| uncoupling occurs at 7, + k) < 1/(1 — ™).
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So
E(|9(7n41) — 9(Frt1)| | uncoupling before 7,11)

IA

supy, B(|8(7n41) = T(ra)l + [3(Faa) — 5(7a)]

| uncoupling occurs at 7, + k)

IA

supy(1/7)(E(rns1 — T — k + 1
+Tpp1 — Tn — k + 1) | uncoupling occurs at 7, + k)

< (/) (Lmax + 1/(1 — ™) + 2).
Combining (34) and (35) gives
E(|5(7n41) - 3(Fas1)]) = O(ra"). (36)
Now write
E(3i(Fat1) — vi(Ta))
wt1)/Trg1 = Si(T0)/Tn)

(8i(rmga) = Si(7a) = (Fugr — m)&(n)/m))

~(
(5:(
(7
&

= E(=(S5i(Tas1) = Si(Ta) = (Faps — ™)S; (rn)/rn))

i
Jeo!

I
=i

-E (I’L—(S (Tnt1) — Si(7n) — (Fag1 — ™)Si (Tn)/Tn)>

Tn41Tn

= —(L(U(Tn))m(ﬁ(fn)) — L(#(7a))vi(7n))
—E (Tn+1 — Tn (Sz(Tn-l-l) - Si(Tn) - (7:n+1 - Tn)Si(Tn)/Tn))

%'n.+1 Tn

according to (33). Combining this with (36) and using the identity E(|fg|) < E(f*+¢?)
shows that the left side of proposition 5.21 is at most

O(7a*) + (d/ ") E(L(5(72)))* + E(Fapr — a)*) = O(1%)
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by proposition 5.20. O

Proposition 5.22 For any € > 0,r, No, we can pick constants, ¢, and cy such that

prob(cin < 7, < ¢an for alln > 1 such that ¥(1,) EN) > 1 —e.

Proof: This is a consequence of the fact that the variables 7,,; — 7, are stochastically

bounded above by independent geometric random variables as in proposition 5.20, and

below by 1 as long as 9(7,) € N. a.

Proposition 5.23 For any € > 0,7 < 1, we can pick No,r large enough so that

prob(Thy1 — T > 0! for somen > 1) < e

Proof: This follows from proposition 5.20 and the fact that S e=*™ ") < . a

The final step is to construct n. The idea behind 7 is simple. The linear approx-
imation, T, to # — I has an eigenvector with a positive eigenvalue A and an invariant
subspace W1 not containing this eigenvector. Since the expected change from 7(7,) to
¥(Tn+1) 1s in the direction (7 — I)v(7,) by proposition 5.21, the distance between ¥ and
W, should increase by a factor of 1+ A on the average. So if # — I were linear and 7n(7%)
was defined to be ¥ - § for some § L W, then the definition (27) should make EX,4;
the same sign as S, as long as the latter is far enough from 0 so that the error in ap-
proximating ES,,; using proposition 5.21 does not cause it to change sign. Then (29)

will be true, and the rest of (32) would follow easily from the preceding propositions.

Unfortunately « — I is not linear, so there is no plane such that = — I always points
away from it. However, if #—1I is non-singular, there is always a surface of codimension 1
which is an invariant manifold for the flow (3) and which the flow moves away from when

perturbed. We can use this to define n but our approximations will only work when the
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surface is twice continuously differentiable. To get this differentiability it is sufficient to
impose the extra hypothesis on the eigenvalues that appears in theorem 5.12, although
such a condition hardly seems necessary from a stochastic viewpoint. We call upon the

following standard result from the theory of ODE’s.

Theorem 5.24 (Sternberg 1958) Suppose T is a real dx d non-singular matriz with
eigenvalues linearly independent over the rationals and none being purely imaginary.

Suppose

F(9) = T7 + x(?)
is C in a neighborhood of 0, with x(0) = 0 and its differential d5x(0) = 0. Let G(7,1)
denote the (necessarily smooth and unique) map defined on a neighborhood of (0, 0)
such that d/dt(G(v,t)) = F(G(7,t)) and G(¥,0) = ¢. Let FY(¥) = G(v,t). Then there
18 @ C® diffeomorphism @ from a neighborhood of6 to a neighborhood of 0 such that

®0) = 0
OFP = €7, (37)
Proof: See [Ha2] theorem 12.1 and exercise 12.1, page 257. 0

Apply this theorem with F(¥) = (x — I)(¢¥' + p). Differentiating (37) with respect
to t at ¢ = 0, we see that

