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ABSTRACT:

The FKG theorem says that the POSITIVE LATTICE CONDITION, an easily checkable hypothesis
which holds for many natural families of events, implies POSITIVE ASSOCIATION, a very useful
property. Thus there is a natural and useful theory of positively dependent events. There is, as yet, no
corresponding theory of negatively dependent events. There is, however, a need for such a theory. This
paper, unfortunately, contains no substantial theorems. Its purpose is to present examples that motivate
a need for such a theory, give plausibility arguments for the existence of such a theory, outline a few
possible directions such a theory might take, and state a number of specific conjectures which pertain
to the examples and to a wish list of theorems.
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Philosophy:

The questions in this paper are motivated by several independent problems in combinatorial proba-
bility, stochastic processes and statistical mechanics. For each of these problems, it seems that progress
will require (and engender) better understanding of what it means for a collection of random variables
to be “repelling” or mutually negatively dependent. The temptation is to try to copy the theory of
positively dependent random variables, since the FKG theorem and its offshoots give this theory a pow-
erful footing from which to prove correlation inequalities, limit theorems and so on. Perhaps it is folly:
no definition of mutual negative dependence has proved one tenth as useful as the lattice condition for
positively dependent variables. The purpose of this paper is to lay the groundwork for whatever progress
is possible in this area. The main goal is to state some conjectured implications which would bridge the
gap between easily verifiable conditions and useful conclusions. A second purpose is to collect together
examples and counterexamples that will be useful in forming hypotheses, and a third is to update previ-
ous surveys by collecting the relevant known results and adding a few more. The scope of this paper is
limited to binary-valued random variables, in the hope that eliminating the metric and order properties
of the real numbers in favor of the two point set {0, 1} will better reveal what is essential to the questions
at hand.

1 Statement of the problem and some motivation

1.1 Definition of positive and negative association

Let Bn be the Boolean lattice containing 2n elements, each element being thought of as a sequence of
zeros and ones of length n, or as function from {1, . . . , n} to {0, 1}, or as a subset of {1, . . . , n}. Let
µ be a nonnegative function on the lattice with

∑
x∈Bn µ(x) = 1. Then µ is a probability measure on

Bn and each coordinate function is a binary random variable, denoted Xj , j = 1, . . . , n. Sometimes we
replace the base set {1, . . . , n} by a different index set arising naturally in an application, such as the
set of edges of a graph.

In order to make an analogy, we review the facts about positive dependence. The measure µ is said
to be positively associated (c.f. Esary, Proschan and Walkup (1967)) if∫

fg dµ ≥
∫
f dµ

∫
g dµ (1)
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for every pair of increasing functions f and g on Bn. This is a strong correlation inequality from which
many others may be derived, and from which distributional limit theorems also follow; see Newman
(1980). Positive association is implied by the following local (and therefore often more checkable) positive
lattice condition (Fortuin, Kastelyn and Ginibre (1971); see also Ahlswede and Daykin (1979) for a more
general proof):

Theorem 1.1 (FKG) If the following condition holds then µ is positively associated.

µ(x ∨ y)µ(x ∧ y) ≥ µ(x)µ(y). (2)

In fact, one only needs to check this in the case where x and y each cover x ∧ y (an element u covers
an element v if u > v and if u ≥ w ≥ v implies w ∈ {u, v}). This immediately allows verification
of positive association for basic examples such as the ferromagnetic Ising model, certain urn models,
and, in the continuous case, multivariate normals, gammas, and many more distributions. Furthermore,
the class of measures satisfying the lattice condition (2) is easily seen to be closed under Cartesian
products, pointwise products, and, most importantly, under integrating out any of the variables (i.e.,
any projection of µ onto the space {0, 1}E for E ⊆ {1, . . . , n} will also satisfy (2)).

Negative dependence, by contrast, is not nearly as robust. First, since a random variable is always
positively correlated with itself, one cannot expect all monotone functions to be negatively correlated.
The usual definition of negative association of a measure µ (c.f. Joag-Dev and Proschan (1983)) is that∫

fg dµ ≤
∫
f dµ

∫
g dµ (3)

for increasing functions f and g, provided that f depends only on a subset A of the n variables and g

depends only on a subset disjoint from A. Secondly, whereas in the positive case one may have EXiXj

significantly greater than EXiEXj for many i, j, in the negative case the inequality
∑
i,j CovXiXj ≥ 0

prevents the typical term CovXiXj from having a significantly negative value. Thirdly, the negative
lattice condition, namely (2) with the inequality reversed, is not closed under projections. Thus one
cannot expect it to imply negative association and indeed it does not.

Contrasting the definitions of positive and negative association shows that the inequality (1) comes
from two sources. The first is from autocorrelation when f and g depend on the same variable in the
same direction; thus for independent random variables, strict inequality in (1) occurs if f and g both
depend on a common variable. The second is from positive interdependence of the variables which
contributes even when f and g depend on disjoint subsets. This leads immediately to a question on
positive association which, while not directly pertaining to the subject of negative dependence, might
shed light on how to disentangle inter- and auto-correlation.
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Question 1 If one assumes (1) only for f and g depending on disjoint subests of the variables, does the
inequality follow for all increasing f and g?

This elementary question has not, as far as I know, been posed or answered in print.

The reverse-inequality analogue of (1) for product measures is the van den Berg-Kesten-Reimer
inequality:

µ(A2B) ≤ µ(A)µ(B) (4)

Here A2B is the event that A and B happen for “disjoint reasons”: ω ∈ A2B if there are disjoint
subsets S(ω) and T (ω) of {1, . . . , n} such that A contains the set of all configurations agreeing with ω

on S and B contains the set of all configurations agreeing with ω on T . This leads to a different but
also somewhat natural definition of negative association, denoted here BKRNA (Berg-Kesten-Reimer
negative association): a measure µ has the BKRNA property if (4) holds for all holds for all sets A and
B.

BKRNA has some claim to being “the negative version” of positive association, since instead of
reversing the inequality in (1) and then restricting f and g, we choose a different inequality to reverse
which holds in the independent case for all f and g. The BKRNA property has been discussed in the
literature, but has not been fruitful. This may be due to the fact that even in the independent case,
where the proof of (1) has been known for 40 years (see Harris 1960), the inequality (4) turned out to
be quite hard to prove. A proof when A and B are both up-sets (see definition next paragraph) was
given in van den Berg and Kesten (1985), generalized to the case where A and B had the next level of
complexity (up-set intersect down-set) by van den Berg and Fiebig (1987), and then proved in complete
generality by Reimer in a manuscript yet to be published. In view of this difficulty, it seems unlikely that
proving (4) for some interesting non-product measure µ will be possible, let alone be the easiest way to
establish a desired property of µ. Consequently, the remainder of the paper deals with classical negative
association, where we restrict the test functions f and g instead of changing the binary set operation.

1.2 Stochastic increase and decrease

The notions of stochastic domination and stochastic increase and decrease are useful when defining
positive and negative dependence properties, so we review them here. Let µ and ν be measures on a
partially ordered set, S. An event A ⊆ S is said to be upwardly closed (or an up-set) if x ∈ A and y ≥ x
implies y ∈ A. Often S = Bn, the Boolean lattice of rank n, in which case this is the same as A being
an increasing function of the coordinates. We say that µ stochastically dominates ν (written µ � ν) if
µ(A) ≥ ν(A) for every upwardly closed event A. The condition µ1 � µ2 � · · ·µn is well known to be
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equivalent to the existence of a random sequence (X1, . . . , Xn) such that Xj
D=µj for each j and Xj ≥ Xk

for 1 ≤ j ≤ k ≤ n (see e.g., Fill and Michuda 1998). We say that the random variable X is stochastically
increasing in the random variable Y if the conditional distribution of X given Y = y1 stochastically
dominates the conditional distribution of X given Y = y2 whenever y1 ≥ y2. The notation X ↑ Y
will denote this relation, which is not in general symmetric. Similarly, X is stochastically decreasing
in Y (denoted X ↓ Y ) if one has (X |Y = y1) � (X |Y = y2) whenever y1 ≥ y2. A convention in
use throughout this paper is that terms involving inequalities are meant in the weak sense, so that for
example “decreasing” means non-increasing and “positively correlated” means non-negatively correlated.

The relation X ↑ Y is not in general symmetric, but implies Y ↑ X is a certain case, as given in the
following proposition.

