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Abstract
We consider a spatial (line) model for invasion of a pop-
ulation by a single mutant with a stochastically selec-
tively neutral fitness landscape, independent from the
fitness landscape for nonmutants. This model is similar
to those considered earlier. We show that the probabil-
ity of mutant fixation in a population of size 𝑁, start-
ing from a single mutant, is greater than 1∕𝑁, which
would be the case if there were no variation in fitness
whatsoever. In the small variation regime, we recover
precise asymptotics for the success probability of the
mutant. This demonstrates that the introduction of ran-
domness provides an advantage to minority mutations
in this model, and shows that the advantage increases
with the system size. We further demonstrate that the
mutants have an advantage in this setting only because
they are better at exploiting unusually favorable environ-
ments when they arise, and not because they are any
better at exploiting pockets of favorability in an environ-
ment that is selectively neutral overall.
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1 INTRODUCTION

Evolution in random environments has attracted attention of ecologists and mathematical biol-
ogists for a long time. Consider direct competition dynamics between two types of organisms
whose reproduction and death rates may be different in different spatial locations. It is clear that
organisms with larger reproduction rates and lower death rates are more likely to rise from low
numbers and eventually replace their slow reproducing, rapidly dying counterparts. The situa-
tion becomes more complicated if the environment consists of different patches, where different
types enjoy evolutionary advantage while others are suppressed. Depending on the properties of
this patchy environment, the reproduction and death rates of the organisms, and the details of the
evolutionary process, a number of outcomes can be observed, see, e.g., Refs. 3–6 and also Modern
Coexistence Theory.7
From early works of Haldane,8 Fisher,9 and Wright10 almost 100 years ago, an important focus

of many theoretical studies of evolution has been the probability and timing of mutant fixation,
see also Kimura’s studies of neutral evolution.11,12 The general setting assumes the coexistence of
different variants of an organism in a population, one of which is referred to as the “wild type” (or
“normal”) and the other(s) as “mutants” (or variants). Mutations may or may not confer selective
advantage or disadvantage to an organism. In general, the term “neutral’ in evolutionary theory
refers to the type of variants that, although different from the wild type, is neither advantageous
nor disadvantageous, that is, it does not experience a positive or negative selection pressure.
Mutant evolution in random environments became a topic of mathematical investigation

around 1960s. Many early papers studied temporal fluctuations of the environment. For example,
in Ref. 13, it was assumed that while the wild types had constant numbers of offspring, mutants’
numbers of offspringwere randomly changing every time step (but had the samemean as thewild
types’ offspring numbers). It was found that despite having the same mean number of offspring,
the mutants behaved as if they were disadvantageous. References 14,15 studied a more general
setting, where the division rates of both wild types andmutants were affected by the environmen-
tal changes. It was found that, surprisingly, the mutants behaved as if they were advantageous,
despite having the same mean division rate, but only if the mutants were initially a minority. A
similar result was found by Refs. 16, 17. Many results have been obtained in the framework of the
Modern Coexistence Theory in ecology, e.g., regarding the instantaneous rate of increase of a rare
species.18–20 It was shown analytically by Refs. 3, 21, 22 that temporal randomness in division rates
leads to a positive rate of increase of a minority mutant. Another set of analytical results concerns
extinction times.23–25
In contrast to temporal variations, spatial environmental variations are associated with fitness

differences that characterize different spatial locations (and do not change in time). For example,
one can consider a stylizedmodelwhere light conditions differ in different locations, and therefore
growth and reproduction properties of plants may differ spot to spot. Let us suppose that the
wild type plant needs high light to grow, but a mutant prefers shade. Then spots characterized
by strong lighting conditions will result in an increase in wild type growth rate and a decrease in
mutant growth rate. What can we say about themutant fixation probability if the “high light” and
“low light” spots are distributed with equal likelihood? In this example, the fitness values of wild
type and mutant organisms are anticorrelated, that is, in a given spot, if a wild type plant has an
elevated fitness value, a mutant will have a reduced fitness value. Different scenarios are possible,
including the case where fitness values of wild type and mutant organisms are uncorrelated; this
would correspond to a situation where the growth properties of wild type and mutant plants are
determined by different and uncorrelated environmental factors, such as light and nutrients.
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FARHANG-SARDROODI et al. 1025

Two important examples of biological systems where evolution takes place in the presence
of spatial randomness, are biofilms and tumors. Biofilms are collectives of microorganisms,
such as bacteria or fungi, that coexist on surfaces within a slimy extracellular matrix. Evolu-
tionary dynamics of these microorganisms take place in an environment characterized by sig-
nificant heterogeneities, both in physical and chemical parameters, such as heterogeneities in
the interstitial fluid velocity, gradients in the distribution of nutrients, and other metabolic
substrates/products.26,27 It has been suggested28 that different organisms may respond differently
to these diverse environmental stimuli, giving rise to evolutionary codynamics that can be mod-
eled by using models similar to those studied here. The second example is evolution in cancerous
populations, where the presence of highly heterogeneous environments has been documented,
see, e.g., Refs. 29, 30. Cancerous cells in different locations across a tumor are exposed to differ-
ent concentrations of oxygen, nutrients, immune signaling molecules, inflammatory mediators,
and other nonmalignant cells that comprise the tumor microenvironment. Understanding tumor
evolution under these spatially heterogeneous conditions is essential for understanding and com-
bating long-standing challenges in oncology such as drug resistance in tumors. It also presents
opportunities for creating new therapeutic strategies.31
In the literature, several modeling approaches have been used to study spatial randomness. In

one class of models, agents are placed on a random network, where different vertices have differ-
ent degrees; the nodes’ fitness values are based on their numbers of interactions, making some
vertices more advantageous than others. These types of settings have been used, e.g., in the con-
text of the game theory/cooperation (e.g., Refs. 32–37). Another class of models is a finite island
model, where agents are placed in patches (characterized by environmental differences) and a
certain degree of patch-to-patch migration is assumed. Mutant fixation probability has been stud-
ied in the high migration rate38 and the low migration rate39 limit. Mutant fixation probability in
the problem with two patches has been solved analytically in Ref. 40, where it was assumed that
the mutation is advantageous in one patch and deleterious in the other patch. An extension to a
multiple patch model was provided in Ref. 41, who investigated the accuracy of various approxi-
mations for mutant fixation probability. The role of spatially variable environments has been also
addressed by the Modern Coexistence Theory, see, e.g., studies of species coexistence in Ref. 42.
In the recent papers1,2 we studied the dynamics of mutant fixation in a model that is a gen-

eralization of the classical Moran model43 and includes spatial randomness. We assumed that
the population of organisms (or agents) remains constant and birth/death updates are performed
with rules governed by the organisms’ fitness parameters (birth and/or death rates). Interactions
of replacing dead organisms by offspring of others happen along edges of a network that defines
“neighborhoods.” For example, in a model characterized by agents on a complete graph, every
agent is in the neighborhood of everyone else, and therefore a dead organism can be replaced by
offspring of any other agent. On the other hand, on a circular graph, each agent has exactly two
neighbors. It was assumed that, for each realization of the evolutionary competition process, for
each of the 𝑁 sites, the birth and/or death rates of both types were assigned by randomly draw-
ing the same distributions of values. Then, the probability of mutant fixation, starting a given
initial location of mutant agents among the 𝑁 spots, was calculated. Finally, this probability was
averaged over all realizations of the fitness values. It was found that, somewhat surprisingly, the
mutants showed an advantage compared to the normal types, as long as their initial number was
smaller than a half. This result can be obtained for particular (relatively small) numbers of𝑁, but
no asymptotic results for large values of 𝑁 were obtained analytically. It was observed, however,
that the effect of randomness to “favor” minority mutant increased with the system size.
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1026 FARHANG-SARDROODI et al.

