Chapter 4

EDGE-REINFORCED RANDOM
WALK

ABSTRACT

A random walk on a graph is given a particular kind of positive feedback so edges
already traversed are more likely to be traversed in the future. Using exchangeability
theory, the process is shown to be equivalent to a random walk in a random envi-
ronment, that is to say, a mixture of Markov chains. When the graph is finite, the
fractional occupation times for the edges approach random limits whose joint distribu-
tions can be calculated explicitly. When the graph is infinite and acyclic, the process
can vary from transient to positive recurrent, depending on the parameter measuring
the strength of the reinforcement and on the rate of growth of the graph. The values
of the parameters at this phase transition are calculated.
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4.1 Introduction

The idea of edge-reinforced random walk is due to Coppersmith and Diaconis.
Imagine a person getting acquainted with a new town. She walks about the area near
the hotel somewhat randomly, but tends to traverse the same block over and over as
they become familiar. To model this, Coppersmith and Diaconis (1987) have defined
the following process which they call Reinforced Random Walk. A random walk is
taken on the vertices of an undirected graph, beginning at a specified vertex. Initially
all the edges are given weight 1, but whenever an edge is traversed the weight of that
edge is increased by a fixed parameter, A. To choose the next move from a particular
vertex, an edge leading out from the vertex is chosen, with the probabilities for the
various edges being proportional to their weights. So for example, if after one step
the walk has reached a vertex with k neighbors, it will return to the starting point
on the next step with probability (1 + A/(k + A). For a more formal description of
edge-reinforced random walk, see [CD].

In section 2, we present an analysis of this process on a general finite graph that
is due to [CD]. They use the notion of partial exchangeability to equate the process
with a mixture of Markov chains and calculate the random limiting fraction of the time
that the walk spends on each edge. The rest of this chapter studies the case where
the graph is an infinite tree (acyclic graph). The starting point of the investigation
is a mapping of the edge-reinforced random walk into a random walk in a random
environment determined by infinitely many independent Pélya urns. We apply this to
the sequence of edges chosen each time the walk is at a fixed vertex. Since the infinite
graphs considered are acyclic, the full force of partial exchangeability is not needed; we

use only a single result from the introduction, namely theorem 2.2.

In section 4 Pélya’s Urn is used to construct a random walk in a random envi-
ronment (RWRE) that is equivalent to the original edge-reinforced random walk. In
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sections 5 and 6 we study RWRE using a large deviation bound from Chernoff’s origi-
nal paper [Ch]. Section 5 contains a sufficient criterion for a.s. transience of a certain
class of RWRE. Section 6 gives a sufficient condition (via the stationary measure) for
positive recurrence of the RWRE. The only cases remaining unsettled are transitional
points where certain equalities hold. We apply these results in section 7 to the RWRE
described in section 4 preceding lemma 4.7. surprisingly, the calculations for this class
of RWRE reduce to a few lines. Thus the recurrence or transience of edge-reinforced

random walk on an infinite binary tree can be established except for one value of A.

4.2 Finite graphs

The results of Coppersmith and Diaconis are valid for any finite graph, but for brevity
and concreteness we will consider the case where the graph is a triangle. We will
also assume that A = 1. The reader is referred to [CD] or [Di] for details about
the general case. Let the vertices of the triangle be labelled A, B and C and let the
edges be labelled BC, CA and AB (see figure 1). The sequence of vertices visited by
the reinforced random walk is certainly not exchangeable. It is possible, for example,
that the sequence begins ABACBCBA, but it is impossible to begin with an arbitrary
permutation of these, say AAABBBCC, because no vertex can be visited twice in a row.
However, there holds a certain partial exchangeability, where a partially exchangeable

sequence is precisely one for which the next proposition holds.

Proposition 4.1 ([CD]) Let Vi,...,V, and W4,..., W, be two sequences of vertices
of the triangle such that they have the same starting points

Vl e Wl
and the same transition counts

card{k : Vi = 1,Viya = j} = card{k : Wi = i, Wiy = j}
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for all vertices i and j. Then the edge-reinforced random walk starting at Vi has
the same probability of beginning with the sequence Vi,...,V, as with the sequence
Wy, W ;

Proof: The probability that the sequence of vertices visited begins 1;,...,V, is a
product of n — 1 terms whose numerators are the number of times an edge has been
traversed so far and whose denominators are the number of times all edges adjacent
to a certain vertex have been traversed so far. The product of the numerators may be
calculated from the transition counts alone, since an edge that gets traversed k times
contributes a factor of k! to the numerator. Similarly, the denominator is determined
by the transition counts, so the probability in question is determined solely by the

transition counts. o

We can then apply a theorem or Diaconis and Freedman characterizing partially
exchangeable processes as mixtures of Markov chains. For full generality on partial
exchangeability with a countable state space, see [DF].