Proposition 1.2 Let X be a {0, 1}-valued random variable and Y take values in any totally ordered
set. If X ↑ Y then Y ↑ X.

Proof: Choose t in the range of Y . Since P(X = 1 |Y ) is inceasing in Y , it follows that

P(X = 1 |Y ≤ t) ≤ sup
s≤t

P(X = 1 |Y = s) ≤ inf
s>t

P(X = 1 |Y = s) ≤ P(X = 1 |Y > t).

Thus X and 1Y >t are positively correlated and P(Y > t |X = 1) ≥ P(Y > t |X = 0). This holding for
all t is equivalent to Y ↑ X. 2

A counterexample to the converse is given by the following probabilities, where the (i, j)-cell is the
probability of (X,Y ) = (i, j).

1 2 3 4
0 9/40 4/40 6/40 1/40
1 1/40 6/40 4/40 9/40

1.3 Motivating examples

The property of negative association is reasonably useful but hard to verify. The next subsection builds
the case for “reasonably useful” by cataloging some consequences that would hold if negative depen-
dence could be established in some cases where it is conjectured. In the present subsection, we list
some examples of systems which are known or believed to have the negative association property. The
examples that are conjectured motivate us to develop techniques for proving that measures have negative
dependence properties. The point of including examples of measures already known to be negatively
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associated is that we can use them to study properties of negative association, which will help us refine
our conjectures about the consequences of negative association. As seen in Section 1.5 below, knowledge
of the characteristics of negatively associated variables will be helpful in proving criteria for negative
association.

1. The uniform random spanning tree. Let G be a finite connected graph, and let T be a random
spanning tree (i.e. a maximal acyclic set of edges of G) chosen uniformly from among all spanning trees
of G. It is easy to prove that the indicator functions {Xe} of the events that e ∈ T have the following
property: for any edges e and f , Xe and Xf are negatively correlated. Feder and Mihail (1992) have
shown that in fact this collection is negatively associated. As we will see later, one concrete consequence
of this is that the conditional measures given e ∈ T and e /∈ T may be coupled to agree except that the
latter has precisely one more edge elsewhere.

A natural generalization is to consider weighted spanning trees. Let W : E(G)→ IR+ be a function
assigning positive weights to the edges of G. Define the weight W (T ) of a tree T to be the product∏
e∈T W (e) of weights of edges in T . The probability measure µ on {0, 1}E(G) concentrated on span-

ning trees whose weights µ(T ) are proportional to W (T ) is called the weighted spanning tree measure.
Everything known about the uniform spanning tree also holds for the weighted spanning tree; in fact a
rational edge weight of r/s may be simulated in the uniform spanning tree setting by replacing the edge
e by r parallel paths of length s each.

2. Simple exclusion. Let G be a finite graph, let η0 be a function from V (G) to {0, 1}, and let ξt be
the trajectory of a simple exclusion process starting from ξ0 = η0. The simple exclusion process is the
Markov chain described as follows. For each edge e independently, at times of a rate 1 Poisson process,
the values of η at the two endpoints of e are switched. This is thought of as a particle moving across
the edge but only if the opposite site is vacant. Fix t and let Xv = ξt(v) be the indicator function of the
occupation of the vertex v at time t. It is known (Liggett 1977) that

E

[∏
v∈S

Xv

]
≤
∏
v∈S

EXv (5)

for any subset S of the vertices of G. Are the variables Xv negatively associated? The most natural
generalization of simple exclusion is to allow the Poisson processes on the different edges to have different
rates; the inequality (5) is known in this generality.

3. Random cluster model with q < 1. Let G be a finite graph. For any subset η of the edges,
viewed as a map η : E(G)→ {0, 1}, let N(η) denote the number of connected components of the graph
represented by η. Given parameters p ∈ (0, 1) and q > 0, define a measure µ = µp,q on {0, 1}E by letting

µ(η) = Cp
∑

e
η(e)(1− p)

∑
e

1−η(e)qN(η) . (6)
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Here C is the normalizing constant

C =

 ∑
η:E(G)→{0,1}

p
∑

e
η(e)(1− p)

∑
e

1−η(e)qN(η)

−1

.

When q > 1, the variables Xe := η(e) are easily seen to be positively associated by checking the positive
lattice condition and applying the FKG Theorem. When q < 1, the negative lattice condition holds,
but aside from this little is known about the extent of negative dependence. Negative association and
BKRNA are both conjectured to hold, but it is not even known whether the variables Xe := η(e) are
pairwise negatively correlated under µ. The random cluster model has the uniform spanning tree model
as a limit as p, q and p/q go to zero (see Häggström 1995); thus negative association in the RC model
would in a way generalize what is known for spanning trees. The RC model may be generalized by
letting the factor p vary from edge to edge. Thus one has a function p : E(G) → (0, 1) and the term
p
∑

η(e)(1− p)
∑

1−η(e) is replaced by the more general
∏
e p(e)

η(e)(1− p(e))1−η(e).

4. Occupation of competing urns. Let n urns have k balls dropped in them, where the locations of
the balls are IID chosen from some distribution. Let Xi be the event that urn number i is non-empty.
It is proved in Section 2.3 that these events are negatively associated. Dubhashi and Ranjan (1998)
consider this example at length and show negative association of the occupation numbers of the bins
(numbers of bals in each bin). From this follows negative association of the indicators of exceeding any
prescribed threshholds ai in bin i. Occupation numbers of urns under various probability schemes have
appeared many places. Instead of multinomial probabilities, one can postulate indistinguishability of
urns or balls and arrive at Bose-Einstein or other statistics. Negative association seems only to arise in
the multinomial models, where Mallows (1968) was one of the first to observe negative dependence.

1.4 Consequences of positive and negative association

One use that is reasonably general is that of classifying infinite volume limits of Gibbs measures. The
prototypical example is the ferromagnetic Ising model. The ferromagnetic Ising measure on a finite
box G with boundary B and boundary condition η : B → {−1, 1} is a measure on spin configurations
ξ : G→ {−1, 1} proportional to

exp

β
 ∑
x,y∈G

ξ(x)ξ(y) +
∑

x∈G,y∈B
ξ(x)η(y)

 .

The spin variables {ξ(x) : x ∈ G} are positively associated and stochastically increasing in {η(y) : y ∈ B},
from which it follows that there are a stochastically greatest and least infinite volume limit, corresponding
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to plus and minus boundary conditions respectively. Thus there is non-uniqueness of the Gibbs state if
and only if the plus and minus states differ.

Another example of this is the uniform spanning tree, which is almost Gibbsian except that some
configurations have infinite energy (are forbidden). Let µ(A)

n be the uniform spanning tree measure on
the finite subcube of the d dimensional integer lattice centered at the origin with semi-diameter n. The
A refers to a specification of boundary conditions, i.e., of a partition of the vertices of the boundary of
the n-cube into components, so that the sample tree is uniform over all spanning forests of the cube that
become trees if each component of A is shrunk to a point. Pemantle (1991) shows that the measures
µ

(An)
n converge weakly to a measure µ in the case where An is the discrete partition, and uses electrical

network theory to show that this same limit holds for any An. With the negative association result
of Feder and Mihail (1992) it is easy to see this directly as follows. Iterating the stochastic relation
between the conditional measures given e ∈ T and given e /∈ T shows that µ(A)

n � µ
(A′)
n whenever

A′ refines A. Thus the measures µ(A)
n are stochastically sandwiched between the measures induced by

“free” and “wired” boundary conditions (where A is repectively discrete or a single component); thus
the set of limits is sandwiched between a maximal and minimal limit measure; both must have the same
one-dimensional marginals (by stationarity) and hence must coincide.

Negative association has the further consequence that the uniform spanning tree measure is Very
Weak Bernoulli. Briefly, this means that the conditional measures inside a large box given two indepen-
dent realizations of the boundary can be coupled so as to make the expected proportion of disagreements
arbitrarily low. To see that the Uniform Spanning Tree is VWB, note that the number of edges in a
spanning tree is determined by the boundary conditions, so that free boundary conditions will always
yield precisely |∂B| − 1 more edges than wired boundary conditions, where ∂B denotes the set of ver-
tices in the boundary of a set B. Given two boundary conditions A1 and A2, we can construct a triple
(T1, T∗, T2) such that T1 is chosen from the measure with boundary conditions A1, T2 from boundary
conditions A2, and T∗ from free boundary conditions, and so that T∗ contains T1 (construct (T1, T∗) from
the coupling witnessing T1 � T∗ and then construct T2 given T∗ from a coupling witnessing T2 � T∗).
Then T1 and T2 differ in fewer than 2|∂B| places. Question: is there a simultaneous coupling of all
boundary conditions such that the configuration with boundary condition A is a subset of the configura-
tion with boundary condition A′ whenever A′ refines A? For the reason why this does not immediately
follow from stochastic monotonicity in the boundary conditions, see Fill and Machida (1998).