In this paper, we focus on the asymptotic behavior of the fixation probability of mutants in the
presence of spatial randomness. We consider a spatial model similar to that used in Refs. 1, 2. It
is a spatial (1D) version of the Moran process (see, e.g., Ref. 44) where spatial variations in the
environment are implemented by random fitness values of wild type and mutant individuals at
different sites. Models of this type (but without random fitness values) have been used previously
to study cellular evolution in the context of cancerous transformation (44,45) and are relevant for
describing, e.g., colonic crypts. To the best of our knowledge the results reported here are the first
rigorous results for the problems of this kind.

2 MODEL FORMULATION AND RESULTS

We consider the following model. The spatial environment consists of 𝑁 sites, numbered 1, … ,𝑁
arranged in a line with nearest neighbor edges. At each site there are two real parameters repre-
senting fitness values: a mutant fitness and a normal fitness, each chosen i.i.d. 1 ± 𝛿. These fitness
values will remain fixed while the state of each site will change. Site 1 begins with state “mutant”
and all other sites begin with the state “normal.” The evolution proceeds in discrete time as fol-
lows: Replace each edge with two directed edges, one in each direction; at each time-step choose
a directed edge (𝑗, 𝑘) with |𝑗 − 𝑘| = 1 uniformly at random, and let 𝜈𝑘 and 𝜇𝑘 be the normal and
mutant fitnesses of 𝑘; if 𝑗 is mutant, then we set 𝑘 to be mutant with probability 𝜇𝑘∕(𝜈𝑘 + 𝜇𝑘) and
leave 𝑘 unchanged with the remaining probability; similarly, if 𝑗 is normal then we set 𝑘 to be
normal with probability 𝜈𝑘∕(𝜈𝑘 + 𝜇𝑘) and leave it unchanged otherwise.
This model may also be thought of as occurring in continuous time: Each directed edge is

assigned an exponential clock of rate 1. When the clock edge 𝑢 to 𝑣 rings, 𝑢 attempts to replace
the type of 𝑣 with its own type; if 𝑢 is mutant, then the state of 𝑣 is set to be mutant with 𝜇𝑣

𝜇𝑣+𝜈𝑣
and is unchanged with the remaining probability.
Because there are only finitely many sites and only two types, the process eventually fixates

in one of two states: all mutants or all normal. We are interested in the probability of the event
𝐺 of fixating in the state where all sites are mutants, and in particular how the probability that
𝐺 occurs changes—after averaging over the random environment—as 𝛿 varies. More concretely,
should more or less randomness help the mutant dominate?
If 𝛿 = 0, there is no differential fitness and the fitness environment is deterministic. After 𝑘

replacements, the mutants will always either be extinct or occupy some interval 1, … , 𝑋𝑘. The
process {𝑋𝑘} is a simple random walk stopped when it hits 0 or 𝑁, hence the probability that it
stops at 𝑁 is precisely 1∕𝑁. Biologically this means that in the absence of any fitness differences
between the wild type andmutant cells, the probability of any cell to fixate is the same and equals
1∕𝑁. Note that if fixation probability is greater (smaller) than the initial share of the mutant, then
this indicates the presence of positive (negative) selection acting in the system.
In themodel considered here,when 𝛿 > 0, the dynamics becomemore complicated. In fact they

are the dynamics of a birth–death process in a random environment; equivalently, the dynamics
may be thought of as a variant of the voter model where each site may be more or less susceptible
to a given type. A similar model, but with circular boundary conditions (1 and 𝑁 are neighbors),
was analyzed in Ref. 1. There, it was proved for 4 ≤ 𝑁 ≤ 8 and empirically observed for much
larger values of𝑁 that the probability of a mutant takeover is strictly greater than 1∕𝑁, indicating
the presence of positive selection for the mutant, although its fitness values are chosen the same
distribution as those for the wild type cells. The goal of this paper is to establish the analogous
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FARHANG-SARDROODI et al. 1027

F IGURE 1 An instance of the model with mutant sites in gray and normal sites in white and both mutant
and wild fitness types listed. The above state is identified with 4, because the mutant sites are {1, 2, 3, 4}

result rigorously for the line model and to give precise asymptotics for the annealed probability of
a mutant takeover.
Let (Ω𝑁,𝑁, ℙ𝑁) be a probability space on which are defined independent Rademacher ran-

dom variables (that is, ±1 fair coin flips) 𝐵1, … , 𝐵𝑁 and 𝐵′1, … , 𝐵
′
𝑁 , as well as rate 1 Poisson pro-

cesses 𝜉(𝑖,𝑗)𝑡 for 1 ≤ 𝑖, 𝑗 ≤ 𝑁 and |𝑖 − 𝑗| = 1, independent of the Rademacher variables and of each
other. For 𝛿 ∈ (0, 1), the normal fitness at site 𝑘 is the quantity 𝜇𝑘 ∶= 1 + 𝛿𝐵𝑘 and the mutant
fitness at site 𝑘 is the quantity 𝜈𝑘 ∶= 1 + 𝛿𝐵′𝑘; in this way, the model is defined simultaneously for
all 𝛿, although we will not do much to exploit this simultaneous coupling.
The states of the process are configurations where each site has a mutant (one) or normal cell

(zero). Because we always consider the starting condition of having one mutant at site 1 and all
others are normal, the collection of mutant cells is always some segment of sites [1, 𝑘] and normal
cells thereafter. Hence we can identify the state space with {0, 1, … ,𝑁}, with 0 corresponding to
mutant extinction. Because we need only keep track of the right-most mutant to describe the state
of the process, we first find the transition probabilities for the evolution of this right-most point.
Figure 1 shows an instance of the model along with this identification.
At times corresponding to points of the Poisson process 𝜉(𝑖,𝑗), cell 𝑖 tries to reproduce at site 𝑗.

This only matters if 𝑖 = 𝑘 or 𝑗 = 𝑘, because otherwise sites 𝑖 and 𝑗 have the same state and no
change in state can occur. Sampling only when the configuration changes yields a discrete time
birth and death chain, absorbed at 0 and𝑁, whose transition probabilities are easily characterized.
Define the random quantities

𝛽𝑘 ∶=
𝜇𝑘

𝜈𝑘 + 𝜇𝑘
. (1)

From state 𝑘 the only relevant directed edges are (𝑘, 𝑘 + 1) and (𝑘 + 1, 𝑘) because these corre-
spond to the mutant site 𝑘 making 𝑘 + 1 mutant and normal site 𝑘 + 1 making 𝑘 normal. Both
attempted at rate 1 and succeedingwith respective probabilities 𝛽𝑘+1 and 1 − 𝛽𝑘. Letting𝑝𝑘 denote
the transition probability the right-most mutant being 𝑘 to being 𝑘 + 1, we have

𝑝𝑘 =
𝛽𝑘+1

𝛽𝑘+1 + (1 − 𝛽𝑘)
. (2)

We may now think of the evolution as occurring entirely on {0, 1, … ,𝑁}, where state 𝑘 moves
to step 𝑘 + 1 with probability 𝑝𝑘 and moves to 𝑘 − 1 with probability 1 − 𝑝𝑘.
Let𝐺 = 𝐺(𝛿) denote the event that the absorbing state𝑁 is reached before the absorbing state 0,

under dynamics for the given 𝛿. Our first result is an asymptotic expression for ℙ𝑁(𝐺(𝛿)) in the
regime where 𝑁 → ∞ and 𝛿

√
𝑁 → 𝑐.
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1028 FARHANG-SARDROODI et al.