Theorem 4.2 ([DF]) Let X3, X3,... be a recurrent partially ezchangeable sequence of
random variables with values in a finite domain. Then the sequence is a mizture of
Markov chains, More precisely, there 13 a measure p on transition matrices for the

finite domain, such that

n—1
prob(Xy =Wi,... . Xa =Vo) = j (H MV;‘J‘?H) du(M).

i=1

As usual, the empirical transition matrices (with the rows normalized to sum to 1)
converge almost surely to a matrix M with distribution g so the sample value of M can

in some sense be recovered in the limit. Combining proposition 4.1 with theorem 4.2
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and an easy verification that the vertex-reinforced random walk is recurrent, we see
that it is a mixture of Markov chains. To describe the mixing measure, it is easier to
describe the joint distribution of the fractions of time the walk spends on each edge.
It is clear form the mechanism of updating the transition probabilities that the sample

value of M carries the same information as the limiting occupation fraction for all the

edges.

If the limiting fractional occupation of each edge is made into a vector, then the
vector must lie on the unit simplex because the coordinates must sum to 1. Coppersmith
and Diaconis give the density of this vector with respect to the area measure on the
simplex. Let z,y and z be the limiting fractional occupations of edges BC, CA and AB
respectively. Assume the walk begins at vertex A. Their formula simplifies to

prob((z,y,z) € S) = [sn&(ﬂ:y +yz+zz) Yy + 2)" Nz + )"z + y) VA

The general formula is similar but it includes a polynomial that is a determinant of a
matrix indexed by the homology group of the graph. Their result for finite trees is a
little simpler because the homology vanishes. To describe the density of the limiting
fractional occupation vector in this case, let each edge e have an associated variable z..
For any vertex v let z, denote the sum of z, over all edges e that are incident to v. Let
e be the initial edge weights, let s, be the sum of r, over all e incident to v and let v
- be the starting vertex. Then the density with respect to the area measure on the unit
simplex is

Cﬂx‘n—lf‘i HIU-F[a,H}fzmmlfz (1)

. v

for some constant C. From this it is possible to calculate the mixing measure u over
transition matrices in the representation of this process as a mixture of Markov chains.
In the next section it will be shown that the rows of the transition matrix are inde-
pendent and Dirichlet distributed, but this is not at all apparent from equation (1).
The derivation in [CD] of (1) involves a lot of calculus and is too complicated for me

to write down or you to want to read.
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4.3 Main results for infinite trees

Say the edge-reinforced random walk is recurrent iff the probability of return to
the root is 1. After proposition 4.8 of the next section, it will be clear that the usual
equivalences hold: the walk is recurrent iff it returns to the root infinitely often a.s. ,

and it is transient iff it returns to the root finitely often a.s.

QOur notation for trees is as follows. The set of vertices or nodes is a finite or
countable set, T. The starting node, or root, is denoted p. Every node v other than p
is adjacent to a parent, par(v), which is closer to the root, and zero or more children,
denoted ¢;1(v), e2(v), etc. We will write v; < v, for v; an ancestor of v3. A branch of
length n < oo is a sequence of nodes of length n beginning with p where each is the

parent of the next. T, denotes the set of nodes at distance n from p.

The mean recurrence time is always infinite. To see this for A > 1, let v; be one of
k vertices adjacent to the root and let v, be adjacent to v, and distinct from the root.
Then the probability of going from v; to v; at least n 4+ 1 times before returmng to the
root is at least

(1/k) (1/(2+A)) (1 +24)/(2+34)) ... god o, A2)
(14 2nA)/(2 + (2n — 1)A)) v
> 1/k(2+ (2n — 1)A).

The mean recurrence time is

> nprob(first return at time n)

n=1

o0 :
= »_ prob(not returned by step n)

n=0

IV

Z 2 k(24 {Qn —1)A)
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which diverges. Note that this result holds even if the tree itself is finite. If A < 1 the

mean recurrence time is also infinite but we need lemma 4.7 below to see this.

Nevertheless, we can define a notion of mixed positive recurrence. In section 4 the
walk is decomposed into a mixture of Markov chains, the mixture being necessarily
unique in the recurrent case. Call the walk “mixed positive recurrent” whenever the

Markov chain is a.s. positive recurrent under the mixing measure.

Theorem 4.3 For an edge-reinforced random walk on an infinite binary tree, there
ezists

Ag == 4.29 30 that

For A < Ag the walk 1s transient; (3)

For A > Ap the walk is mized positive recurrent. (4)

It should be noted that the author does not know whether increasing A always makes
an edge-reinforced random walk more recurrent in any quantitative sense. It seems

reasonable to conjecture that the probability of return to the root is monotone in A.

In more generality, we can allow the tree itself to be random as long as everything
is sufficiently i.i.d. .

Definition 4.4 By an i.i.d. RWRE on a random tree we mean the following. Let each
vertez v have M(v) children with M(v) i.i.d. end bounded and E(M) = X\ > 1. Writing
a; for prob(M(v) = i), this means that Y a; = 1 and Y ia; = A. For binary trees
M(v) = XA = 2. In general, the tree can be any supercritical Galton- Watson process.
Let the tranasition probabilities from v to its neighbors vy, vq,...,var be denoted by the
vector p with py being the probability of transition to the parent of v and the conditional
distribution of § given M being symmetric in coordinates py,...,pa . The collection

of random variables {p{v) : v € T} should be independent after conditioning on the
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shape of the tree, and should be identically distributed for nodes with the same number
of children.