05®(m — I)(v + p) = TP(V) (38)
Now let 7(%) = ®(% — p) - 6 where § is normal to the invariant subspace W;. Recall that
this means
S, = ®(W(r)) -0
./Yn = Sn - Sn_l.
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We must establish (32). Firstly, note that & and ™! are bounded in the operator

torm on a neighborhood of 6, i.e. for some ¢;,c; > 0 we have
|7 — 3] < 8(5) — ()| < cal — (39)

_or 7, € N where N is sufficiently small. Then for any € > 0 we can get (30) from
bropostition 5.23 and we can get (31) from propositions 5.20 and 5.22 with probability
at least 1 — €. To prove (29), let € > 0 be arbitrary and calculate

E(Xar1) = E(Su41)— Sa
(n(0(7n) + (A¥)n)) = Sn
- E(@(0(1n) + (AV)a)) — Sn
E(2(3(1a)) + 0:2((AV)n) + O(|(AD)a[*)) — Sn
= 0-3;3((AD)a) + O(E|(A%)a[)
= 0 9:B(L(5(r))(x — D)(10)/n + O(1/n?) + O(E|[(AD), )
with probability > 1 — ¢, by propositions 5.21 and 5.22
= L(T(ra))8 - T®(#(7a) ~ §)/7a + O(1/n%)
by (38) and proposition 5.20
= AS./tau, + O(1/n?). (40)

|
T g

v‘ ccording to proposition 5.22 there are constants ¢; and ¢; for which cyn < 7, < ¢,
ence there is a constant ¢ such that for S, > ¢/n the first term of (40) dominates.

iThus (29) is true with probability at least 1 —e.

- Finally, to show (28), note that there is a set of d events A, ..., A4, each correspond-
’ng to a single sequence of values Y, 41,...,Y; 4ro1, Y5, = 1, such that vj(7m41) >
W; < ¢ = j on A;. Then the probability of each A4 is bounded below by a constant
times 7,1, which together with equation (39) and proposition 5.22 shows that r and No
,an be picked so E(X,4+1)? is at least a constant times n™2 with probability arbitrarily

close to 1. When |S, > ¢/n|, equation (28) now follows from (40). When |S, < ¢/n/,
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the second term in (40) dominates, but then S, E(X,+1) is O(1/n®) so for n sufficiently
large, (28) is true.

5.6 Examples

EXAMPLE 1: Consider the VRRW on a complete graph without loops on d vertices.
SoR;; =1—6; for 1 < 4,5 < d When d = 3 this is just the triangle G; of section
5.1. The critical points are the centroids of the faces of A, and it is easy to see
that the centroids of all proper faces are linear non-maxima. For example, if p' =

1,%:50,...,0) then Ny(p) = No(p) = N3(p) = 2/3 but Ny(p) =1fori >3 sopisa
linear non-maximum by the criterion (19). It follows from theorems 5.8 and 5.11 that

#(n) — (4,...,1). In particular, VRRW on the triangle has @(n) — (1/3,1/3,1/3).
EXAMPLE 2: Consider the VRRW on a d—sided polygon for d > 5. So

lifi—j7j=1modd
Ri;= :
0 otherwise.
When d = 5 this is the graph G3 of section 5.1. As previously mentioned, there are too
many zero entries and duplications of eigenvalues to permit application of theorems 5.11

and 5.12. Nevertheless, in the spirit of corollary 5.13, we can say things about “almost

all” small perturbations of R.

The critical set C consists of the isolated point (1/d,...,1/d) together with points on
the boundary of A of the form (0,...,0,2,1/2,1/2—z,0,...,0) or convex combinations
of such points. Any small perturbation of R has an isolated interior critical point and
other critical points near the boundary of A. Since R is a circulant matrix, i.e. the
¢, j—entry depends only on 7 — j mod d, the eigenvalues of R are easily calculated (see
example 5 below). They are in fact {2Re(e?"*/?:0 < k < d —1}. For d > 5 this list

contains more than one positive value. Applying corollary 5.13, there is a neighborhood
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of (1/d,...,1/d) such that no sufficiently small generic perturbation of R gives rise to
a VRRW that can converge in that neighborhood. I strongly believe this result to be
true for R itself. Computer simulation bears out the guess that VRRW on a polygon
of more than 4 sides always concentrates asymptotically on a set of three consecutive

vertices and never approaches the uniform distribution.