Theorem 1 (Asymptotics when 𝛿
√
𝑁 → 𝑐). Fix 𝑐 > 0 and suppose𝑁 → ∞ and 𝛿

√
𝑁 → 𝑐. Then,

𝑁ℙ𝑁(𝐺(𝛿)) → 𝑔(𝑐), (3)

where

𝑔(𝑐) = 𝔼
⎡⎢⎢⎣ 1

∫ 1
0
exp(

√
2𝑐𝐵𝑠) 𝑑𝑠

⎤⎥⎥⎦
for a standard Brownianmotion {𝐵𝑠}. The function 𝑔 is continuous and strictly increasing on (0,∞).
It satisfies

𝑔(𝑐) − 1 ∼
𝑐2

6
as 𝑐 ↓ 0 ; (4)

𝑔(𝑐) ∼
𝑐√
𝜋

as 𝑐 → ∞ . (5)

We note that continuity of 𝑔 implies that for 𝛿 ≪ 𝑁−1∕2, then ℙ𝑁(𝐺(𝛿)) ∼ 1∕𝑁 as in the 𝛿 = 0
case. In the regimewhere 𝛿 ≫ 𝑁−1∕2 but still 𝛿 ≪ (log𝑁)−𝜀, the asymptotic behavior ofℙ𝑁(𝐺(𝛿))
is as follows.

Theorem 2. Assuming 𝛿
√
𝑁 → ∞, suppose that there is an 𝜀 > 0 such that 𝛿(log𝑁)𝜀 → 0. Then

ℙ𝑁(𝐺(𝛿)) ∼
𝛿√
𝜋𝑁

.

We do not expect this to hold if 𝛿 = Θ(1) as 𝑁 → ∞ because without scaling, the graininess of
the random walk may lead to a different constant than would be obtained by a Brownian approx-
imation. Nevertheless, we believe the condition 𝛿 = 𝑜(log𝑁)−𝜀 to be unnecessary and we conjec-
ture the following.

Conjecture 1. If 𝛿
√
𝑁 → ∞ and 𝛿 → 0 then

ℙ𝑁(𝐺(𝛿))

𝛿𝑁−1∕2
→

1√
𝜋
.

In any case, as𝑁 → ∞ and in the absence of the requirement 𝛿 → 0,

0 <
𝐶1𝛿

𝑁1∕2
≤ ℙ𝑁(𝐺(𝛿)) ≤ 𝐶2𝛿

𝑁1∕2
.

We interpret Theorems 1 and 2 as saying that the stochastic environment favors a minority
invader. Indeed, in the absence of any randomness (that is, 𝛿 = 0), the probability of neutral
mutant fixation on a circle is given by 1∕𝑁 (a result that can be demonstrated, e.g., by simple
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FARHANG-SARDROODI et al. 1029

symmetry considerations). Mutant fixation on a line model similar (but not identical) to the
present one was studied by Ref. 44 and it was shown that it depends on the initial location of the
mutant. It is the smallest for a mutant originally located at one of the ends of a line and increases
toward the middle initial location, but never exceeds the value 1∕𝑁. In the present model, in
the absence of randomness, mutant fixation probability is given by 1∕𝑁. Theorems 1 and 2 state
that mutant fixation probability in the presence of randomness is greater than 1∕𝑁, and that the
quantity 𝑁ℙ𝑁(𝐺(𝛿)) increases with the system size (𝑁) and with the amount of randomness (𝛿).
In other words, despite having no explicit advantage, a mutant in the random environment gets
fixatedwith a probability that is significantly larger than in the case of a nonrandom environment.
The following result shows that this effect is due to the minority taking advantage of the cases

where the overall environment is more favorable, not environments where pockets favoring each
type appear but are balanced against each other.

Theorem 3. Let 𝑁 = 2𝑘 be an even integer and let 𝑄𝑁 denote ℙ𝑁 conditioned on
∑
𝑗 𝐵𝑗 =

∑
𝑗 𝐵

′
𝑗
.

Then𝑁𝑄𝑁(𝐺(𝛿)) = 1 for all𝑁 and all 𝛿.

To rephrase in biological terms, we note that among different realizations of wild type and
mutant fitness values, there are cases where mutants experience an overall advantage (

∑
𝑗 𝐵𝑗 <∑

𝑗 𝐵
′
𝑗
), an overall disadvantage (

∑
𝑗 𝐵𝑗 >

∑
𝑗 𝐵

′
𝑗
), or have a fitness configuration whose net sum

is equal to that of the wild types, although locally mutants may experience positive or negative
selection pressure (the case

∑
𝑗 𝐵𝑗 =

∑
𝑗 𝐵

′
𝑗
). Theorem 3 states that if we only consider the latter

type of environments, mutants will behave exactly as expected in the absence of randomness. On
the other hand, configurationswith a netmutant advantage and disadvantage do not balance each
other out and result in a positive selection pressure experienced by the mutant.
The outline of the remainder of the paper is as follows. In the next section, we show how the

computation of ℙ𝑁(𝐺(𝛿)) reduces to computing an expectation of a functional of a random walk.
Fromhere, Theorems 1 and 2 can heuristically be inferred replacing the randomwalkwith a corre-
sponding Brownianmotion viaDonsker’s Theorem.However, the only regime inwhichDonsker’s
Theorem applies is that of Theorem 1. Using this approach, we then verify in the case 𝛿 ∼ 𝑐𝑁−1∕2
that the expectation commutes with the Brownian scaling limit. Section 4 computes the corre-
sponding expectations for Brownianmotion, based on results of Matsumoto, Yor, and others. Sec-
tion 5 puts this together to prove Theorem 1. We also give the relatively brief proof of Theorem 3.
Theorem 2 is proved in Section 6. This is proved in two stages, first when 𝛿 is required to decrease
more rapidly than (log𝑁)−1 and then when this is relaxed to (log𝑁)−𝜀. The final section presents
some numerical simulations and further questions.

3 A SCALING RESULT

The following explicit formula for the probability of a birth and death process started at 1 to reach
𝑁 before 0 is well known; we include its short proof for completeness.

Proposition 1. In a birth and death process, let 𝑝𝑘 be the probability of transition to 𝑘 + 1 from 𝑘

and let 𝑞𝑘 ∶= 1 − 𝑝𝑘 be the probability of transition to 𝑘 − 1. Let 𝑄𝑥 denote the law of the process
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1030 FARHANG-SARDROODI et al.

starting 𝑥 and 𝜏𝑎 the hitting time at state 𝑎. Then

𝑄1(𝜏𝑁 < 𝜏0) =
1∑𝑁−1

𝑘=0

∏𝑘

𝑗=1

𝑞𝑗

𝑝𝑗

. (6)

Here, the first term of the sum is the empty product, equal to 1 by convention.

Proof. Consider the network in which the resistance between 𝑘 and 𝑘 + 1 is
∏𝑘

𝑗=1(𝑞𝑗∕𝑝𝑗). Note
then that the randomwalk on this network is equivalent to that described in the proposition. The
expression for 𝑄1 is the ratio of the conductance 1 to 𝑁 to that plus the conductance 1 to 0. ■

We now show that the denominator is close to a functional of a random walk, which is close
to a functional of a Brownian motion, and that these approximations are good enough to pass
expectations to the limit.
For 1 ≤ 𝑘 ≤ 𝑁 − 1, denote

𝑋𝑘 ∶= log
𝑞𝑘
𝑝𝑘

= log
1 − 𝛽𝑘
𝛽𝑘+1

,

𝑋𝑘 ∶= log
1 − 𝛽𝑘+1
𝛽𝑘+1

= log
𝜈𝑘+1
𝜇𝑘+1

,

with partial sums 𝑆𝑘 ∶=
∑𝑘

𝑗=1 𝑋𝑗 and likewise for 𝑆. Define 𝑆0 = 𝑆0 = 0. The definition of 𝑋𝑘 is
chosen so that Equation (6) becomes

ℙ𝑁(𝐺(𝛿)) = 𝔼
1∑𝑁−1

𝑘=0 exp(𝑆𝑘)
. (7)

On the other hand 𝑋𝑘 are chosen so that {𝑆𝑘} is precisely a simple random walk on the lattice
𝛿′ℤ, with holding probability 1∕2, where

𝛿′ ∶= log
1 + 𝛿

1 − 𝛿
= 2𝛿 + 𝑂(𝛿2)

For 𝛿 ≤ 1 − 𝜀, 𝜇𝑗 and 𝜈𝑗 are uniformly bounded away 0 and 1 and so 𝛽𝑗 is bounded away 1 as
well. Thus,

|𝑆𝑘 − 𝑆𝑘| = | log(1 − 𝛽𝑘+1) − log(1 − 𝛽1)| ≤ 𝐶𝜀𝛿 (8)

as long as 𝛿 ≤ 1 − 𝜀 by applying Taylor’s theoremwith remainder to log(1 − 𝛽𝑘+1) and log(1 − 𝛽1)
as a function of 𝛿. Donsker’s theorem then gives

(𝑆⌊𝑡𝑁⌋)𝑡∈(0,1) 𝑁→∞
CCCCC→

√
2 ⋅ 𝑐 ⋅ (𝐵(𝑡))𝑡∈(0,1) (9)

in the càdlàg topology whenever 𝛿
√
𝑁 → 𝑐, where 𝐵(𝑡) is Brownian motion.