Let

¢(v) = prob (transition from parent of v to v) + (5)

e

iy prob (transition from parent of v to grandparent of v).

So ¢ is the same on the class of all children of the same node and i.i.d. on such
equivalence classes except at the root and any of its children. (As a harmless fiction

we sometimes pretend these exceptions do not exist.)

References will be made to expectations involving ¢ and the following is a more
precise statement of the measure against which these expectations are to be taken. Let
pi for i =1,2,3,... be the law of ¢(v) conditioned on par(v) having exactly i children,
i.e. the law of py(par(v))/po(par(v))givenM(par(v)) = i. This measure is well defined
because the distributions of f{v) are supposed to be identical for nodes with the same
number of children. Then the measure we take to be the “law of ¢” is

#=Ziﬂi#=‘;’rl-

This formula corresponds to picking a vertex unifermly from some generation and
looking at ¢ for that vertex. The distribution of ¢ will depend on the number of
children of the parent of the chosen vertex. The probability of the parent having i
children is not a; but ia;/A because nodes with more children are more likely to get

picked as parents of a node chosen uniformly.

Let
m(r) = inf{exp(—rt)E(¢') : t € R} (6)
be the rate function for In(¢) as in (22) below. Assume that E(In(4)) exists, possibly
*20. The following theorem collects all results on i.i.d. RWRE.
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Theorem 4.5 Conditional on the iree being infinite:

If E(ln(8)) > 0 then the walk is a.s. transient; (7)

If E(In(¢)) <0 and sup{Ar m(In(r)) : 0 < r <1} < 1 then (8)
the walk 1s a.s. posilive recurrent;

If E(ln(¢)) < 0 and sup{Air m(In(r)) : 0 <r <1} > 1 then (9)
the walk 13 a.s. transient;

If E(¢) < 1/X then the walk is a.s. positive recurrent. (10)

If 1< E(¢)<oco then the suprema in (8) and (9) need (11)

only be evaluated at r = 1.

Boundedness of M is not really needed except in (8); even here it may be replaced by a
weaker condition. (10) is always included in (8) but is given for ease of calculation. (7)
is included because the calculation is easier than (9) but the case E(In(¢)) can always
be removed by adding “ghost” children to each vertex that have zero probability of ever

being reached. Here are two examples to illustrate the various parts of the theorem.

Example: Let M(v) have any distribution that makes the tree a supercritical Galton-
Watson process and let 4 be a positive real parameter. Suppose that a vertex with k
children always has po =v/v+ kandp;i=1/y+ kfori > 1. Thengd=1/v. If4 <1
then E(In(¢)) = 0 and the walk is transient by (7). Otherwise, use the fact that

m(r)={ Lif r =In(1/7)

0 otherwise

Then sup Arm(In(r)) = A/ so A is a critcal value for 4 with transience when v < A and
positive recurrence when v > A. This result is contained in a result from [Ly] giving
recurrence and transience conditions for trees that are not necessarily Galton-Watson
but that have this same transition vector that is a deterministic function of the number

of children of the vertex.
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Example: Suppose the tree is binary and has vertices of types A and B with probabilities
p and 1 — p respectively. Type A vertices have p'=(1/3,1/3,1/3) and type B vertices
have p = (3/5,1/5,1/5) so that type B vertices favor transitions to their parents (see
figure 2). Then

m(l(r)) = inf E(¢/r)
= inf p(1/r)' + (1 - p)(1/3r)
which has a minimum at ¢ = hn((Li P}l?g;])fplﬂ{lf"}) :
Then
Arm(ln(r)) = 2p(1/r)@el(1-p)ia(Er)/pla(1/r)}/n(3)}-1 12)

2{1 - p)(1 IJ|f3,..){l=l[|{1~~—:=*'.I'llﬁtifill".Iu’::'lnti1.|’!‘IlIf'l='l'[3}}—l_
3

For p = 1/2 the value r = 1 makes the first term at least 1 so the walk is transient
according to (7) or (9). So the critical value for p is less than 1/2. This can be seen
directly by noting that p = 1/2 is the value at which vertices of type A percolate and for
any p > 1/2 there is a subtree of type A vertices with branching number greater than
1. The walk restricted to this subtree is a simple random walk and clearly transient.
Further discussion of the case r = 1 precedes the proof of lemma 4.10. Of course the

critical value of p may be recovered precisely from (12) with the aid of a calculator.

4.4 Reduction to RWRE

In this section we study edge-reinforced random walk in order to prove the equiv-

alence in lemma 4.7 below,

Fix a single node, v. It has parent vy, and children v, for some possibly empty set
of 1. Edges ¢; connect v to v; . When the edge-reinforced random walk first reaches v,
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i = 1/5 1/5

TYPE A TYPE B
(PROBABILITY p) (PROBABILITY 1-p)

FIBURE 2
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the edge weights must be 1 + A for eg and 1 for each other edge. If the walk returns
later to v it must do so along the same edge by which it left. So the weight of one edge
will increase by 2A while the others remain fixed. As long as the walk keeps returning
to v, the weights of e; increment in this fashion. It is easy to see that the sequence
of edges by which the walk leaves v is an exchangeable sequence stopped at a random
time. More precisely, let the (possibly finite)n sequence of times that the walk is at v
be t;,13,... and let X; be the position of the walk at time 1 + ¢;. Then for any finite

sequence of vertices Wy,..., W, and any permutation = € §,,

prob(X; = Wi,..., X, = W,| at leat n visits to v)
= prob(X; = Weay, ..., Xn = Wi at leat n visits to v).