Positive and negative association may be used to obtain information on the distribution of function-
als such as

∑
eX(e). Newman (1980, 1984) shows that under either a positive or negative dependence

assumption, of strength between cylinder dependence and full association, the joint characteristic func-
tion of the variables {Xe} is well approximated by the product of individual characteristic functions.
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This allows him to obtain central limit theorems for stationary sequences of associated variables. In the
positive association case one needs to assume summable covariances, whereas in the negative case one
gets this for free. It is logical to ask what information may be obtained from negative association without
passing to a limit. For example, since one has a CLT or triangular array theorem in the independent
case, can one prove that negatively associated events are at least as tightly clustered as independent
events? Section 2.4 discusses some conjectures along these lines. Here is a specific application of these
conjectures.

Consider simple exclusion on the one-dimensional integer lattice, with initial configuration given by
Xv = 1 for v ≤ 0 and Xv = 0 for v > 0. What can one say about the number Nt :=

∑
v>0 ηt(v) of

occupied sites to the right of the origin at time t? The mean ENt is easy to compute, and an upper bound
of O(t1/2) on the variance has been obtained by several people. While this shows that (Nt−ENt)/t1/4 is
tight, it is a far cry from a limit theorem. It would be nice to be able to obtain a central limit theorem,
or, in lieu of that, Gaussian bounds on the tails of Nt. The conjectured chain of implications is: first,
the exclusion model is negatively associated; second, negatively associated measures have sub-Gaussian
tails. Negative assocation is known [Dubhashi and Ranjan (1998), Proposition 7] to imply the Chernoff-
Hoeffding tail bounds; see conjectures (4) and (5) below for other possible consequences of negative
association.

1.5 Feder and Mihail’s proof

Feder and Mihail (1992) prove that a uniform random base for a balanced matroid, of which the uniform
spanning tree measure is a special case, has the negative association property3. They use induction on
the size of the edge set E, with the specific nature of the measure entering through only two properties,
(i) and (ii). The logical form of the proof is as follows. Choose an edge e appropriately and show that
property (ii) holds for (µ | e). This together with property (i) for µ and the induction hypothesis then
imply that µ is negatively associated.

This argument provides further motivation for deriving consequences of negative association. If
we can prove, for example, that negative association implies property (ii), then the step where we
verify property (ii) drops out (by induction!) and the entire argument may be carried out using only
property (i). Proving something weaker than (ii) for negatively associated measures still reduces the
work to proving (ii) from this property. We make this all concrete by defining the properties and stating
the above as a theorem.

3This is false for general matroids; see Seymour and Welsh (1975).
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Let S be a class of measures on Boolean algebras which is closed under conditioning on some of the
coordinate values. An example of such a measure is the uniform or weighted spanning tree measure or
the random cluster measure.

Property (i) pairwise negative correlation: each µ ∈ S makes each pair of distinct Xe

and Xf negatively correlated.

Property (ii) some edge correlates with each up-set: for each µ ∈ S and increasing
event A there is an edge e with µ(Xe1A) ≥ µ(Xe)µ(A).

Theorem 1.3 Let S be a class of measures closed under conditioning and under projection (i.e., for-
getting some of the variables) and suppose all measures in this class have pairwise negative correlations.
Then property (ii) for S (implied for example by Conjecture 8 below) implies that every measure in S is
negatively associated.

Proof of theorem: Pick µ in S and induct on the rank n of the lattice on which µ is a measure.
When n = 1 the statement is trivial. Now assume the conclusion for all measures in S on lattices of
size less than n. The remainder of the proof copies the Feder-Mihail argument. For brevity, we show
that A and B are negatively correlated when B = Xe and A is an arbitrary up-set not depending on the
variable Xe.

If P(Xe = Xf = 1) = 0 for all f 6= e the induction step is trivial, so assume not. By property (ii)
for (µ | e) there is some f 6= e for which

µ(A |Xe = Xf = 1) ≥ µ(A |Xe = 1) . (7)

Now write

µ(A |Xe = 1) =

µ(Xf = 1 |Xe = 1)µ(A |Xe = Xf = 1) + µ(Xf = 0 |Xe = 1)µ(A |Xe = 1, Xf = 0)

µ(A |Xe = 0) =

µ(Xf = 1 |Xe = 0)µ(A |Xe = 0, Xf = 1) + µ(Xf = 0 |Xe = 0)µ(A |Xe = 0, Xf = 0) .

Comparing terms on the right-hand sides, we see that

(i) µ(Xf = 1 |Xe = 1) ≤ µ(Xf = 1 |Xe = 0) by the assumption that measures in S have
pairwise negative correlations;
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(ii) µ(A |Xe = Xf = 1) ≤ µ(A |Xe = 0, Xf = 1) since the conditional law (µ |Xf = 1) is
assumed by induction to be negatively associated and hence A and Xe are negatively corre-
lated given Xf = 1;

(iii) µ(A |Xe = 1, Xf = 0) ≤ µ(A |Xe = 0, Xf = 0) by the induction hypothesis this time
applied to (µ |Xf = 0);

(iv) µ(A |Xe = Xf = 1) ≥ µ(A |Xe = 1, Xf = 0) by the choice of f .

These four imply that the left-hand sides are comparable: µ(A |Xe = 1) ≤ µ(A |Xe = 0). This completes
the induction in the special case where one of the two upwardly closed events is a simple event, {Xe = 1}.
The case of a general upwardly closed event is similar (see the Exercise 6.10 in Lyons and Peres 1999).
2

2 Properties and implications

2.1 Obtaining measures from other measures

Before discussing negative dependence properties of various strengths, we consider ways of obtaining a
measure µ′ from a given measure µ in such a way as to preserve any known or conjectured negative
dependence properties. The reason for discussing these beforehand is to lend perspective to some of the
definitions: if the property is not closed under the µ 7→ µ′, either by definition or by some argument,
then perhaps it is not such a natural property. In the foregoing, we fix a finite set E and a probability
measure µ on the space {0, 1}E .

1. Projection. Given E′ ⊆ E, let µ′ be the projection of µ onto {0, 1}E′ . This corresponds to
integrating out (i.e., forgetting) the variables in E\E′. Clearly any natural negative dependence property
is closed under projection.

2. Conditioning. Given A ⊆ E and η ∈ {0, 1}A, consider the conditional distribution (µ|Xe =
η(e) for e ∈ A). It is reasonable to expect these sections of the measure µ to be negatively dependent
if µ is. Several of the motivating examples, namely spanning trees, RC model and the Ising model, are
classes of measures closed under conditioning. Note that we are not allowing conditioning on a set larger
than a single atom. To ask that the projection of µ onto {0, 1}E\A be negatively dependent, conditioned
on the event < Xe : e ∈ A >∈ S for arbitrary S is significantly stronger.
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3. Products. If µ1 and µ2 are negatively dependent, then clearly µ1 × µ2 should be.

4. Relabeling. The measure µ′ defined by µ′{Xe = η(e) : e ∈ E} = µ{Xe = η(π(e)) : e ∈ E}, where
π is some permutation of E, is of course just a relabeling of µ.

5. Extends the concept of negative correlation. When |E| = 2, any reasonable definition reduces to
negative correlation.

6. External field. The name for this property is borrowed from the Ising model. Let W : E → IR+

be a non-negative weighting function and let µ′ be the reweighting of µ by W . Specifically, let

µ′{Xe = η(e) : e ∈ E} = C
∏
e∈E

W (e)η(e)µ{Xe = η(e) : e ∈ E} ,

where C is a normalizing constant. This corresponds to making a particular value for each edge more
or less likely, without introducing any further interaction between the edges. For example if W (e) 6= 1
for a unique e, then the probability of {Xe = 1} is altered, but the conditional distributions of (µ|Xe)
are unaltered. Many of the classes of measures which motivate our study are closed under imposition
of an external field. For spanning trees or for the RC model, this corresponds to the weighted case; for
the Ising model it corresponds to an external field. Closure under external fields may seem far from a
natural condition for models that are not thermodynamic ensembles, but this may be more natural than
it seems. First, if one believes in closure under conditioning, then this is the canonical interpolation
between conditioning on Xe = 1 and conditioning on Xe = 0. Secondly, Karlin and Rinott in 1980 had
already proposed a property they call S-MRR2 which is essentially the negative lattice condition plus
closure under projection and external fields (see the discussion preceding Conjecture 2).