In a moment we will show the following:
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FARHANG-SARDROODI et al. 1031

Lemma 1. Suppose 𝛿 and𝑁 vary so that 𝛿
√
𝑁 remains bounded away zero and infinity. Then the

random variables {𝑁𝑄1(𝜏𝑁 < 𝜏0)} are uniformly integrable. Further, if 𝛿
√
𝑁 → 𝑐 then

𝑁ℙ𝑁(𝐺(𝛿)) → 𝔼
⎡⎢⎢⎣ 1

∫ 1
0
exp(

√
2𝑐𝐵𝑠) 𝑑𝑠

⎤⎥⎥⎦,
where (𝐵𝑠) is standard Brownian motion.

The second half of Lemma 1 is the first part of Theorem 1 and follows uniform integrability
together with (6) and (9). This is because convergence of means follows uniform integrability
together with convergence in distribution.

Proof of Lemma 1. A consequence of (8) is that

|||||||
∑𝑁−1

𝑗=0 exp(𝑆𝑗)∑𝑁−1

𝑗=0 exp(𝑆𝑗)
− 1

||||||| = 𝑜(1).
It therefore suffices to show that the variables

𝑁∑𝑁−1

𝑗=0 exp(𝑆𝑗)

are uniformly integrable.
For a simple random walk, the reflection principle gives

ℙ[min
𝑗≤𝑛 𝑆𝑗 ≤ −𝑟] = ℙ[𝑆𝑛 = −𝑟] + 2ℙ[𝑆𝑛 < −𝑟]

≤ 2ℙ[𝑆𝑛 ≤ −𝑟]
≤ 2 exp

(
−2𝑟2∕𝑛

)
,

where the last bound is by Hoeffding’s inequality. Because {𝑆𝑘} is a simple randomwalk scaled by
𝛿′ and holding with probability 1∕2, for all 𝑘 ∈ ℤ+ and 𝑡 > 0,

ℙ[min
𝑗≤𝑘 𝑆𝑗 < −𝑡] ≤ 2 exp

⎛⎜⎜⎜⎝−
2𝑡2(

log
(
1+𝛿

1−𝛿

))2
𝑘

⎞⎟⎟⎟⎠ . (10)

Applying (10) shows that

ℙ[min
𝑘≤𝑁𝜀 𝑆𝑘 ≤ −1] ≤ 2 exp (−𝐵∕𝜀) (11)
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1032 FARHANG-SARDROODI et al.

for 𝐵 depending continuously on 𝛿
√
𝑁. Thus for 𝜀 ∈ (0, 1]

𝑁∑𝑁−1

𝑗=0 exp(𝑆𝑗)
≤ 𝑁∑𝜀𝑁

𝑗=0 exp(𝑆𝑗)
≤ 1

𝜀 exp
(
min𝑗≤𝜀𝑁 𝑆𝑗

) .
Thus, for 𝑥 large enough and picking 𝜀 = 𝑒∕𝑥, we have

ℙ
⎡⎢⎢⎣ 𝑁∑𝑁−1

𝑗=0 exp(𝑆𝑗)
> 𝑥

⎤⎥⎥⎦ ≤ ℙ
[

1

𝜀 exp
(
min𝑗≤𝜀𝑁 𝑆𝑗

) > 𝑥] = ℙ[ min
𝑗≤(𝑒𝑁∕𝑥) 𝑆𝑗 < −1

]
.

We have, for each 𝐾 ≥ 𝑒,

𝔼

⎡⎢⎢⎢⎣
𝑁∑𝑁−1

𝑗=0 exp(𝑆𝑗)
𝟏

⎧⎪⎨⎪⎩
𝑁∑𝑁−1

𝑗=0 exp(𝑆𝑗)
>𝐾

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ = ∫

𝑥≥𝐾
ℙ
⎡⎢⎢⎣ 𝑁∑𝑁−1

𝑗=0 exp(𝑆𝑗)
>𝑥

⎤⎥⎥⎦𝑑𝑥
≤ ∫

𝑥≥𝐾
ℙ

[
min

𝑗≤(𝑒𝑁∕𝑥) 𝑆𝑗< − 1
]
𝑑𝑥

≤ ∫
𝑥≥𝐾

2 exp(−𝐶𝑥∕𝑒) 𝑑𝑥.

This inequality holds for all𝑁 and converges to zero as𝐾 → ∞, thereby showing uniform inte-
grability. ■

4 EVALUATION OF THE BROWNIAN INTEGRAL

Define the following functions of Brownian motion:

𝐴𝛼(𝑡) ∶= ∫
𝑡

0

𝑒𝛼𝐵𝑠 𝑑𝑠 ; (12)

𝑚𝛼(𝑡) ∶= 𝔼𝐴𝛼(𝑡)
−1 . (13)

In this notation, Lemma 1 proves the first statement of Theorem 1 with

𝑔(𝑐) ∶= 𝑚
𝑐
√
2
(1) . (14)

To finish the proof of Theorem 1, it remains to evaluate (14). Expectations such as the one in (13)
have been well studied.
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FARHANG-SARDROODI et al. 1033

Proposition 2 Ref. 52. Let {𝐵𝑡 ∶ 𝑡 ≥ 0} be a standard Brownian motion and let𝐴(𝑡) ∶= ∫ 𝑡
0
𝑒2𝐵𝑠 𝑑𝑠.

Then,

𝔼
[
𝐴2(𝑡)

−1|𝐵𝑡 = 𝑥] = 𝑥𝑒−𝑥

𝑡 sinh 𝑥
if 𝑥 ≠ 0 ; (15)

𝔼
[
𝐴2(𝑡)

−1|𝐵𝑡 = 0] = 𝑡−1 ; (16)

𝑚2(𝑡) ∼

√
2

𝜋𝑡
as 𝑡 → ∞ . (17)

The next lemma uses Brownian scaling to transfer these results to the−1moment of ∫ 1
0
𝑒𝛼𝐵𝑠 𝑑𝑠.

Lemma 2. For 𝛼, 𝜈, 𝑡 > 0,

𝑚𝛼(𝑡) =
𝛼2

𝜈2
𝑚𝜈

(
𝛼2

𝜈2
𝑡

)
. (18)

It follows that

𝑚𝛼(1) ∼
𝛼√
2𝜋

as 𝛼 → ∞ . (19)

Both proofs are straightforward although somewhat technical, and so we defer them to
Appendix A.

5 PROOFS OF THEOREMS 1 AND 3

Proof of Theorem 1. We have already evaluated 𝑔. Continuity and strict monotonicity will fol-
low computing the second derivative of 𝜙(𝑥) = 𝑥𝑒−𝑥∕ sinh(𝑥) explicitly. The estimate (5) follows
immediately (14) and (19). It remains to prove (4), that is, to estimate 𝑔(𝑐) = 𝑚

𝑐
√
2
(1) near 𝑐 = 0.