EXAMPLE 3: Consider the VRRW on the square. So

0101

1010
R =

0 101

1010

This example has nothing to do with the theorems of this chapter, but it completes
the story on polygons. Let the vertices be numbered cyclically 1,2,3 and 4. Since the
graph is bipartite, the walk must alternate between being on vertices 1 and 3 and being
on vertices 2 and 4. Furthermore the choices made between vertices 1 and 3 at each
second move are completely independent of the choices between vertices 2 and 4 on the
intervening moves; the probability of moving to vertex 1 is always S1(n)/(S1(n)+S3(n))
regardless of whether the walk is at vertex 2 or 4 at move n. Clearly, the sequence of
choices between vertices 1 and 3 behaves like a sequence of draws from a two-color Pélya
urn. Applying the basic result on Pélya’s urn (theorem 2.1) with R = B = A = 1,
the proportion of times vertex 1 is chosen over vertex 3 will approach a limit that is
uniform over (0,1). The same is true for the sequence of choices between vertices 2
and 4. Then ¥(n) converges to a random vector ¥ whose distribution is uniform over

the affine square {v': vy + v3 = vy + vy = 1/2}.

EXAMPLE 4: When d = 2 the VRRW can be completely described for almost

every matrix R. Let
(1)
b ¢




and assume b # 0 to avoid triviality. Then A is the line segment joining (1,0) and
(0,1). The endpoints are always critical points, and in addition there is a critical point
at (Fcc_lbz_bv (H_L:_b—z;) whenever (a — b)(¢c — b) > 0. We consider three cases, depending on

the sign of (a — b)(c — b). (All convergence is taken to be almost sure convergence.)

Case 1: (a—b)(c—b) < 0.
Assume without loss of generality that a < & < ¢. Then H has a linear
non-maximum at (1,0) so by theorems 5.8 and 5.11, ¥(n) must converge to

the point (0,1) as n — oo.

Case 2: (a — b){(c—b)=0.

Assume without loss of generality that b = c.

Case 2a: a < b = ¢. Then (1,0) is a linear non-maximum again and

#(n) — (0,1).

Case 2b: a > b = ¢c. Now (0,1) is a global minimum for H but it is not a lin-
ear non-maximum because the derivative of H vanishes here. Theorem 5.8
tells us that ¥ — p where p'is one of hte two endpoints of the interval, and

while the author suspects it must always be (1,0), we have no proof.

Case 2¢: a = b = ¢. Now the critical set C is the whole simplex. Our
theorems tell us nothing a priori, but by viewing the process as a simple
Pélya urn process, we can see that ¥(n) — p' where §'is a random variable

whose distribution is uniform on the simplex.
Case 3: (a — b)(c — b) > 0.

Case 3a: a < b and ¢ < b. Then both (0,1) and (1,0) are linear non-

. . " . c—b a=b . . .
maxima, but there is another critical point (a w7 a i +c_2b) in the interior
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of the simplex to which ¥(n) must converge.

Case 3b: a > b and ¢ > b. Now it is possible for v(n) to converge to either

c—=b _a=b
atc~2b7 a4c—2b

which is a minimum for H, since both eigenvalues for R are positive. If the

endpoint. There is a critical point ( ) in the interior as well,

eigenvalues of diag(p)R are incommeasurable, then theorem 5.12 says that

prob(v(n) — (ﬁ?, - _;_’:_bzb)) = 0. When the eigenvalues are commeasur-

able, theorem 5.12 does not apply. We can however define n easily enough

in this case without resorting to Sternberg’s theorem. For example, let 1 be

projection onto the first coordinate, centered so that 7, (ﬁ, ﬁ%‘-) = 0.
It follows that @(n) still cannot converge to (;—::Tbﬁ, #c‘_bﬁ)

EXAMPLE 5: Let G be a finite abelian group and let T' C G be a set of generators
and be closed under inverses. Let R be the incidence matrix for the Cayley graph
associated with these generators, so the rows and columns of R are indexed by G, and
R,n = 1 when gh~! € T and 0 otherwise. Example 1 is a special case of this where G
is any abelian group of order d and T is G minus the identity. Example 2 is the special

case where G is cyclic and T' = {1,-1}.