2.2 Negative dependence properties and their relations

We recall the definition of negative association:

Definition 2.1 {Xe : e ∈ E} are negatively associated (NA) if for every A ⊆ E and every pair of
bounded increasing functions f : {0, 1}A → IR and g : {0, 1}E\A → IR, Efg ≤ EfEg.

Unfortunately, this property is not closed under conditioning or external fields (see Example 2 below).
This may be an indication that these two closures are not so natural after all, but on the other hand it
makes sense, at least for closure under conditioning, to make a new definition:
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Definition 2.2 The measure µ is conditionally negatively associated (CNA) if each measure µ′ gotten
from µ by conditioning on some (or none) of the values of the variables is negatively associated.

Since the operation of conditioning is easy to understand in many of our motivating examples, this
extension should not prove to unwieldy.

The weakest possible negative dependence property is pairwise negative correlation:
µ(XeXf ) ≤ µ(Xe)µ(Xf ). For real-valued random variables, there is a stronger pairwise property, called
negative quadrant dependence (NQD) in Newman (1984), after Lehman (1966). Say that X and Y are
NQD if

P(X ≥ a, Y ≥ b) ≤ P(X ≥ a)P(Y ≥ b)

for all a and b. For binary-valued random variables, this reduces to simple correlation. A stronger
property, called negative regression dependence (in analogy with positive regression dependence c.f. Esary,
Proschan and Walkup 1967), is defined by requiring the conditional distribution of X given Y to be
stochastically decreasing in Y : P(X ≥ t|Y = s) is decreasing in s for each t. For binary-valued variables
this again reduces to negative correlation. When X and Y are vectors, X :=< Xe : e ∈ A >, Y :=<
xe : e /∈ A >, this would say that the conditional joint distribution of {Xe : e ∈ A} given {Xe : e /∈ A}
should be stochastically decreasing in the values conditioned on. Thus we have a definition:

Definition 2.3 Say that the variables {Xe : e ∈ E} are jointly negative regression dependent (JNRD) if
the vectors < Xe : e ∈ A > and < Xe : e /∈ A > are always negative regression dependent. Equivalently,
require that for any increasing event H measurable with respect to {Xe : e ∈ A}, µ(H|xe : e /∈ A) is
decreasing with respect to the partial order on {0, 1}Ac .

Unraveling the definitions, one sees that conditional negative association implies JNRD, since JNRD
is simply CNA in the special case where one has conditioned on {Xe : e ∈ Ac}\{f} and then asks for Xf

to be negatively correlated with 1H for any increasing event H measurable with respect to {Xe : e ∈ A}.

The negative lattice condition

µ(x ∨ y)µ(x ∧ y) ≤ µ(x)µ(y). (8)

is closed under five of the six closure operations, but the missing one, projection, is crucial. This is what
makes the negative version of the FKG theorem fail. Accordingly,

Definition 2.4 Say that {Xe : e ∈ E} satisfy the hereditary negative lattice condition (h-NLC) if every
projection satisfies the negative lattice condition.
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It is easy to see that JNRD implies h-NLC, since h-NLC is the special case where A is a singleton.

None of the three properties CNA, JNRD or the hereditary NLC are closed under imposition of an
external field (see Example 1 below). Projecting from index set S to S′ and then imposing an external
field (on S′) is the same as imposing an external field which is trivial on S \ S′ and then projecting to
S′. Thus any sequence of projections and external fields may be written as one external field followed by
one projection. One may define three stronger properties, CNA+, JNRD+ and h-NLC+, which are that
the corresponding properties hold for the given measure and for all measures obtained from the given
measure by imposition of an external field and a projection; these properties are then by definition closed
under external fields and projections. While these stronger properties are difficult to check directly, they
appear to hold for the motivating examples and are introduced in the hope that they do in fact hold
there and are strong enough to be useful in inductive arguments such as the proof of Theorem 1.3. The
property h-NLC+ is called S-MRR2 by Karlin and Rinott (1980), according to terminology they develop
mainly for continuous random variables.

The terminology introduced thus far can be summarized with a diagram of implications.

CNA+ JNRD+ h-NLC+
(S-MRR2)

CNA JNRD h-NLC

NA

- -

- -
? ? ?

?

Figure 1

2.3 Conjectures, examples and counterexamples

The vertical implications in Figure 1 are strict, as shown by the examples which follow in this section.
Whether the horizontal implications are strict is an open question:

Conjecture 2 All three properties CNA+, JNRD+ and h-NLC+ are equivalent.

13



Another immediate question is whether anything other than CNA is strong enough to imply negative
association.

Conjecture 3 Strong version: h-NLC implies NA. Weak version: h-NLC+ implies NA.

Examples showing the vertical implications are not equivalences are as follows (verified by brute
force).

Example 1: Suppose n = 3, and the probabilities for the various possible atoms are proportional to the
following:

P(X1 = 0, X2 = 0, X3 = 0) = 16

P(X1 = 0, X2 = 0, X3 = 1) = 8

P(X1 = 0, X2 = 1, X3 = 0) = 8

P(X1 = 0, X2 = 1, X3 = 1) = 8

P(X1 = 1, X2 = 0, X3 = 0) = 12 + ε

P(X1 = 1, X2 = 0, X3 = 1) = 4

P(X1 = 1, X2 = 1, X3 = 0) = 4

P(X1 = 1, X2 = 1, X3 = 1) = 1 .

When 0 ≤ ε ≤ .8 then this measure satisfies CNA and hence JNRD and h-NLC. However, when ε > 0,
then applying the external field (λ, 1, 1) for any positive λ < ε/(1 − ε) yields a measure in which X2

and X3 are positively correlated, thus violating h-NLC and hence JNRD and CNA. This shows the first
three vertical implications in Figure 1 are strict.

Example 2: Suppose n = 3, and the probabilities for the various possible atoms are in the proportions:

P(X1 = 0, X2 = 0, X3 = 0) = 0

P(X1 = 0, X2 = 0, X3 = 1) = 1

P(X1 = 0, X2 = 1, X3 = 0) = 1

P(X1 = 0, X2 = 1, X3 = 1) = 10ε

P(X1 = 1, X2 = 0, X3 = 0) = 1

P(X1 = 1, X2 = 0, X3 = 1) = 1

P(X1 = 1, X2 = 1, X3 = 0) = 10ε

P(X1 = 1, X2 = 1, X3 = 1) = ε .
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Here the negative lattice condition fails on the four atoms having X2 = 1; thus CNA, JNRD and h-NLC
(in fact NLC) all fail, whereas the variables are in fact negatively associated. Thus the lowest vertical
implication in Figure 1 is strict as well.

The following lemma will be useful on a number of occasions. The easy inductive proof is omitted.

Lemma 2.5 Let Y1, . . . , Yn be random variables taking values in a partially ordered set and suppose
they have the Markov property, namely that Y1, . . . , Yk−1 are independent from Yk+1, . . . , Yn given Yk.
Suppose also that each Yk+1 is either stochastically increasing or decreasing in Yk. Then Yn is either
stochastically increasing in Y1 or stochastically decreasing in Y1, according to whether the number of
indices k for which Yk+1 is decreasing in Yk is even or odd. 2

We conclude this subsection with a proof that the competing urn model of Example 4 is negatively
associated. The result with general threshholds is proved in Dubhashi and Ranjan (1998), but the proof
given here is independent of that.