Integrating (15) gives

𝑡 𝑚2(𝑡) = ∫
𝑥𝑒−𝑥

sinh(𝑥)
𝑑𝑁(0, 𝑡)(𝑥) .

Plugging in 𝑥𝑒−𝑥∕ sinh(𝑥) = 1 − 𝑥 + 𝑥2∕3 + 𝑂(𝑥3) gives

𝑡 𝑚2(𝑡) = 1 +
𝑡

3
+ 𝑂(𝑡3∕2)

as 𝑡 ↓ 0. Using (18) with 𝛼 = 𝑐
√
2 and 𝜈 = 2 then gives

𝑔(𝑐) =
𝑐2

2
𝑚2

(
𝑐2

2

)
= 1 +

𝑐2 + 𝑜(1)

6
,
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1034 FARHANG-SARDROODI et al.

proving (4). ■

Proof. We show that 𝜙′′(𝑥) > 0 for 𝑥 ≠ 0. Computing, 𝜙′′(𝑥) = 𝑒−𝑥(sinh(𝑥))−3ℎ(𝑥) where
ℎ(𝑥) = 𝑥 + 1 + (𝑥 − 1)𝑒2𝑥 .

Because we have taken out a factor of the same sign as 𝑥, we need to show that ℎ is positive on
(0,∞) and negative on (−∞, 0). Verifying first that ℎ(0) = ℎ′(0) = 0, the proof is concluded by
observing that ℎ′(𝑥) has a unique minimum at 𝑥 = 0, because ℎ′′(𝑥) = 4𝑥𝑒2𝑥 has the same sign
as 𝑥. ■

Proof of Theorem 3. Extend the definition of 𝑋𝑘 by reducing modulo 𝑁, thus 𝑋𝑁 ∶= log(1 −
𝛽𝑁) − log 𝛽1 and so forth. This makes the sequence {𝑋𝑘 ∶ 𝑘 ≥ 1} periodic and shift invariant,
that is, (𝑋1, … , 𝑋𝑁−1, 𝑋𝑁)


= (𝑋2, … , 𝑋𝑁, 𝑋1). Observe also that 𝑄𝑁(𝑆𝑁 = 0) = 1 because 𝑆𝑁 =∑𝑁

𝑗=1 log(1 − 𝛽𝑗) −
∑𝑁

𝑗=1 log 𝛽𝑗 and the multiset of𝑁 values of 𝛽𝑗 is the same as the multiset of𝑁
values of 1 − 𝛽𝑗 . This implies that for each 𝑘 ≥ 0 we have 𝑆𝑘+𝑁 = 𝑆𝑘 and so

𝑁−1∑
𝑗=0

exp(𝑆𝑗) =

𝑁−1∑
𝑗=0

exp(𝑆𝑗+𝑘).

By shift invariance of (𝑋1, … , 𝑋𝑁), we may shift this sequence 𝑘 times to shift the sequence
(𝑆𝑘, … , 𝑆𝑘+𝑁) to (𝑆𝑘 − 𝑆𝑘, … , 𝑆𝑘+𝑁 − 𝑆𝑘). In particular, this shows that

𝔼
1∑𝑁−1

𝑗=0 exp(𝑆𝑗)
= 𝔼

1∑𝑁−1

𝑗=0 exp(𝑆𝑗+𝑘)
= 𝔼

1∑𝑁−1

𝑗=0 exp(𝑆𝑗 − 𝑆𝑘)
= 𝔼

𝑆𝑘∑𝑁−1

𝑗=0 exp(𝑆𝑗)
.

Averaging over all 0 ≤ 𝑘 ≤ 𝑁 − 1 shows

𝔼
1∑𝑁−1

𝑗=0 exp(𝑆𝑗)
= 𝑁−1

𝑁−1∑
𝑘=0

𝔼
𝑆𝑘∑𝑁−1

𝑗=0 exp(𝑆𝑗)
= 𝑁−1

proving Theorem 3. ■

6 PROOF OF THEOREM 2

6.1 KMT coupling and preliminaries

A key result for studying this larger regime 𝛿 is coupling of random walk to Brownian motion.

Lemma 3 (KMT coupling). Let {𝑋𝑘}𝑘≥0 be a simple random walk with i.i.d. increments 𝜉 so
that 𝔼[𝜉] = 0, 𝔼[𝜉2] = 1 and 𝔼[𝑒𝑡|𝜉|] < ∞ for 𝑡 sufficiently small. Extend 𝑋𝑘 to continuous time by
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FARHANG-SARDROODI et al. 1035

defining 𝑋𝑡 = 𝑋⌊𝑡⌋. Then there exists a constant 𝐶 so that for all 𝑇 > 𝑒 there is a coupling so that
ℙ

[
sup
𝑡∈[0,𝑇]

|𝑋𝑡 − 𝐵𝑡| ≥ 𝐶 log(𝑇)] ≤ 1

𝑇2
,

where 𝐵𝑡 is standard Brownian motion.

Proof. This is stated as eq. (17) in Ref. 46. In fact one can replace 𝑇−2 by a stretched exponential;
a slightly weaker result that may be quoted (Ref. 47 Theorem 7.1.1) is that for any 𝛼 > 0 there is a
𝐶𝛼 such that

ℙ

[
sup
𝑡∈[0,𝑇]

|𝑋𝑡 − 𝐵𝑡| ≥ 𝐶𝛼 log(𝑇)] ≤ 𝑇−𝛼 . (20)

■

Another basic lemma is thewell-knownuniform estimate for randomwalk hitting probabilities
whose proof is standard and so we prove it in Appendix B.

Lemma 4. Let {𝑆𝑛}𝑛≥0 be a random walk whose i.i.d. increments {𝑋𝑛} satisfy the hypotheses of the
KMT coupling. Then, if 𝑢 ranges over [𝑀𝜀,𝑀1∕2−𝜀] for some 𝜀 ∈ (0, 1∕2),

ℙ( max
1≤𝑗≤𝑀 𝑆𝑗 ≤ 𝑢) ∼

√
2

𝜋

𝑢

𝑀1∕2

as𝑀 →∞, uniformly in 𝑢 and the random walk.

We will prove Theorem 2 in two cases, both of which will make further use of the KMT cou-
pling. Two relevant functionals of random walk will correspond to two functionals of Brownian
motion, and we will need to show that the expectations in the random walk case are asymptoti-
cally equivalent to those in the Brownian motion case. For this, we require a few results to show
that these functionals are sufficiently well behaved.

6.2 Two Brownian functionals

The functionals of interest are

𝑋𝑀 ∶=
1

∫ 𝑀
0
exp(𝐵𝑠) 𝑑𝑠

,

𝑌𝑀 ∶=
𝐵−𝑀

∫ 𝑀
0
exp(2𝐵𝑠) 𝑑𝑠

,

where we use the notation 𝑍− ∶= max{−𝑍, 0}.
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1036 FARHANG-SARDROODI et al.

Lemma 5. The family of variables { 𝑋𝑀
𝔼𝑋𝑀

}𝑀≥1 is uniformly integrable.