Calculating the eigenvalues of R is easy. For any character x on G, let x(T') denote
> ser X(9). Then as x ranges over all characters, x(T') ranges over all eigenvalues of
R. The point p = (%, ce }7) is always a critical point for H and when all the values
of x(T) are non-zero, it is an isolated critical point. If furthermore, all values of x(7')
are negative except when x is the trivial character, then H has a global maximum
at p and it is not hard to see that all other critical points are linear non-maxima,
so ¥ — p. This is the case in example 1. In the remaining cases we would like to
apply theorem 5.12 but cannot because the eigenvalues will always come in pairs and
thus be (very) linearly dependent over the rationals. We must settle for the following

observation: when x(7T') > 0 for some non-trivial character then there are arbitrarily

113




small perturbations of R for which theorem 5.12 does apply and for which process ©(n)
cannot converge to p. We therefore suspect that ©(n) does not converge to p in the

unperturbed case.

The following somewhat longwinded analysis illustrates the calculations involving
characters and also shows how to get further information from theorem 5.11 by looking
at all subgraphs of the original graph. Let G be the integers mod 7 and let T =
{1,2,5,6}. So the VRRW takes places on the Cayley graph G4 of figure 7 that is just a
heptagon plus all its short diagonals. (By applying the automorphisms 1 +— 2 or 1 +— 3,
results for this case are also seen to apply to the case T = {2,3,4,5} or T = {1, 3,4,6},
or pictorially, a heptagon with any two of the three types of edges present.)

Since R is nonsingular, the only critical point in the interior of A is (1/7,...,1/7).
To see if this is stable, compute the eigenvalues of R. The characters of G are the
homomorphisms taking a generator of G to e2mk/T for k = 0,1,...,6. So the eigenvalues
of R are
w+w w4+ wb

%7k/7 For k = 0 the eigeﬁvalue is always positive. For k = 2, 3,4,5 the

forw =e
eigenvalues are negative, but for £ = 1 and 6 they are positive. Then the critical point
is unstable and the VRRW does not converge near (1/7,...,1/7) for generic small

perturbations of R.

To see where it does converge, look for critical points on the faces of A. A vector on
a proper face of A is supported on a subgraph, and there is a correspondence between
all faces of A and subgraphs of G4, with face(¥) corresponding to the subgraph on
the support of ¥ (those vertices j for which v; > 0). The highest dimensionatproper
faces are subgraphs on six vertices. These are all isomorphic, so consider any of the
6-vertex subgraphs and let the vertices be A, B,C, D, E and F in cyclic order, where
the missing vertex is between F' and A. If there is a critical point on the interior of

a maximal face for the VRRW on Gy, then there is a critical point for this subgraph
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that is interior to A. By proposition 5.4, all the values N4,..., N must be equal at

the critical point. Then the following six quantities are equal:

vg + v¢ + vF
va + v¢ + vp
va + vB + vp + vVE
vg + v¢ + VE + VF
ve + vp + vUF

va + vp + Vg

Furthermore, if p,q,r,s,%,u) is a critical point, then by symmetry so is (u,t,s,r,g,p)
and hence by linearity so is (p + u,q +¢,7 + s,7 + s, + t,p + u)/2. To determine
that there are no interior critical points, it suffices therefore to look only at points with
v4a = vp,vg = vg and vc = vp. Then the equality of the first and third of the six

quantities above implies

v +vc +va=v4+vB+vec +uB

which is impossible on the interior of the simplex as vg cannot be zero on the interior

of A. Therefore there are no critical points interior to the five-dimensional faces of A.

To check for critical points interior to four-dimensional faces, there are three types
of isomorphism classes of subgraphs on five vertices to examine. The same method as
above, shows that none of these faces actually contains a critical point. When we get
to subgraphs of size four, it turns out that two of the types do contain critical points
(types 1 and 2 in figure 8), while the two types at the bottom of figure 8 do not. The
second type however gives rise to a linear non-maximum (see definition 5.10) because
the value of IV; for the four vertices present is 1/2, while there must be a vertex of the
original graph adjacent to the two vertices with the highest weights which will then
have N > 1/2. Then theorem 5.11 rules out convergence to a point of type 2 except for

the point z = y = 1/4. Every subgraph on three vertices contains a critical point, but
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all of them are linear non-maxima except for type 3 in ﬁgure 9. Similarly, all 2-vertex
and 1-vertex subgraphs have critical points but they are all linear non-maxima. The
only candidate is therefore the critical point of type 1, or of type 3, which is just type
1 with z = 0.

For a small perturbation of R, the one parameter family of critical points of type
1 will collapse to a single point. As the perturbation gets smaller, this point must
approach the one parameter family though it need not have a limit. Thus VRRW on
small perturbations of R will converge somewhere near a point of type 1. Again, I

believe that VRRW on R itself converges to a point of type 1 almost surely.
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