We will see that this is in fact it is equivalent to Pélya’s Urn with appropriate initial
conditions.

Pélya’s Urn contains balls of different colors. At each turn a ball is drawn and
replaced along with D extra balls of the same color. Of course the probability of
choosing a color is just the fraction of balls in the urn of that color. The mathematics
still makes sense (although the mechanism does not) if D is allowed to be non-integral.
Letting D = 2A and the initial numbers of each color be 1 + A for color 0 and 1 for
each other color, gives the sequence of edges chosen at each wvisit to v. Combining

theorem 2.2 with the remarks following theorem 2.1, we have

Lemma 4.6 (Multicolor Pélya’s Urn) Let the urn begin with w; balls of color, 1 <
i < k. Then the sequence of draws is distributed as a mizture of sequences of i.1.d.
draws with the common probability of choosing color i being a random variable, p;. The
vector p ranges over the unit simplex and has the Dirichlet distribution with parameters
wi/D,...,w/D. In particular if W = wy + ... + w; then the density of p; on (0,1) is
given by

[T(W)/T(w;/D)T(W — w;/ D)) £!%/P-1)(1 — g)(W-wi/D-1) (13)
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A consequence of the acyclicity of the graph is that the sequence of edges chosen
from v is (except for a random stopping time) independent of what happens on edges
not incident to v. To clarify, take for example a vertex v with children vy,...,v. Let
the sequence of times the walk is at v be t,,%5,... and let X; be the position of the
walk at time 1 + ¢;. Then the probability of a visit to v; at time 1 + ¢, given £, < oo,
the shape of the tree and the o-field of events upt to time ¢, is equal to the probability
of a visit to v; given only that ¢, < oo and the positions of the walk at times 1 +¢; for
i < n, and both probabilities are given by

1 + 2A(number of X; equal to v; for i < n)
1+k+(2n-1)A i

But this is the same probability of picking a ball of color j from an urn that began

with 1 + A balls of color 0 and one ball each of colors 1,...,n and to which 2A balls
have been added of each color X;,...,X,. So we can model the edge-reinforced random
walk by independent Pélya’s Urns at each node, making the decisions about where to go
from that node. The urns can be replaced in turn, according to the lemma, by random
values po(v), pi(v),...,Pm(v)(v) chosen independently from the Dirichlet distribution
with parameters (1 + A)/2A,1/2A,...,1/2A. Conditional upon these choices, the
walk is a Markov chain with transition probabilities prob (v — par(v)) = po(v) and
prob (v — ci(v)) = pi(v) for 1 <1 < M(v). Another way of saying this is that the walk
is governed by a transition matrix whose rows are independent Dirichlet. The following
equivalence should now be clear.

Lemma 4.7 Let vy,vy,... be the sequence of nodes visited by an RWRE on a Galton-
Watson random tree whose transition matriz, conditioned on the shape of the tree, has

rows whose nonzero elements are independent Dirichlet with parameters (1 + A)/24,
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1/2A,...,1/2A. The distribution of the random sequence vy,vq,... ts the same as the
distribution of sequences of nodes visited by an edge-reinforced random walk. o

For a binary tree, we give a formal construction of this which will be useful for the
numerical calculation in equation (45) below. The formalisms for the general tree are
equally routine. The beta density with parameters a and b is defined as

I'(a+b) 2o-1(] — z)-1
Tt

To construct the Dirichlet distribution out of betas, use the following,.

Fact: If X is has beta distribution with parameters a and b+ ¢ and Y is independent of
X and has beta distribution with parameters b and ¢, then the vector (X, (1-X)Y,(1—
X)(1 —Y)) is Dirichlet with parameters a, b and c.

Let {A(v), B(v) : v € T} be independent random variables with A(p) = 0, density for
A for v # p given by

[T((3 + A)/2A)/T((1 + A)/2A)T(1/A)] 2-8)/28(1 — z)1/2-1 (14)
and density of B given by
[M(1/A)/T(1/2A)T(1/2A)] 1/?4-1(1 — i (15)

So the variables A(v) are i.i.d. betas with parameters (1 + A)/2A and 1/A and the
variables B(v) are i.i.d. betas with parameters 1/2A and 1/2A. Then the vector
(A(v), (1 — A(v))B(v), (1 — A(v))(1 — B(v))) has the Dirichlet distribution with pa-
rameters (1 + A)/2A, 1/2A and 1/2A.

To construct the walk itself, let Z; be i.i.d. uniform on (0,1) fori = 1,2,..., and let

the random wvariable

I1 A(v) x I B(v) x I] 2

veT veT fteN
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be defined on some space . For each w € {0, generate a sequence of nodes recursively

by vi(w) = p and Ve (w) =

par(va(w)) if Z,(w) < A(va(w))
(@a(@) I AWa()) S Za(w) < A@a©)) + (1 — A(va(w)))B(va(w)) -
ca(vn(w)) otherwise

The process w — (vi(w), vz2(w),...) is our RWRE. A(v,w) and B(v,w) are the random
environment; conditional upon their values for all v € T, the Z; determine a Markov
random walk. [Unfortunately the distribution function for A does not vary pointwise
monotonically with respect to A so it is difficult to compare the RWRE’s for different
values of A.]

