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ABSTRACT

We consider a class of random processes that have a kind of reinforcement. The first
chapter is devoted to an expository survey that delimits this class of processes, of
which the Pélya urn process is prototypical. We then consider some generalizations.
The generalizations in chapter three are urn models. The ones in chapters four and five
are non-Markovian finite state processes, or alternatively Markov processes with very
large state spaces. We derive two types of limit theorems for these processes. The first
kind is essentially a strong law of large numbers, stating that the fractional occupation
of each state converges. The second type is a characterization of the law of the limiting
fractional occupation. We consider one version that has an infinite state space and
derive conditions for recurrence and for transience of the process. Qur results have the
following consequence: any proposition logically implies a true proposition.
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Chapter 1

INTRODUCTION

In this paper we study a variety of random processes that can be termed random pro-
cesses with reinforcement. One example, an edge-reinforced random walk, is described
as follows: Imagine a person getting acquainted with a new city. She walks about the
area near the hotel somewhat randomly, but tends to traverse the same blocks over and
over as they become familiar. To model this, a random walk is defined on the vertices
of an undirected graph in such a way that the probability of a transition from one

vertex to another depends on the number of previous transitions along the connecting

“edge. Edge-reinforced random walks were introduced by Coppersmith and Diaconis in

1986 [CD]; they are discussed in chapter four.

It turns out that such problems bear similarities to the so-called Pdlya urn process:
an urn contains R red balls and B black balls. A ball is drawn from the urn and then put
back along with A balls of the same color, where A is some fixed constant. This process
of drawing and replacing is repeated ad infinitum. In chapter two we give a summary
of known results on Pdlya’s urn and other similarly behaved processes. This chapter is
a philosophical prerequisite for the rest of the paper, although mathematically the last
three chapters are almost completely self-contained.



In chapter three we discuss generalizations of the basic Pélya urn process; for ex-
ample, we allow A to change with time, or we allow more than two different colors
for the balls in the urn. In the course of doing this, we prove an important lemma:
a sequence of random variables cannot converge to a point with non-zero probability
if certain hypotheses are satisfied which make this point a nonattracting point for the

given sequence of random variables. This lemma is used later in chapter five.

As mentioned above, chapter four is devoted to edge-reinforced random walks. If
the graph is finite, then this process exhibits Pélya urn-like behavior; results are quoted
from [CD]. Otherwise, we deal with the case where the graph is infinite and acyclic (i.e.,
it contains no circuits). Then we can describe the random walk as embedded Pélya
urn processes. Essentially, one can imagine a policeman with an urn standing at each
vertex of the tree directing where you should go next by pulling balls out of the urn -
whose labels are the various choices of where to go next, instead of the colors red and

blue — and replacing them according to the Pélya urn scheme.

The useful (and surprising) result on Pélya urns is that they are equivalent to a
mixture of independent, identically distributed draws. To be graphic: we can replace
the policemen by clay tablets, each bearing an inscription giving the probabilities of

the various choices from that vertex. There is a different tablet at each vertex, each

-being randomly chosen from a collection of all possible tablets, but once chosen they do

not change, and they obviate the need to keep track of how many times the walk has
traversed each edge. In other words, the walk is shown to be equivalent to a random
walk in a random environment. The random environment can then be analyzed using
large deviation estimates and we can get recurrence and transience conditions that are

quite sharp.

Chapter five deals with the dual process to the one in chapter four, a vertex-
reinforced random walk. Consider a complete graph with loops on a finite number of

vertices and give each edge a non-negative weight. Define a Markov chain on the ver-



tices of the graph by letting the probabilities of transitions along the edges leading away
from a vertex be proportional to the weights of the edges. The vertex-reinforcement
enters the picture by updating the transition probabilities at each step to favor those
vertices that have previously been visited the most. This models a person getting ac-
quainted with a new city — say Los Angeles — by car rather than on foot; in this case
familiarity will reinforce visits to the same destination rather than journeys along the

same route.

Just as edge-reinforcement induces Pélya urn-like behavior, so vertex-reinforcement
induces Friedman urn-like behavior (for information on Friedman urn processes, see
chapter 2). In particular, the fractional occupation vector converges under certain
conditions to a limit which is random, but whose distribution is supported on a set of
small dimension. To show that the vector converges, we find a scalar function of this
vector that measures, in some sense, the correlation between occupations of vertices
connected by edges with the largest weights. The key property of this function is that
it always increases as the process evolves. Thus it serves as a Lyapunov function, whose
existence prevents the fractional occupation vector from wandering around in circles
without converging. This method proves that the vector must converge to a place where
the Lyapunov function has no gradient, but in fact in most cases this point must be a
maximum, not a minimum or a saddle point. The latter part of chapter five uses the
lemma on nonattracting points from chapter three to obtain this further result, under
some extra hypotheses on the eigenvalues of a certain matrix. We end with a few fun

examples of vertex-reinforced random walk that are calculated using some elementary
character theory.

The material in chapter fuur appears in [Pel].