Proof that the urn model is negatively associated: Fix 1 < r < n and let A and A′ be
up-events measurable with respect to {Xi : i ≤ r} and {Xi : i > r} respectively. Let V and V ′ be the
total number of balls dropped into urns i with i ≤ r and i > r respectively. Letting Y1 be the indicator
function of A, Y4 be the indicator function of A′, Y2 = V and Y3 = V ′, it is clear that Y1, Y2, Y3, Y4

has the Markov property. I claim also that A is stochastically increasing in V and A′ is stochastically
increasing in V ′. By symmetry, consider only A and V . Observe that conditional on V = m, the draws
are exchangeable in the usual sense (definition below), so we may condition on the first m draws being
those that went in urns i ≤ r. Then the distribution of balls given V = m and the distribution of balls
given V = m+ 1 may be coupled so that the latter is always the former plus an extra ball somewhere.
This establishes the claim. It is similarly easy to show that V ′ is stochastically decreasing in V . By
Proposition 1.2, V is stochastically increasing in A. Then the hypothesis of the above lemma is satisfied
with stochastic increase for k = 1 and k = 3 and stochastic decrease when k = 2; it follows that A′ is
stochastically decreasing in A which proves negative association. 2

2.4 The exchangeable case and the rank sequence

The variables {X1, . . . , Xn} are said to be exchangeable if their joint distribution is invariant under
permutation. In the case of binary-values random variables, this is the same as saying that µ{Xk =
η(k) : 1 ≤ k ≤ n} depends only on

∑
k η(k). A fair amount of intuition may be gained from this
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special case. The conjectured equivalences in Figure 1 are proved in this case, but more importantly,
new conjectures come to light that ought to hold in the general case as well.

For a measure µ on Bn, define the rank sequence {ak : 0 ≤ k ≤ n} by ak := µ{
∑n
j=1Xj = k}. Thus

{ak : 0 ≤ k ≤ n} gives the total probabilities for the n + 1 ranks of the Boolean lattice Bn. If the
random variables {Xj} are exchangeable, then µ is completely characterized by its rank sequence, with
µ{Xj = η(j) : 1 ≤ j ≤ n} = ak/

(
n
k

)
for k =

∑
j η(j). In this case, the negative lattice condition (8)

boils down to log-concavity of the sequence {ak/
(
n
k

)
} (a positive sequence is said to be log-concave if

a2
k ≥ ak−1ak+1). This motivates the following definition.

Definition 2.6 A finite sequence {ak : 0 ≤ k ≤ n} is said to be Ultra-Log-Concave (ULC) if the nonzero
terms of the sequence {ak/

(
n
k

)
} form a log-concave sequence and the indices of the nonzero terms form

an interval.

Convention: From now on, to avoid trivialities, we have included in the definition of log-concavity that
the indices of the nonzero terms form an interval. It will be useful later to note that log-concavity is
conserved by convolutions and pointwise products.

The significance of Ultra-Log-Concavity in the general case is still conjectural, but in the exchangeable
case it is given by the following theorem whose proof appears at the end of the section.

Theorem 2.7 Suppose that {Xj} are exchangeable. Then the six conditions CNA+, JNRD+, h-NLC+,
CNA, JNRD and h-NLC (see Figure 1) are equivalent to Ultra-Log-Concavity of the rank sequence {ak}.
This is trivially equivalent to the negative lattice condition, (8).

Call the measure µ (not necessarily exchangeable) a ULC measure if its rank sequence is ULC, and
use the term ULC+ to denote a measure such that any measure obtained from it by external fields and
projections is ULC. The following conjectures, if true, imply a large role for the ULC property in the
study of negative dependence. They have been checked only for lattices of rank up to 4.

Conjecture 4 The strongest version of this conjecture is that any negatively associated measure is ULC.
For a weaker version, replace the hypothesis of NA by any of the other six stronger conditions in Figure 1.

Conjecture 5 In the RC model, the sum
∑
e∈S Xe over any subset S has a ULC rank sequence. The

same holds for the competing urns model. In the exclusion model, the total number of occupied sites in
any set S at any time t has ULC rank sequence.
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Remark: The ULC property for number of edges present from a given subset in a uniform (or weighted)
random spanning tree is a subcase of the conjecture for the RC model. For spanning trees, this would
sharpen a result of Stanley (1981) showing that the rank sequence for a uniform random base of a
unimodular matroid (of which the uniform spanning tree is a special case) is log-concave.

Conjecture 4 or the weaker 5 would serve two purposes. Firstly, the ULC property implies tail
estimates on a distribution. Secondly, Conjecture 4 would imply that that the ULC property is a
necessary condition for negative association, which helps to narrow and define our search for the “right”
negative dependence property.

The fact that ULC implies CNA+ et al in the exchangeable case leads one to believe that ULC+
might be enough to imply negative dependence in general:

Conjecture 6 If µ is ULC+ then µ is CNA (hence CNA+) and in particular µ is negatively associated.

Unlike the previous two, this conjecture is not particularly useful, since the hypothesis of ULC+ is
hard to check. It would, however, have philosophical value: supposing there to be a useful definition of
negative dependence still lurking out there, we have been approximating it from the weak side, finding
criteria that certainly hold for any such definition; the foregoing conjecture strengthens our previous
approximation by adding the property ULC+.

A final philosophical observation belongs in this section. If Ultra-Log-Concavity is, as conjectured,
a property of all negatively dependent measures, then the class of ULC sequences must be closed under
convolution. Indeed, if µ1 and µ2 are two exchangeable measures with ULC rank sequences, then by
Theorem 2.7 they are negatively dependent in all senses we can imagine, so their product must be as
well. The rank sequence for the product is the convolution of the rank sequences, so unless even our
understanding of the exchangeable case is nil, the following conjecture must be true. Embarrassingly,
in the previously circulated draft of this paper, there was no proof of the following conjecture. It has
recently been proved by Liggett (1997).

Conjecture 7 (Now proved by Liggett) The convolution of two ULC sequences is ULC.

This section concludes with a proof of Theorem 2.7. Begin with the following two lemmas.

Lemma 2.8 Let µ be an exchangeable measure with ULC rank sequence. Suppose the measure µ′ is
obtained from µ by imposing an external field at coordinates 1, . . . k (i.e., W (j) = 1 for j > k) and
then projecting onto coordinates r + 1, . . . , n for some r ≥ k. Then µ′ is exchangeable with ULC rank
sequence.
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Proof: The exchangeability of µ′ is clear. To see that µ′ has ULC rank sequence, it suffices to consider
the case r = 1. [Reason: defining µj to be the measure gotten by imposing the external field on the first
j coordinates and projecting onto the last n − j coordinates, one sees by induction on j that µr = µ′

will have the desired property]. So we assume without loss of generality that k = r = 1.

Let λ denote W (1). Let aj (respectively a′j) denote the rank sequence for µ (respectively µ′) and let
qj (respectively q′j) denote aj/

(
n
j

)
(respectively a′j/

(
n−1
j

)
). Then

q′j = C(qj + λqj+1) ,

where C is the normalizing constant for the external field. By assumption, {qj} is log-concave, and
hence for any i < j, qiqj ≤ qi+1qj−1. The proof is now a simple calculation.

C−2
[
(q′j)

2 − q′j−1q
′
j+1

]
= q2

j + 2λqjqj−1 + λ2q2
j−1 − qj−1qj+1 − λqj−2qj+1 − λqj−1qj − λ2qj−2qj

= [q2
j − qj+1qj−1] + λ[qjqj−1 − qj+1qj−2] + λ2[q2

j−1 − qjqj−2] .

This is the sum of three positive quantities, so it is positive, proving log-concavity of {q′j} which is
equivalent to {a′j} being ULC. 2

Lemma 2.9 Let µ∗ be a measure obtained from an exchangeable measure µ′ with rank sequence {a′k}
by imposing an external field W . Let Y1 and Y4 be the respective indicator functions of A and A′,
events measurable with respect to disjoint sets S and S′. Let Y2 =

∑
e∈S Xe and Y3 =

∑
e∈S′ Xe. Then

the sequence {Yi} is Markov. Furthermore, the conditional laws (µ∗ |
∑
X(e) = k) are stochastically

increasing in k and the same holds for any projection of µ∗ in place of µ∗.