We can now prove that the mean recurrence time is infinite even for A < 1. Let
R be the mean recurrence time given the values of A and B at all nodes so that the
mean recurrence time is E(R). By looking at the subtree below the first node visited
we get the equation E(R) = 2 + E((1 — A)/A) E(R). But for 0 < A < 1, we get
1 < E(((1 — A)/A) < co by a calculation similar to (6.2) below, so E(R) must be
infinite.

Proposition 4.8 Let an RWRE on a Galton- Watson tree be i.i.d. in the sense of
definition {.4. Then the probability that the environment is recurrent conditioned on
the tree being infinite is either 0 or 1.

Proof: First consider the simpler case where the tree is binary. The environment is given
by a set of independent random variables {A(v), B(v) : v € T}. Altering the values of
A and B for finitely many v will not affect whether an environment is recurrent (since
A(v) and B(v) are in the open interval (0,1) but may not equal 0 or 1). So recurrence
is a tail property of the i.i.d. pairs (A(v), B(v)) given the number of children of each
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node. It follows from the 0-1 law for tails that the environment must be a.s. transient
or a.s. recurrent. In other words, the mixing measure for the RWRE does not mix

recurrence and transience, so the claim at the beginning of section 3 is established.

For general trees one must first condition on the trees being infinite. We use an
argument due to H. Kesten. The process is recurrent iff the process restricted to each
subtree with root v for v € T; is recurrent. So the recurrence probability is a fixed
point of the offspring generating function. If it is less than 1 it is bounded by the
extinction probability and hence equal to the extinction probability. So conditional
upon non-extinction, the recurrence probability is either 1 or 0.

4.5 Transience of RWRE

In this section and the next, let T be a Galton-Watson tree and let the transition
vectors plv) = (pi(v),...,Par(s)(v)) be an i.i.d. RWRE as in definition 4.4. Let

A(v) = po(v) = prob(transition from v to par(v)),

let
C(v) = pi(par(v)) = prob(transition from par(v) to v,
and let
¢(v) = C(v)/A(par(v)). (16)
In particular if we let
C(ei(v)) = (1 — A(v))B(v) and (17)
C(ea(v)) = (1 — A(v))(1 - B(v)) (18)

then this agrees with the definition of ¢ in (5). The main results of this section are the
transience criteria for RWRE, (7) and (9). We restate them here:
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Theorem 4.9 Let m be defined by equation (6). Suppose that for some r € (0,1]

Ar m(ln(r)) > 1. (19)
Then the RWRE is transient.

The proof breaks into three pieces: lemma 4.10, which is a transience criterion for a
single environment; Chernoff's identification of the rate function for large deviations;

and a lemma on branching processes, providing the hypotheses for lemma 4.10.

Lemma 4.10 Let k € N,M € R*,r € (0,1] and § > 0 be fized constants. For a set
of nodes S let S; denote S\ Tix, the nodes of S at distance ik from the root. Suppose
a nonempty set of nodes S € T can be found such that for all vo:

[veES andvy<v]=>veES (20)
vg € Sl = car:f{'u = S='+1 g < 'I‘J} = l"k (21)

For each branch segment vg < vy <... < v with vg € S; and vx € Siy1,

1;;.:111(‘#(“)} > kin(r)+ 6 (22)
#(v)' <M forallve S. (23)

Then the environment ia transient.

To see the intuition behind this lemma, suppose r = 1. Then (20) and (21) say
that S contains at least one infinite branch. By (22) and (23), the liminf average of
In(¢) along initial segments of any branch in § is at least §/k. For any such branch,

the Markov chain gotten by considering only moves along that branch will be transient;
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this is because the sequence ¢; = [] ¢(v)™" is summable which is the standard test for

vl
transience in the one-dimensional case. But any environment containing a transient

subtree is transient either because it wanders to infinity on the subtree or because it
fails to return to the subtree infinitely often.

Proof of lemma 4.10: We find the appropriate martingale to generalize the standard
test to the case r < 1. Define a function s: T\ {p} — [0,1] by s(v) =0 for v &€ S and
by

3(v) = card{v' € Siy1: v < v’} [ card{v’ € Si;1 : par(v) < v'}
for v € T; with ik < j < (i+4j)k. Clearly, the sum over ¢ of s(ci(v))is 1l forany v € §.
See figure 3 for an example of the function s. Now define t : T — R* by #(p) = 1 and
for v # p by t(v) = s(v)é(v) " i(par (v)). Define u : T — R* by u(v) = BT L

I claim that u(v;) is a bounded martingale for any v; # p, where vy, vq,... is
a random walk on the given environment, stopped if it reaches p. To see if it is a
martingale, just calculate
E(u(vis)lv) = A(vi)u(par(vi)) + 3 _C(ej(vi))ules(vi))

7

= u(v) + A(w) [—f{‘l’f) - Z_‘f’(c.f(‘-‘i})t(ﬂj(ﬂi}}:l (24)
= (i) + Ao/ H(w) [—1 + z.s(cj{u,-);] = u(w)

for v; € §. For v; & S the result is true because #(v;) = 0.