Proof. We first claim that 𝔼[𝑋𝑀] = Θ(𝑀−1∕2). Indeed, by Brownian scaling we have

𝔼𝑋𝑀 = 𝔼

(
∫

𝑀

0

exp(𝐵𝑠) 𝑑𝑠

)−1
=
1

4
𝔼

(
∫

𝑀∕4

0

exp(2𝐵𝑡) 𝑑𝑡

)−1
∼
1

4
⋅

√
8

𝜋𝑀
,

where the asymptotic relation is by Proposition 2.
We claim that there exists a universal 𝐶 > 0 so that ℙ[𝑋𝑀 ≥ 𝑡] ≤ 𝐶𝑡−2𝑀−1∕2. For 𝑡 ≤ 𝑀1∕3,

note that ℙ[𝑋𝑀 ≥ 𝑡] is at most the probability that both min0≤𝑠≤1 𝐵𝑠 ≤ − log(𝑡) and that after
first hitting − log(𝑡), 𝐵𝑠 do not spend more than 1 unit of time above − log(𝑡); this is because if
min0≤𝑠≤1 𝐵𝑠 > − log 𝑡 then

𝑋𝑀 ≤ 1

∫ 1
0
exp(𝐵𝑠) 𝑑𝑠

<
1

∫ 1
0
exp(− log 𝑡) 𝑑𝑠

= 𝑡.

Let 𝜏 = inf {𝑠 ∈ [0, 1] ∶ 𝐵𝑠 = − log(𝑡)}. The reflection principle gives

ℙ[ inf
𝑠∈[0,1]

𝐵𝑠 ≤ − log(𝑡)] = 2ℙ[𝐵1 ≤ − log(𝑡)] ≤ 𝐶 exp
(
−
1

2
(log(𝑡))2

)
.

Conditioned on 𝜏 < ∞, note that the probability 𝐵𝑠 does not go above − log(𝑡) for more than
1 unit of time is 2

𝜋
arcsin(

√
1∕(𝑀 − 𝜏)) = Θ(𝑀−1∕2) by the strong Markov property together with

Lévy’s arcsin law. For all 𝑡 we have

ℙ[𝑋𝑀 ≥ 𝑡] ≤ 𝐶 exp
(
−
1

2
(log(𝑡))2

)
1√
𝑀
.

For all 𝑡 ≥ 1, there is some constant 𝐶′ > 0 so that

exp

(
−
1

2
(log 𝑡)2

)
≤ 𝐶𝑡−2

and so for 𝑡 ≥ 1 we have
ℙ[𝑋𝑚 ≥ 𝑡] = 𝑂(𝑡−2𝑀−1∕2).

For 𝐾 large enough, we may then bound

𝔼

[
𝑋𝑀
𝔼𝑋𝑀

𝟏𝑋𝑀∕𝔼𝑋𝑀≥𝐾
]
≤ 𝐶√𝑀 ∫

∞

𝐾

𝑡−2𝑀−1∕2 𝑑𝑡 ≤ 𝐶∕𝐾.

Taking 𝐾 → ∞ completes the proof. ■

We find the asymptotics of the first twomoments of the other functional; this calculation-heavy
proof is done in Appendix B.
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FARHANG-SARDROODI et al. 1037

Lemma 6. As𝑀 →∞ we have 𝔼𝑌𝑀 → 1 and 𝔼𝑌2𝑀 ∼ 4
√
2∕𝜋

√
𝑀.

Lastly, we show that the expectation of 𝑌𝑀 is not dominated by the contribution when 𝑌𝑀 is
much larger than

√
𝑀. Again, we defer the proof to Appendix B.

Lemma 7. Let 𝑌𝑀 denote the random variable 𝐵−𝑀

∫ 𝑀
0
exp(2𝐵𝑠) 𝑑𝑠

. Then for all events 𝐸 with ℙ[𝐸] ≤
𝑀−1∕2−𝜀 for some 𝜀 > 0 we have 𝔼[𝑌𝑀𝟏𝐸] = 𝑜(1) as𝑀 →∞.

6.3 Medium-sized case:𝑵−𝟏∕𝟐 ≪ 𝜹 ≪ 𝟏∕ 𝐥𝐨𝐠𝑵

Lemma 8. There exists a constant 𝐶′ so that for 𝛿 in [0, 1 − 𝜀] we have

𝑒−𝐶
′𝛿 log(𝑁)𝔼

𝟏𝐸𝑐𝑛

𝑁 ∫ 1
0
exp

(√
𝑁𝛿′𝐵𝑡∕

√
2
)
𝑑𝑡
− 1∕𝑁2 ≤ ℙ𝑁(𝐺(𝛿))

≤ 𝑒𝐶′𝛿 log(𝑁)𝔼 𝟏𝐸𝑐𝑛

𝑁 ∫ 1
0
exp

(√
𝑁𝛿′𝐵𝑡∕

√
2
)
𝑑𝑡
+ 1∕𝑁2,

where 𝐸𝑁 is an event with ℙ(𝐸𝑁) ≤ 𝑁−2.
Proof. For 𝑡 ∈ [0,𝑁], define 𝑆𝑡 = 𝑆⌊𝑡⌋. Then note that

𝑁−1∑
𝑗=0

exp(𝑆𝑗) = ∫
𝑁

0

exp(𝑆𝑡) 𝑑𝑡.

Let

𝑝(𝑁) = 𝑄1(𝜏𝑁 < 𝜏0) =
1∑𝑁−1

𝑘=0 exp(𝑆𝑘)

and recall that ℙ𝑁(𝐺(𝛿)) = 𝔼𝑝(𝑁). By (7) and (8), we have

exp(−𝐶𝜀𝛿) ≤ 𝑝(𝑁) ⋅
(
∫

𝑁

0

exp(𝑆𝑡) 𝑑𝑡

)
≤ exp(𝐶𝜀𝛿).

Note that 𝑆𝑘 is a random walk whose increments have variance (𝛿′)2

2
. By Lemma 3, there exists

a coupling so that

ℙ

[
sup
𝑡∈[0,𝑁]

||||||
√
2

𝛿′
𝑆𝑡 − 𝐵𝑡

|||||| ≥ 𝐶 log(𝑁)
]
≤ 1

𝑁2
.
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1038 FARHANG-SARDROODI et al.

Letting 𝐸𝑁 denote the event on the left-hand side, conditioned on the event 𝐸𝑁 , we have

exp

(
−𝐶𝜀𝛿 −

𝐶𝛿′√
2
log(𝑁)

)
≤ 𝑝(𝑁) ⋅

(
∫

𝑁

0

exp(𝛿′𝐵𝑡∕
√
2) 𝑑𝑡

)
≤ exp

(
𝐶𝜀𝛿 +

𝐶𝛿′√
2
log(𝑁)

)
.

Because 𝛿′ ≤ 𝐶′𝜀𝛿 for some constant 𝐶′𝜀, we can find a new constant 𝐶′′ so that

exp
(
−𝐶′′𝛿 log(𝑁)

) ≤ 𝑝(𝑁) ⋅(∫
𝑁

0

exp(𝛿′𝐵𝑡∕
√
2) 𝑑𝑡

)
≤ exp (𝐶′′𝛿 log(𝑁))

conditioned on𝐸𝑁 . Because 𝑝(𝑁) ≤ 1, andℙ[𝐸𝑁] ≤ 1

𝑁2
, the lemma follows taking expectations

and Brownian scaling. ■

Proof of Theorem 2 (for medium 𝛿). Because 𝛿 log(𝑁) → 0, Lemmas 3 and 5 imply

𝔼[𝑝(𝑁)] ∼
1

𝑁
𝑚√

𝑁𝛿′∕
√
2
(1),

where the uniform integrability guaranteed by Lemma 5 implies that wemay ignore the 𝟏𝐸𝑐𝑛 term.
Applying Lemma 2 completes the proof. ■

6.4 Large case: 𝜹 = 𝒐(𝟏∕(𝐥𝐨𝐠𝑵)𝜺)

Let 𝑟 > 6 be a real parameter to be chosen later and set 𝑇 ∶= ⌈𝛿−𝑟⌉. Note that exp(𝛿−𝑟) ≫
exp((log𝑁)𝑟𝜀) grows faster than any polynomial in 𝑁 once 𝑟𝜀 > 1. Also, we may assume that
𝛿−𝑟 = 𝑜(𝑁𝑠) for any positive 𝑠 because the medium case already covers the regime 𝛿 ≤ (log𝑁)−2,
say, and in the complement of this case, certainly any negative power of 𝛿 growsmore slowly than
any power of𝑁. To handle the case at hand, we first show that the main contribution toℙ𝑁(𝐺(𝛿))
is the first 𝑇 steps of the walk. This is handled in Lemma 9. Analyzing the resulting functional
of the random walk up to 𝑇 will be done in a similar manner to the “medium-sized case”: the
KMT coupling will be employed to compare the random walk to a Brownian motion, and the
corresponding functionals of Brownian motion will be the same as those appearing in Lemmas 6
and 7.
Recalling the process {𝑆𝑘} in Section 3, we denote 𝑍 ∶= 𝑆𝑇 and 𝐴 ∶=

∑𝑇−1

𝑘=0 exp(𝑆𝑘). For a real
number or random variable 𝑋, we use the notation 𝑋+ ∶= max(𝑋, 0) for the positive part of 𝑋
and 𝑋− ∶= max(−𝑋, 0) for the negative part of 𝑋.