Proof: Let µ′, µ∗, A,A′, S, S′ and {Yi} be as in the hypotheses. The probabilities for µ∗ are given as
follows, with C being a normalizing constant as usual:

µ∗{Xe = η(e), all e ∈ S} = C
∏
e

W (e)η(e) a
′
k(
n
k

) ,
where k =

∑
e η(e). From this, one gets the conditional probability

µ∗(Xe = η(e) : e /∈ S′ |Xe = η(e) : e ∈ S′) = C ′
∏
e/∈S′

W (e)η(e) a
′
k(
n
k

) .
This does not depend on the values of η on S′ except through

∑
e∈S′ η(e), which proves the Markov

property. For the stochastic increase, note that the conditional distribution of µ∗ given
∑
eX(e) are
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the same as the law of independent Bernoulli random variables with P(X(e) = 1) = W (e)/(1 +W (e)),
conditioned on {

∑
eX(e) = k}. The same holds for any projection of µ∗. There are elementary proofs

that these laws increase stochastically in k, but in the context of this paper, the easiest argument is
to add an extra variable X(e∗) and apply the Feder-Mihail result to the balanced matroid gotten by
conditioning on

∑∗
eX(e) = k + 1 and to the conditional measures given X(e∗) = 0 and X(e∗) = 1. 2

Proof of Theorem 2.7: It is clear that ULC is equivalent to the negative lattice condition and hence
is implied by h-NLC. To show that ULC implies the other six conditions we work up the ladder. First,
if µ is exchangeable and ULC, then Lemma 2.8 shows that all projections of µ are as well, which means
that the NLC holds hereditarily, giving h-NLC. In fact, the lemma is enough to give h-NLC+, since
any µ∗ obtained from µ may be described (after re-ordering of coordinates) as some measure µ′ as in
the lemma, on which has been imposed an external field (that is, any sequence of external fields and
projections may be written as an external field that affects only those indices not appearing in the final
measure, followed by a single projection, followed by an external field); Lemma 2.8 implies µ′ satisfies
the negative lattice condition (8); this is invariant under external fields, so µ∗ satisfies (8) as well.

Next, we show that for any measure µ∗ obtained from an exchangeable measure µ by external
fields and projections, JNRD implies CNA. This will show that JNRD+ implies CNA+ as well as
showing JNRD implies CNA. To show this, let µ∗ be such a measure. Let A and A′ be any up-events
measurable with respect to disjoint sets of coordinates S and S′. Define a sequence of random variables
Y1, Y2, Y3, Y4 by letting Y1 be the indicator of A, letting Y4 be the indicator of A′, letting Y2 =

∑
e∈S Xe,

and letting Y3 =
∑
e∈S′ Xe. Apply Lemma 2.9 to see that {Yi} is Markov. Lemma 2.5 finishes the

argument once we know that Y2 is stochastically increasing in Y1, Y3 is stochastically decreasing in Y2,
and Y4 is stochastically increasing in Y3. Applying the last statement of Lemma 2.9 to the projection
of µ∗ onto {0, 1}S′ , we see that the conditional joint law of {X(e) : e ∈ S′} given

∑
e∈S′ X(e) = k

increases stochastically in k, which says precisely that Y4 is stochastically increasing in Y3. The same
argument with S in place of S′ shows that Y1 is stochastically increasing in Y2. By Proposition 1.2,
Y2 is stochastically increasing in Y1. Finally, to see that Y3 is stochastically decreasing in Y2, write the
conditional distribution of Y3 given {Y2 = k} as an integral∫

Law(Y3 |X(e) = η(e) : e ∈ S) dν(η),

where ν is the mixing measure

ν{η} = µ∗(X(e) = η(e) : e ∈ S |
∑
e∈S

X(e) = k).

We have seen that ν is stochastically increasing in k. By the hypothesis that µ∗ is JNRD, the integrand
decreases stochastically when η increases in the natural partial order, and hence the integral stochastically
decreases in k. This finishes the proof that JNRD implies CNA.
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It remains to show that h-NLC (respectively h-NLC+) implies JNRD (respectively JNRD+). The
+ case will be shown in Section 3.2 below, in the proof of Theorem 3.1, so we prove here only that
ULC implies JNRD for exchangeable measures. It suffices to show that the conditional distribution of∑
e 6=f X(e) given X(f) = 0 stochastically dominates the distribution of

∑
e 6=f X(e) given X(f) = 1, since

in the definition of JNRD, comparing the conditional probabilities of any two neighbors in the Boolean
lattice {0, 1}Ac reduces to comparing conditional probabilities given one value X(f) after conditioning
on all other values of X(g), g ∈ Ac, and such conditioning produces another exchangeable ULC measure.
It further suffices to show that

∑
e 6=f Xe is stochastically decreasing in Xf , since this is sufficient for the

distribution of {X(e) : e 6= f} given X(f).

Let {aj} be the rank sequence for a ULC exchangeable measure µ, and let {qj} be the sequence
{aj/

(
n
j

)
} as before. Then

µ(
∑
e 6=f

Xe = r |Xf = 0) =

(
n−1
r

)
qr

µ(Xf = 0)

and

µ(
∑
e 6=f

Xe = r |Xf = 1) =

(
n−1
r

)
qr+1

µ(Xf = 1)
.

Thus we need to show that for all k < n,

k∑
r=0

(
n−1
r

)
qr+1

µ(X(f) = 1)
≥

k∑
r=0

(
n−1
r

)
qr

µ(X(f) = 0)
.

Cross-multiply and replace the quantities µ(X(f) = x) with the sum over s of µ(X(f) = x,
∑
e 6=f X(e) =

s) to transform this into∑
r≤k;s≤n−1

(
n− 1
r

)(
n− 1
s

)
qr+1qs ≥

∑
r≤k;s≤n−1

(
n− 1
r

)(
n− 1
s

)
qrqs+1.

Canceling terms appearing on both sides reduces the range of the sum to r ≤ k < s. But for r < s,
log-concavity of {qj} implies that qr+1qs ≥ qrqs+1, which establishes the last inequality via term-by-term
comparison and finishes the proof that ULC implies JNRD. 2

3 Inductively defined classes of negatively dependent measures

At this point it is worth examining the possibility that the many negative dependence properties in our
desiderata are not mutually satisfiable. It is easy to see from the definition that the class of CNA+
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measures is closed under products, projections and external fields, so we have at least one existence
result:

Let S0 be the smallest class of measures containing all exchangeable ULC measures and
which is closed under products, projections and external fields. Then S0 is contained in the
class of CNA+ measures. 2

Supposing there to exist a natural and useful class of “negatively dependent measures”, it is contained
in the class of CNA+ measures, and certainly contains the class S0. This section aims to improve the
latter bound which seems, intuitively to be further from the mark.

3.1 Further closure properties

The class S0 is trivial, since products commute with external fields, and therefore S0 may be seen to
contain only products of exchangeable ULC measures, on which have been imposed external fields. We
may enlarge the class S0 either by including more measures in the base set or by increasing the number
of closure operations in the inductive step. I will begin the discussion with a list of additional candidates
for closure properties to those already listed in Section 2.1.

7. Symmetrization. Given a measure µ on Bn, let µ′ be the exchangeable measure with µ′(
∑
j Xj =

k) = µ(
∑
j Xj = k). In other words, µ′ = (1/n!)

∑
π∈Sn µ ◦ π. Since the measure µ′ is exchangeable, we

know criteria for µ′ to be negatively associated, and therefore closure under symmetrization boils down
to the Conjecture 4 for the class of negatively dependent measures.

8. Partial Symmetrization. One could strengthen the preceding closure property by allowing sym-
metrization of only a subset of the coordinates, for example, one could take µ′ = (µ + µ ◦ π)/2 where
π is a transposition. If one broadens this to taking µ′ = (1 − ε)µ + εµ ◦ π, then by iterating these
with ε→ 0, one obtains closure under an arbitrary time-inhomogeneous stirring operation. That is, let
{πt : t ≥ 0} be a Sn-valued stochastic Markov process, with transitions from π to τ ◦ π at rates C(τ, t)
for each transposition τ , where the functions C(τ, t) are some arbitrary real functions. Fix T > 0 and
let µ′ = µ ◦ πT . We require that our class of negatively dependent measures, if it contains µ, to contain
any such µ′.

One motivation for considering such a strong closure property is that we expect it to hold when µ

is a point mass, since then µ′ is the state of an exclusion process at a fixed time. It seems reasonable
that if the initial state is random, chosen from a negatively dependent measure µ, then the state at
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time T should still be negatively dependent. Another plausibility argument is that going from µ to
(1 − ε)µ + εµ ◦ τ is akin to sampling without replacement. It is shown in Joag-Dev and Proschan
(1983, example 3.2 (a)) that the values of samples drawn without replacement from a fixed (real-valued)
population are negatively associated. If the initial population is random with a negatively dependent
law, this should still be true.