For boundedness, first consider the case v € 5;. Find vy € ;1 with vp < v. Then

[I s(v') is a telescoping product and is at most r* by (21). Also [T #v)?! <
w<v'<y wp<o'<
e~®r=* by (22). Then #(v) < #(vo)e™® and by induction #(v) < e~*. Now for any

v € ST, , apply (23) to see that #(v) decreases at least geometrically in n . Therefore
u is bounded on §. But for v € §,u(v) = u(par(v)) so u bounded on all of T.
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We conclude by the bounded martingale theorem that u(v;) converges a.s. to a limit
u with E(u) = E(u(v,)) > 1. Then prob(u = 1) < 1 so the walk stays away from the

root with nonzero probability. o

The case (7) is easily disposed of using lemma 4.10 and the strong law of large
numbers, so we assume for the remainder of this section that E(In(¢)) < 0. At this

point we require Chernoff’s estimates for the probabilities of large deviations.

Theorem 4.11 ([Ch] theorem 1 and lemma 6) Let S, = X; +...+ X, where the

X; are 1.i.d. with common distribution function F'. Define

m(r, F) = inf{ezp(—rt)E(ezp(tX,)) : t € R} (25)

Assume r > E(X,) =2 —oco. Then

prob(S, > nr) < m(r, F)* and (26)
lim m7"prob(Sn = nr) = oo for any my < m(r, F). (27)

Furthermore, m(r, F') is continuous in r and strictly decreasing between C = E(X;)
and D = essential sup(X,) with m(C,F) =1 and m(D, F) = prob(X,) = D. a

We will apply this with F' = &, the distribution function for In(¢). With m(r)
denoting m(r, ®), the notations in (25) and (6) agree. Roughly speaking, (27) tells us
that under the condition (19), there are enough branches on which In(¢) averages more
than In(r) to made (20) - (23) possible. To make this into a proof we need some facts
about branching processes.

The branching processes we will consider begin with a single ancestor. Each indi-
vidual bears a random number of children which is i.i.d. and equals i with probability
pi- Let f(z) be the generating function for the p;’s, with f'(1) = M < oo, and assume
M > 1 so the process is finite with some probability b < 1.
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Lemma 4.12 Pick any K >0, M; < M. Then

lim prob(size of the n'* generation < KMJ)=b.

Proof: See [Ha] pps. 13-14 theorem 8.1 and remark 1. m)

Say a branching process is d-infinite for d € N if there is some nonempty subset of
individuals such that each individual in the subset has at least d children in the subset.
Say that a given individual has a d, n-subtree if n = 0 or the individual has at least d
children each of whom has a d,n — 1-subtree. Suppose that B is a branching process
with generating function f and C is the process with generating function f(r+(1-r)z),
being identical to B except that births are aborted with probability r.

Lemma 4.13 Suppose that for the process C, the probability of an individual having
at least d children is at least 1 —r. Then the process B is d-infinite with probability at

least 1 —r.

Proof: We show by induction that the probability of any individual having a d,n-
subtree is at least 1 — r. The case n = 0 is trivial. Now assume it is true for some
arbitrary n. Then the probability of an individual having a d, n + 1-subtree is just the
probability of having at least d children, provided that the ones who will not have a
d,n-subtree are aborted. By the induction hypothesis, children will be aborted with
probability at most r, so by the hypothesis of the lemma, the probability of having a

d,n + 1l-subtree is at least 1 —r.

Thus the probability of the initial ancestor having a d, n-subtree for all n is at least
1 —r. Since each node has only finitely many children, the process will be d-infinite in

these cases.
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For any branching process, B, let B!®) denote the process whose n'* generation is
the nk* generation of B, with the relation of parenthood in B®) corresponding to

ancestry in B.

Lemma 4.14 For a branching process B, let f,b,M and M, be as in lemma 4.12
above. Then there 13 some k € N such that

prob(B® is | M} |-infinite) > (1 — b)/2. (28)

Proof: By lemma 4.12 we can pick N large enough so that for all i > N
prob(size of i** generation of B > 4M; /(1 — b)) > 3(1 — b)/4. (29)

By increasing N if necessary we can also assume that the following holds: given a
population of size at least 4M;¥ /(1 —b), each member of which is killed independently
with probability (1 + b)/2,

prob(at least M}¥ of them survive) > 3(1 — b)/4. (30)

Now let ¥ = N and apply lemma 4.13 to B®) with the probability of abortion =
(14 5)/2. Then

prob(having at least M}¥ children in B") with abortion)
> 1 — prob(fewer than 4M} /(1 — b) children in B") without abortion)
—prob(from at least 4M]¥ /(1 — b) conceptions fewer than M;¥ are born)