Lemma 9. Let 𝑠 > 𝜀−1 where we recall 𝛿 = 𝑜(1∕(log𝑁)𝜀). Then

ℙ𝑁(𝐺(𝛿)) = (1 + 𝑜(1))
2

𝛿′
√
𝜋𝑁

(
𝔼
𝑍−

𝐴
+ 𝑂

(
𝔼
𝛿−𝑠

𝐴

))
+ 𝑂(𝑒−𝛿

−𝑠
) .

Proof. Recall (8) that {𝑆𝑛} is uniformly close to {𝑆𝑛} as 𝛿 → 0, therefore (7) implies ℙ𝑁(𝐺(𝛿)) ∼
𝔼(𝐴−1) which we will use instead of (7).
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FARHANG-SARDROODI et al. 1039

We show the asymptotic equality in the statement of the theorem as two inequalities:

ℙ𝑁(𝐺(𝛿)) ≥ (1 + 𝑜(1)) 2

𝛿′
√
𝜋𝑁

(
𝔼
𝑍−

𝐴
+ 𝑂

(
𝔼
𝛿−𝑠

𝐴

))
; (21)

ℙ𝑁(𝐺(𝛿)) ≤ (1 + 𝑜(1)) 2

𝛿′
√
𝜋𝑁

(
𝔼
𝑍−

𝐴
+ 𝑂

(
𝔼
𝛿−𝑠

𝐴

))
+ 𝑒−𝛿

−𝑠
. (22)

Choose 𝑟 so that 𝑟∕2 − 1 > 𝑠 > 𝜀−1. Let 𝐺′ denote the event {max𝑇≤𝑚≤𝑁 𝑆𝑚 ≤ −𝛿−𝑠}. We con-
dition on 𝐴 and 𝑍.

ℙ𝑁(𝐺(𝛿) |𝐴, 𝑍) = (1 + 𝑜(1))𝔼[ 1∑𝑁−1

𝑘=0 exp(𝑆𝑘)

||||𝐴, 𝑍
]

≥ (1 + 𝑜(1))𝔼
[

𝟏𝐺′∑𝑁−1

𝑘=0 exp(𝑆𝑘)

||||𝐴, 𝑍
]

≥ 1

𝐴 + 𝑁𝑒−𝛿−𝑠
ℙ𝑁(𝐺

′ |𝐴, 𝑍). (23)

Because 𝑆𝑚∕(𝛿′∕
√
2) is a random walk with centered increments of variance 1, Lemma 4 gives

ℙ𝑁(𝐺
′ |𝐴, 𝑍) ∼√

2

𝜋(𝑁 − 𝑇)
⋅
(−𝑍 − 𝛿−𝑠)+

𝛿′∕
√
2

∼
2(𝑍 + 𝛿−𝑠)−

𝛿′
√
𝜋𝑁

.

Combining with (23) gives

ℙ𝑁(𝐺(𝛿) |𝐴, 𝑍) ≥ (1 + 𝑜(1)) 2

𝛿′
√
𝜋𝑁

⋅
(𝑍 + 𝛿−𝑠)−

𝐴 + 𝑁𝑒−𝛿−𝑠
.

The quantity 𝐴 is at least 1, while 𝑁𝑒−𝛿−𝑠 → 0, therefore 𝐴 +𝑁𝑒−𝛿−𝑠 ∼ 𝐴. Further, write

(𝑍 + 𝛿−𝑠)− = −𝑍𝟏𝑍≤−𝛿−𝑠 − 𝛿−𝑠𝟏𝑍≤−𝛿−𝑠 = −𝑍(𝟏𝑍≤0 − 𝟏𝑍∈[−𝛿−𝑠,0]) − 𝛿−𝑠𝟏𝑍≤−𝛿−𝑠 = 𝑍− + 𝑂(𝛿−𝑠).

Taking unconditional expectations now gives (21).
For the reverse inequality, let 𝐺′′ denote the event that {max𝑇≤𝑚≤𝑁 𝑆𝑚 ≤ 𝛿−𝑠}. On the comple-

ment of this event, at least one summand in the denominator of (7) is at least exp(𝛿−𝑠). Because
ℙ𝑁(𝐺(𝛿) |𝐴, 𝑍) is always at most 1∕𝐴, we see that

ℙ𝑁(𝐺(𝛿) |𝐴, 𝑍) ≤ 1

𝐴
ℙ𝑁(𝐺

′′ |𝐴, 𝑍) + 1

𝐴
ℙ𝑁((𝐺

′′)𝑐 |𝐴, 𝑍)
≤ 1

𝐴
ℙ𝑁(𝐺

′′ |𝐴, 𝑍) + exp(−𝛿−𝑠)
≤ (1 + 𝑜(1))

√
2

𝜋(𝑁 − 𝑇)

(𝛿−𝑠 − 𝑍)+

𝐴𝛿′∕
√
2
+ 𝑒−𝛿

−𝑠
.
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1040 FARHANG-SARDROODI et al.

Again, taking unconditional expectations finishes, yielding (22). ■

We are now in a position to apply the KMT coupling to find the expectations that appear in
Lemma 9.

Lemma 10.

𝔼
𝑍−

𝐴
∼ 𝛿2 ; (24)

𝔼
1

𝐴
∼

𝛿√
𝜋𝑇

. (25)

The proof is similar to the results of Section 6.3, and so we defer to the Appendix once more.
While the second asymptotic equality follows the result of Section 6.3, we include a proof as well
because the intermediate steps required for the first expression essentially prove it.

Proof of Theorem 2 (for large 𝛿). Combining Lemma 9 with Lemma 10 gives

𝑃𝑁(𝐺(𝛿)) = (1 + 𝑜(1))
2

𝛿′
√
𝜋𝑁

(
𝔼
𝑍−

𝐴
+ 𝑂

(
𝔼
𝛿−𝑠

𝐴

))
+ 𝑂(𝑒−𝛿

−𝑠
)

= (1 + 𝑜(1))
1

𝛿
√
𝜋𝑁

(
𝛿2 + 𝑂

(
𝛿1−𝑠√
𝑇

))
+ 𝑂(𝑒−𝛿

−𝑠
)

∼
𝛿√
𝜋𝑁

,

where we used that 𝑇 = Ω(𝛿−𝑟) = Ω(𝛿−6) to show that 𝛿2 + 𝑂(𝛿1−𝑠𝑇−1∕2) ∼ 𝛿2. ■

7 NUMERICAL SIMULATIONS AND FURTHER QUESTIONS, AND
BIOLOGICAL APPLICATIONS

To double check the results of Theorem 1, we simulated the process for𝑁 = 250 and 𝑐 = 2. Thus,
𝛿 = 𝑐∕