9. Truncation. Given µ on Bn, let µ′ be µ conditioned on a ≤
∑
j Xj ≤ b. We say that µ′ is

the truncation of µ to [a, b]. We may ask that our class be closed under truncation. This seems the
least controversial when a = b and we are conditioning on the sum

∑
j Xj . In fact, Block, Savits and

Shaked (1982) define a collection of random variables {X1, . . . , Xn} to satisfy Condition N if there is
some collection {Y1, . . . , Yn+1} of random variables satisfying the positive lattice condition (2) and some
number k such that the law of {X1, . . . , Xn} is the law of {Y1, . . . Yn} conditioned on

∑n+1
j=1 Yj = k.

They show that many examples of negatively dependent measures from Karlin and Rinott (1980) can be
represented this way, and that this implies negative association. In fact, Joag-Dev and Proschan (1983,
Theorem 2.6) show that if any random variables {Xe : e ∈ E} with law µ satisfy

(µ |
∑
e

Xe = k + 1) � (µ |
∑
e

Xe = k), (9)

then (µ |
∑
eXe = a) is negatively associated; a result of Efron (1965) is that (9) holds when the real-

valued variables Xe have densities that are log concave, which together with Joag-Dev and Proschan’s
result yields the Karlin and Rinott result.

Conditioning on an entire interval [a, b] may seem less natural; it is a special case of the next closure
operation.

10. Rank rescaling. Given a measure µ on Bn and a log-concave sequence q0, . . . , qn, define the rank
rescaling of µ by {qj} to be the measure µ′ given by

µ′(x) =
q|x|µ(x)∑

y∈Bn q|y|µ(y)
.

Here |y| denotes the rank of y in Bn, that is, the number of coordinates of y that are 1. When qj =
1[a,b](j), this reduces to truncation. Another special case is qj = rj , which is the same as imposing a
uniform external field. Rank rescaling may be too strong a closure property to demand, so we give two
plausibility arguments. Firstly, observe that rank rescaling commutes with external fields. Thus when
µ is a product Bernoulli measure, the rank rescaling of µ by {qj} is just an exchangeable ULC measure
plus an external field, which we know to be CNA+. Secondly, Theorem 3.1 below shows that the closure
of S0 under rank rescaling is still contained in the class JNRD+. Unfortunately, since projections do
not commute with rank rescaling, this class is not closed under projections, so we do not know whether
adding rank rescaling to the list of closure operations results in measures that are negatively associated.
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A concrete application in which we would like to have these closure properties is the random forest.
Let G be a graph with n vertices and edge set E(G) and define the uniform random forest η : E(G)→
{0, 1} to be chosen uniformly among subsets of E(G) with no cycles. Thus we generalize the well studied
spanning tree model by allowing more than one component. Peter Winkler (personal communication)
asks whether any negative dependence can be shown for this model. Together with closure under
truncation, this would imply negative correlations in constrained random forests, the simplest one of
these being when η is chosen from acyclic edge sets with cardinality either n− 1 or n− 2. There seems
to be no negative correlation result known even in this simple setting.

3.2 Building a class of negatively dependent measures from the inside

In this section we prove the following theorem, showing that asking for closure under rank rescaling is
reasonable.

Theorem 3.1 Let S be the smallest class of measures containing laws of single Bernoulli random vari-
ables and closed under products, external fields and rank rescaling. Then every measure in S is JNRD+.

The theorem is proved in several steps.

Step 1: Represent each µ in S by a tree. Observe that external fields commute with products and rank
rescaling. Since an external field changes a Bernoulli variable into another Bernoulli, all measures in
S are built from Bernoulli laws by products and rank rescaling. Let T be a finite rooted tree, with
each leaf e labeled by a Bernoulli law νe, and each interior vertex v labeled by a log-concave sequence
{q(v)
j }, whose length is one more than the number of leaves below v. Associate a measure µv to each

interior vertex v recursively, by letting µv be the rank rescaling by {q(v)
j } of the product of the measures

associated with the subtrees of v. Then the above observation implies that every measure in S is the
measure associated with the root of such a tree T, so that if the measure is the law of {X(e) : e ∈ S}
then the set of leaves of T is precisely S. We may assume without loss of generality that every interior
vertex of T has precisely two children. We also note that log-concavity is closed under convolution and
pointwise products, and thus by an easy induction the rank sequence for every measure µv associated
with any vertex v of such a tree is log-concave.

Step 2: Use Lemma 2.5. For any vertex v of T, define Yv to be the sum of Xe over all leaves e lying below
v (the root is at the top). Suppose e and f are two leaves of T and let v be their meeting vertex, that
is, the lowest vertex of T having both e and f as descendants. Let e = e0, e1, . . . , ek, v, fl, . . . , f0 = f be
the geodesic connecting e and f in T. I claim that the sequence {Ye0 , . . . , Yek , Yfl , . . . , Yf0} is Markov,
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and that each is stochastically increasing in the previous one, except that Yfl is stochastically decreasing
in Yek . The conclusion of this step, which follows immediately from Lemma 2.5 once the claims are
established, is that Xe and Xf are negatively correlated.

Establishing the Markov property is a diagram chase. Use the notation g ≥ v to denote that the
leaf g is a descendant of the vertex v. Slightly stronger than the Markov property is the fact that the
collection {Xg : g ≥ ej−1} and the collection {Xg : g\≥ ej} are independent given Yej . To see that this
independence property holds, write

µ(Xg = xg : g ∈ S) = C
∏
g∈E

νg(xg)
∏

v interior

q(v)
yv ,

where yv :=
∑
g≥v xg. Now observe that the only factors in the product depending both on values xg

for g ≥ ej−1 and for g\≥ ej depend only on the total yej , giving us the desired conditional independence.

Step 3: Verify the part of the claim involving stochastic dependence. We first record a simple lemma.

Lemma 3.2 Let {an}, {bn}, {cn} be finite sequences of nonnegative real numbers, with aibjci+j not
identically zero. Let X and Y be random variables such that

P(X = i, Y = j) = Kaibjci+j (10)

for some normalizing constant, K. Then

(i) X ↑ (X + Y ) if b is log-concave; Y ↑ (X + Y ) if a is log-concave;

(ii) (X + Y ) ↑ X if b is log-concave; (X + Y ) ↑ Y if a is log-concave;

(iii) X ↓ Y if c is log-concave; Y ↓ X if c is log-concave;

Proof: By symmetry it suffices to prove the first half of each statement. We use the fact that if µ and
ν are probability measures on the integers with µ(x)/ν(x) increasing in x, then µ � ν.

For statement (i), let µ be the conditional distribution of X given X + Y = j, and let ν be the
conditional distribution of X given X + Y = j + 1 (we deal only with the interval of values of j for
which we are conditioning on events of positive probability). Then µ(x) = Caxbj−xcj for some constant
C, while ν(x) = C ′axbj+1−xcj+1 for some C ′. Hence µ(x)/ν(x) = C ′′bj−x/bj+1−x, which is decreasing
in x as long as {bj} is log-concave. Statements (ii) and (iii) are proved similarly. For (iii), let µ be the
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conditional distribution of X given Y = j and ν be the conditional distribution of X given Y = j + 1.
Then µ(x)/ν(x) = Ccj+x/cj+x+1, which is increasing in x if {cj} is log-concave. And for (ii), let µ be
the conditional distribution of X + Y given X = j and ν be the conditional distribution of X + Y given
X = j + 1. Then µ(x)/ν(x) = Cbx−j/bx−j−1, which decreases in x when {bj} is log-concave. 2

The stochastic increases in the sequence {Ye0 , . . . , Yek , Yfl , . . . , Yf0} are now easy to verify. Let w be
the child of ej+1 that is not ej , let X = Yej , and let Y = Yw. Recall from the recursive construction
of the measures that µej gives X a log-concave sequence of probabilities, call it {ai}, that µw gives Y
a log-concave sequence of probabilities, call it {bi}, and that µej+1 gives probabilities as in (10) with
ci = q

ej+1
i . Replacing µej+1 by the measure µ associated with the root of the tree effectively alters

the sequence {ci} but not {ai} or {bi}. Since the sequences {ai} and {bi} are log-concave, parts (i)
and (ii) of the previous lemma imply that X is stochastically increasing in X + Y and vice versa. Since
X +Y = Yej+1 , and since the argument works equally well for fj instead of ej , this gives all parts of the
claim except the fact that Yfl ↓ Yek .

Let v be the common parent of ek and fl. As before, we see that under the law µv, Yfl is stochasti-
cally decreasing in Yek , according to statement (iii) of the lemma with ci = q

(v)
i which is log-concave.