> 1-(1-b)/4-(1-b)/4=(1-1b)/2

So (28) follows from lemma 4.13. O
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Proof of (9): Fix r with Ar m(ln(r)) > 1. Fit in a few more constants: m(ln(r)) =
(148)/Ar > (1+8&)/Ar > (1 +83)/Ar > (14 64)/Ar > 1/Ar. Apply (27) of Chernoff’s
theorem with m; = (1 + §;)/Ar < m(In(r)). For a vertex v picked uniformly from the

n? generation, (27) implies

; Ar ¥ ¥
tim (35s) prob(5 1a(40) 2 nlar) = oo

i<y
and in particular is eventually greater than A. Now the expected number of nodes in
the n*® generation is A® and if this number were independent of the values of ¢ it would
immediately imply
E(card{v € Ty : Y_ In(¢(v")) > Nln(r) + &}) > M(1 + &)/r)" (31)
vy
for sufficiently large N and small . In fact, the size of the n** generation is independent

enough of the values of ¢ to imply (31) if any smaller 83 is substituted for §;. The reason

for this is that in any supereritical branching process with mean A,
prob(|Ty| < (M1 + &) /(1 + &)"| non-extinction) — 0 exponentially fast,

and it is easy to see that conditioning on |Ts| = ((M1 + &)/(1 + 62))" can be made
to have an arbitrarily small effect on prob(¥ 1<, In(¢(v')) > N In(r) + §;. We can now
pick M sufficiently large to amend (31) to

E(card{v € Ty : Y In(¢(v")) > Nln(r) + & and ¢(v') " < M

ey

for all v < v}) > A((1 + &)/r)V. (32)

Now define a branching process B with p as its initial ancestor, whose individuals are
elements of To, Tw, Tan,... such that vg € Ty has v € T4y as achild if wo < v
and ¥, <o In(@(v;)) = Nln(r) + & and ¢(v')™ < M for all o < v' < v and v is
the first child of par(v) that qualifies under these conditions. By lemma 4.14 there is
a j such that BY is |((1 4 &4/r)*"|-infinite with nonzero probability. In fact j can
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be chosen large enough so that the expression in greatest-integer brackets is at least
(1/r)N . Now the criterion given by lemma 4.10 applies with k¥ = jN to show that
the probability of transience is nonzero. By the reasoning in section 4, this means the

probability of transience, given an infinite tree, is 1 . o

4.6 Recurrence of RWRE

The main result in this section is a proof of (8) above:

If E(ln(¢)) <0 and sup{Ar m(In(r)) : 0 < r <1} <1 then

the walk is a.s. positive recurrent;

(8)

To prove (8) we calculate a stationary distribution. Sufficient conditions for a

measure, u, to be stationary are that for every v, 1,

W(0)C(ci(v)) = p(ci(2)) A(ci(v)). (33)
If we let u(p) =1 and for v # p let
pv)=A@)™ JI ¢ (34)
p<v' Sy

then u is stationary, satisfying (33). For example if a binary tree has p{v) = (3/5,1/5,1/5)
for every v, then this measure gives p(p) = 1, p(v) = 5/6 for v in the first generation,
p#(v) = 5/18 for v in the second generation, pu(v) = 5/54 for v in the third generation,
and so forth (see figure 4). If pu(T) < oo then the walk is positive recurrent. The
statement (10) follows immediately, since in this case E(u(T)) is finite so u(T) is a.s.
finite.

Roughly speaking, the reason u(T) is finite under the hypotheses of (8) is that

there are fewer than r™ nodes of measure r* for each r < 1. This must be formulated

68



5/54

5/54 5/54 5/54 5/54 5/54 5/54

L1/7a) =458} = (3/5) -5/ 18)

FIBURE 4

5/54



precisely and then integrated over r € [0,1]. The methods are elementary, though in
the case of lemma 4.16 a more elegant argument ought to be possible.

Let f(v) = A(v)p(v). Note that f(v) depends only on transition probabilities of

nodes strictly above v.

Lemma 4.15 Fiz any k € (0,1]. Assume E(In(¢)) <In(r). Let J, = {v € Ty : f(v) =
r™.} Then prob(card(J,) = (Akm(In(r))") for infinitely many n) = 0.

Proof: For each v € T, (26) gives prob(f(v) = f*) < m(In(r))" . So

E(card(J,)) < (Am(ln(r)))" and so (35)
E(}_ card(J.)/(Akm(In(r)))") is finite. (36)

In the event that card(J,) > (Akm(In(r)))" infinitely often, the sum in (36) would be
infinite; the event therefore has probability (0. (]

Lemma 4.16 Lemma 4.15 holds with p in place of f.

Proof: Let G, = {v € Ty : u(v) = r™.} Suppose to the contrary that for some a > 0,
prob(card(G,) = (Akm(In(r)))" infinitely often) = a. (37)

By continuity of m we can choose r;, and k, sothat r > » > 0, k > Kk >
1, m(ln(r;)) < 1 and kym(ln(ry)) = km(Iln(r)). Then (37) holds with r; and k,
in place of r and k. Pick k; so that k; > k; > 1 and kym(ln(r,)) = b < 1 for some b.
By lemma 4.15 with r; and k; in place of r and k, we can pick NV, large enough so that

prob(card{v € T, : f(v) = rT} = (Akam(In(ry)))" for some n = Np) < a/2.  (38)
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By picking a larger N we can assume that prob(C(v) < (r1/r)") < §/L for any fixed
&, where L is a bound for M(v). [This is the only place that the boundedness of M is
used. Any weaker condition still implying the truth of this lemma can be substituted
in (8).] We fix § small enough so that

for any n > Ny and any collection of individuals killed
independently with probability 8, the probability of the (39)

fraction of survivors being at least b is greater than 1 — a/2.

Now if the event in (37) occurs, pick the first n > N for which card (G,) = (Akym(In(ry)))".
For any vp € G, and any child v of vy, f(v) > r™*! unless C(v) < v+ /r™ < (ry/r)".
Thus the event in (38) will hold for n + 1 unless

(Akym(la(ry)))"card{v : par(v) € G, and C(v) < (r1/r)} +
card{u : par(v) € Gu}) < (Nkgm(in(ry))™ (40)

But (Akam(ln(ry)))"**? < Ab(Akym(In(r,)))", so if (40) holds then
card({v : par(v) € G, and C(v) 2 (r1/r)"})/Acard(G,) < b. (41)

While the event par(v) € G, is not independent of C(v), it is easy to see that
prob(C(v) < z) can only decrease when conditioned on par(v) € G, . [Given the values
of A(v') and B(v") for p < v' < par(v), the indicator function of the event par(v) € G, is
a decreasing function of A(par(v)). Since A(par(v)) is independent of this o-algebra, it
follows that prob(A(par(v)) < z) increases for any z when conditioned on par(v) € G, .
Then prob(C(v) < z) must decrease since C(v) = (1 — A(par(v)))Y where Y is inde-
pendent from all the above variables.] If we think of a node in G, as being killed if the
value of C at any of its children is less than (r1/r)", then we can apply (39) to show
that the probability of (41) is less than a/2. Thus the event in (37), having probability
at least a, entails the disjunction of events in (38) and (41), each having probability

less than a/2, a contradiction. O
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To finish proving (8) we use a compactness argument to estimate u(T,). Let
sup{Ar m(ln(r)) :r <1} =1-—6; and pick § and fs with1 -6, <1-86 < 1-83 < 1.
Let T be the collection of intervals {(g(z),z) : z € (0,1)}U{(g(1),1]} where g is any
function such that

g(z) < z and Azm(ln(g(z))) < 1 — &3 for z € (0,1]. (42)

Pick any by with 0 < by < 1/A. The elements of I cover [by, 1] so, by compactness,
pick a finite subcover J of Z. Let (a1,b1),...(ak,bs), (ar+1,1] be the elements of J
written in ascending order of a;. Apply lemma (4.16) to each (a,b) € J with r = a and
kE = (1—483)/(1 —&;). Then there is almost surely some N such that for all (a,b) € J
(including a = 1),

card({v € T : p(v) = a™}) < [M(1 = 83)/(1 — 62))m(In(a))]" forn = N . (43)
Then letting ag =0, by = a1, ax41 = 1 and assuming n > N we get that

m(Ta) £ 3, afycard{v € Ta: p(v) 2 a;}
0<i<k+1

Nai+ 3 BDm(ia@)(1 - 8)/(1 - &))" by (43)
< (k+10(1 - &))"

I~

by (42), so p(T) is finite. O

4.7 Proof of theorem 4.3 and further questions

Applying (8) and (9) to equations (14) and (15), it remains only to calculate Ag.
We first establish (11). Suppose 1 < E(In(¢)) < oo and also that m(0) < 1/A. Then
for any r € (0, 1], (6) gives us

Am(In(r)) = inf{A\r'*E(¢!) : t € R}. (44)
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By assumption this is less than 1 for r = 1. The infimum for r = 1 must occur at some
t <1 since E(¢) = 1 implies E(¢") > (E(¢))* > E(¢) for t = 1 by Jensen’s inequality.
But for positive r and ¢ < 1, (44) is increasing in r, so the supremum of (44) over
r € (0,1] must be less than 1, establishing (11).

Now we calculate m(0) as a function of A. Unravelling the definitions gives

m(0) = inf{E[B(1 - A)/A}! :t € R}
= inf[T((3 + A)/2A)T(1/20)/T((1 + A)/2A)T(1/A)T(1/2A)T(1/24)]

[ w1 = aalta-0a8(0 _ apratyprasiy _ s gy
= i::ilf (1 + A)/2A —)T(1/2A + t)/T((1 + A)/2A)T(1/24A). (45)

Since log(I") is concave, the minimum is reached when ¢t = 1/4, making the two factors
in the numerator equal. For A > Ag =~ 4.20, the expression (45) is less than 1/2. Using
(44) and (45) with t =1 gives E(¢) =1/(1+ A) for A > 1 and E(¢) = oo for A < 1.
Also it is easy to see that E(In(¢)) < 0 for A > 1 since for A = 1 the distributions of A
and 1 — A are identical. Then the conditions of (11) and (9) are satisfied for A > Aq,
and (8) applies for A < Ag. O

~ Questions of edge-reinforced random walk on other graphs are still wide open. Dia-
conis originally asked me about the d-dimensional integer lattice Z?. I believe it is not
even known whether there is a A > 0 for which the edge-reinforced random walk on

Z? is recurrent!
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