Transferring this argument to the measure µ is mostly a matter of using the right notation to make it
clear that the new sequence {ci} is log-concave. Let v = v0, v1, . . . , vr be the path leading from v to
the root, and for 1 ≤ i ≤ r, let wi be the child of vi not equal to vi−1. Let ai = µek(Yek = i) and
bi = µfl(Yfl = i). Let sji = q

(vj)
i and let tji = µwj (Ywj = i). Use the recursive definition of the measures

µg to see that

µ(Yek = i, Yfl = j)

= Kaibjci+j
∑

u1,...,ur

r∏
j=1

tjujs
j
i+j+u1+···+uj .

The summation term may be written as

((· · · ((sr ∗ tr)� sr−1) ∗ tr−1 · · · � s1) ∗ t1), (11)

where ∗ denotes convolution, � denotes pointwise product, denotes reversal, and sj and tj denote
the sequences {sji} and {tji}. Since convolution, pointwise product and reversal preserve log-concavity,
this shows that the third part of Lemma 3.2 still applies, and finishes the verification.

Step 4: Negative correlation implies h-NLC+. Observe that the property h-NLC+ is the same as NC+,
where NC denotes pairwise negative correlation. To see this, note that an external field with W (e)→ 0
or ∞ corresponds to conditioning on Xe = 0 or 1 respectively. Thus NC+ is equivalent to negative
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correlation of any pair of variables, given values of any others, under any external field, which is h-
NLC+. The conclusion of steps 2 and 3 were the NC property, and hence NC+, since the class is
already closed under external fields.

Step 5: Modifying the argument to get JNRD+. Let e be a leaf of T and let v0, v1, . . . , vk be the path
from e to the root, with v0 = e. Let wi be the child of vi other than vi−1. I claim that the vector
(Yw1 , . . . , Ywk) is stochastically decreasing in Xe. This is shown by coupling, inducting on i. We will
define a sequence (Y1, . . . , Yk) to have the conditional distribution of (Yw1 , . . . , Ywk) given Xe = 0 and
(Y ′1 , . . . , Y

′
k) to have the conditional distribution of (Yw1 , . . . , Ywk) given Xe = 1 so that (Y1−Y ′1 , . . . , Yk−

Y ′k) has all coordinates zero except possibly for a single 1.

When i = 1, we have Yw1 ↓ Xe by part (iii) of Lemma 3.2, using log-concavity of a sequence
analogous to (11). Since also Yw1 + Xe ↑ Xe by part (i) of the lemma and log-concavity of the rank
sequence for Yw1 , this means we can define Y1 and Y ′1 so that Y1 has the distribution of Yw1 given
Xe = 0, Y ′1 has the distribution of Yw1 given Xe = 1 and Y ′1 + 1 ≥ Y1 ≥ Y ′1 . If Y1 = Y ′1 + 1, then choose
(Y2, . . . , Yk) to have the conditional distribution of (Yw2 , . . . , Ywk) given Xe = 0 and Yw1 = Y1. This is
the same as the conditional distribution of (Yw2 , . . . , Ywk) given Xe = 1 and Yw1 = Y ′1 , so we may choose
(Y ′2 , . . . , Y

′
k) = (Y2, . . . , Yk). If Y1 = Y ′1 , then choose Y2 and Y ′2 from the conditional distribution for Yw2

given respectively that Yv1 = Y1 + 1 and Y1. Again Y ′2 + 1 ≥ Y2 ≥ Y ′2 , and we continue, setting the
remaining coordinates equal if Y2 = Y ′2 + 1, and otherwise choosing Y3 and Y ′3 and so on.

The collections {Xf : f ≥ wi} are conditionally independent as i varies given {Ywi : 1 ≤ i ≤ k}. Thus
we may write the conditional law of {Xf : f 6= e} given Xe = 0 as a mixture over values (r1, . . . , rk) of
(Y1, . . . , Yk) of product measures

∏k
j=1 µj,rj where µj,rj is the conditional law of {Xe : e ≥ wj} given

Ywj = rj . The conditional law of {Xf : f 6= e} given Xe = 1 is the same, but with a stochastically
smaller mixing measure. Suppose the laws µj,rj are stochastically increasing in rj . Then by stochastic
comparison of the mixing measures, we see that the conditional law of {Xf : f 6= e} given Xe = 0
dominates the conditional law of {Xf : f 6= e} given Xe = 1. The measures µj,rj are in the class S (S is
not closed under projection but projections onto all variables in a subtree is OK). Thus all that remains
to verify JNRD+ is to prove the supposition, which is the following lemma.

Lemma 3.3 For any measure µ in the class S, the conditional distribution of µ given
∑
eXe = k + 1

stochastically dominates the conditional distribution given
∑
eXe = k.

To prove this we strengthen Lemma 3.2 a little. Recall that an element of a partially ordered set
covers another if it is greater and there is no element in between. Say that a measure µ on a partially
ordered set covers the measure ν if there are random variables X ∼ µ and Y ∼ ν such that X = Y or
X covers Y .
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Lemma 3.4 Under the hypotheses of Lemma 3.2, if {an} is log-concave, then (X |X+Y = k+1) covers
(X |X + Y = k) and if {cn} is log-concave then (X + Y |X = k + 1) covers (X + Y |X = k).

Proof: The likelihood ratio of the law of X conditioned on X+Y = k+1 to the law of X+1 conditioned
on X+Y = k, evaluated at the point x, is equal to axbk+1−xck+1/(ax−1bk+1−xck) = (ck+1/ck)(ax/ax−1).
This is decreasing in x by log-concavity of {an}. The likelihood ratio of the law of X+Y given X = k+1
to the law of X + Y + 1 given X = k, evaluated at the point z, is ak+1cz/(akcz−1) which is decreasing
in z by log-concavity of {cn}. 2.

Proof of Lemma 3.3: Induct on the height of the tree T. If T is a single leaf, then the statement is
trivial. Now suppose the root of T has children v and w and assume for induction that the lemma holds
for µv and µw. Since the rank sequences for Yv and Yw are log-concave, part (i) of Lemma 3.2 show
that Yv and Yw are each stochastically increasing in Yv +Yw. By Lemma 3.4, in fact the law of Yv given
Yv + Yw = k + 1 covers the law of Yv given Yv + Yw = k, from which we conclude that the pair (Yv, Yw)
is stochastically increasing in Yv + Yw. By the inductive hypothesis, {Xe : e ≥ v} is stochastically
increasing in Yv and the same is true with v replaced by w. Since {Xe : e ≥ v} and {Xe : e ≥ w} are
conditionally independent given Yv and Yw, this finishes the proof. 2

3.3 Further observations and conjectures

Lemma 3.3 seems to be true in the following greater generality.

Conjecture 8 If µ is CNA+ then the conditional distribution µ given
∑
eXe = k + 1 stochastically

dominates the conditional distribution µ given
∑
eXe = k.

Remark: The conclusion of this conjecture appears in Joag-Dev and Proschan (1983) as a hypothesis
implying negative association. Does this condition fit into the theory of negative dependence better as
a hypothesis or a conclusion? The same could be asked about the ULC condition, c.f Conjectures 4 - 6.

Another conjecture that seems to be true is as follows.

Conjecture 9 If µ on Bn is CNA+ then the conditional distribution on Bn−1 given Xn = 0 stochasti-
cally covers the conditional distribution given Xn = 1.

These conjectures may be strengthened by weakening the hypothesis to JNRD+ or h-NLC+, but the
+ condition is essential, at least for the second conjecture, as shown by the following example.
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Example: Let µ be the measure on B3 with equal probabilities 1/5 for the points (0, 0, 0), (0, 0, 1),
(0, 1, 0), (1, 0, 0) and (1, 1, 0). This is CNA but not h-NLC+ (impose an external field with W (1) very
small). The measure (µ |X3 = 0) is stochastically greater than the measure (µ |X3 = 1) but is too much
greater to cover it.

Question 10 Under what hypotheses on µ can one prove that

(µ |
∑
e

Xe = k + 1) � (µ |
∑
e

Xe = k)? (12)

An answer to this question would be important for the following reason. Let A be any upset. If we
can establish (12), then A ↑

∑
eXe and in particular these have nonnegative covariance. Therefore A

and Xe have nonnegative covariance for some e and we have established proprty (ii) of Section 1.5. In
particular, Conjecture 8 implies Conjecture 2.
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