√
𝑁 = 2∕

√
250 ≈ 0.126. Theorem 1 predicts that as 𝑁 → ∞, 𝑁ℙ𝑁(𝐺(𝛿)) → 𝑔(2). Numeri-

cally evaluating the integral defining 𝑔(2) gives approximately 1.516. Our quick and dirty Monte
Carlo simulation gives𝑁ℙ𝑁(𝐺(𝛿)) = 1.521 ± 0.06.We could have donemore simulations to lower
the standard error, but in fact because we ran simulations for𝑁 = 10𝑚 for every𝑚 ≤ 25, there is
already greater accuracy. Figure 2 shows all of these data points, as well as similar data for 𝑐 = 3
and 1 ≤ 𝑚 ≤ 15 (here 𝑔(3) ≈ 1.97). The limits predicted by Theorem 1 are corroborated, or at least
not contradicted, by the data.
Next we ran simulations to investigate Conjecture 1. Recall, the limit is known when 𝛿 → 0

as fast as any power (log𝑁)−𝜀, whereas this should fail when 𝛿 remains constant; the conjecture
covers the ground in between, which is clearly too slim to distinguish numerically. The best we
could do was to hold 𝛿 constant, thus allowing 𝑐 ∶= 𝛿

√
𝑁 to go to infinity. One might expect (3)
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FARHANG-SARDROODI et al. 1041

F IGURE 2 The average mutant fixation probability, ⟨𝑃𝑁⟩ times 𝑁 as a function of 𝑁 for the line model. The
fitness of both mutants and normals at different locations are drawn the same two-valued distribution function,
where values 1 − 𝛿 and 1 + 𝛿 are equally likely. Two different values of 𝛿 are used: 2∕

√
𝑁 (red points) and 3∕

√
𝑁

(blue points). The points are based on stochastic simulations and each data point represents the average over 106

independent realizations

that 𝑁ℙ𝑁(𝐺(𝛿)) is well approximated by 𝑔(𝑐), leading to

√
𝜋𝑁ℙ𝑁(𝐺(𝛿)) ≈

𝑔(𝛿
√
𝑁)
√
𝜋√

𝑁
, (26)

which is asymptotic to 𝛿 by (5). Indeed, the data (red points in Figure 3) is a very good match
for (26) (the blue curve in Figure 3), which can be seen to be asymptotic to 0.2.
Among the open questions on thismodel, one that looms large is whether these results or some-

thing similar can be transferred to the circular model. Between the line and circle model, neither
seems inherently more compelling; however the fact that the birth and death chain reasoning
holds only for the line model has prevented us understanding the situation on any other graphs
or initial conditions. We enumerate some problems in what we expect to be increasing order of
difficulty.

Problem 1. On a line segment graph, extend the model to the case where the initial configuration
is something other than mutants in an interval containing an endpoint.

Problem 2. Extend the analysis to a circle.
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1042 FARHANG-SARDROODI et al.

F IGURE 3 Formula in Equation (26) (𝑔(𝛿
√
𝑁)
√
𝜋∕𝑁, blue curve) is compared with the stochastic

simulation results for
√
𝜋 × 𝑁⟨𝑃𝑁⟩ (red points), plotted a functions of 𝑁, with 𝛿 = 0.2

Wewere curious whether empirically, the circle appears to behave differently the line. Figure 4
shows the comparison. It appears that the limiting value of𝑁ℙ𝑁(𝐺(𝛿)) for the circle is just a shade
less than for the line. However, also, it appears that the value approaches the limit much faster
for the circle, and perhaps with less sample variance. On a circle, starting with a single mutation,
the interval set of mutant sites remains an interval, which can now grow and shrink at both ends
rather than just on the right. These two growth processes are not independent, but may still be
the reason we observe faster convergence and lesser variance.

Problem 3. Extend the analysis to any graph with a vertex of degree at least 3. The difficulty here
is that the cluster of mutants can become disconnected.

The present study contributes to theoretical understanding of evolutionary processes that have
important biomedical applications. The first step in cancer initiation is often a spread and (local)
fixation of a neutral mutation, which by itself does not confer an explicit selective advantage to
the cell, but serves as a springboard for further transformations. For example, mutations in the
so-called tumor suppressor genes drive the progression of many cancers, including colorectal,
breast, uterine, ovarian, lung, head and neck, pancreatic, and bladder cancer.48,49 Tumor sup-
pressor genes are sometimes compared with a brake pedal on a car, as they keep the cell’s repro-
duction in check, preventing it dividing too quickly. An inactivation of a single copy of a tumor
suppressor gene is often considered a “neural” mutation, because if the second copy is still active,
an inactivation of a single copy of the gene does not result in any phenotypic changes. It is only
when the second copy of a tumor suppressor gene is inactivated, the cell starts experiencing a
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FARHANG-SARDROODI et al. 1043

F IGURE 4 Comparison of the line and the circle model. The quantity𝑁⟨𝑃𝑁⟩ is plotted as a function of N for
the circle model (blue dots) and line model (red dots) with 𝛿 = 2∕

√
𝑁. For each value of N, the average of 106

random simulations is presented

selective advantage (because the “brake” is “off”). The spread and local fixation of mutants with
a single, selectively neutral, mutation inactivating the first copy of a tumor suppressor gene is the
type of problem where our present results can be applied. For example, a plausible scenario for
colorectal cancer initiation is fixation of a single-hit mutant, which comes to dominate a local
compartment of colonic tissue (called a crypt). This could be followed eventually by the second
mutation,which then leads to a local outgrowth and creation of a “dysplastic crypt” or a polyp. The
first stage (the fixation of neutral, single-hit mutants) has been studied extensively in the context
of tumor-suppressor gene inactivation (see, e.g., Refs. 50, 51) but not in the presence of environ-
mental randomness. Results reported in this paper allow to account for the role of variability in
tissue microenvironment, and suggest that single-mutant fixation is more likely than predicted
by nonrandom models. Further models that include more realistic geometries, as well as hetero-
geneity of cell types (such as stem cells vs. differentiated cells) will require further mathematical
efforts. The current article lays a foundation for such future efforts.
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APPENDIX A: PROOFS SECTION 4
Proof of Proposition 2. The first two are proved as Matsumoto and Yor (Ref. 52, Proposition 5.9).
We quickly derive the third by integrating (15). Letting 𝑦 ∶= 𝑥∕

√
𝑡,

𝑚2(𝑡) = 𝑡
−1 ∫

𝑥𝑒−𝑥

sinh(𝑥)
𝑑𝑁(0, 𝑡)(𝑥)

= 𝑡−1∕2 ∫
𝑦𝑒−

√
𝑡𝑦

sinh(
√
𝑡𝑦)

𝑑𝑁(0, 1)(𝑦) .
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1046 FARHANG-SARDROODI et al.

As 𝑡 → ∞, the quantity 𝑦𝑒−
√
𝑡𝑦∕ sinh(

√
𝑡𝑦) converges pointwise to 2|𝑦|𝟏𝑦<0. Truncating, integrat-

ing , and taking limits gives

𝑡1∕2𝑚2(𝑡) → ∫
0

−∞

2|𝑦|𝑑𝑁(0, 1)(𝑦) = 𝔼|𝑁(0, 1)| =√
2

𝜋
.

■

Proof of Lemma 2. Let 𝑓𝛼(𝑥, 𝑡) denote the density of 𝐴𝛼(𝑡)−1 at 𝑥. Let𝑊𝑡 ∶= (𝛼∕𝜈)𝐵𝜈2𝑡∕𝛼2 . Then
{𝑊𝑡} is also a standard Brownian motion and 𝛼𝐵𝑡 = 𝜈𝑊𝑡. Hence,

𝑓𝛼(𝑥, 𝑡)𝑑𝑥 = ℙ
⎛⎜⎜⎝

1

∫ 𝑡
0
𝑒𝛼𝐵𝑠 𝑑𝑠

∈ [𝑥, 𝑥 + 𝑑𝑥]
⎞⎟⎟⎠

= ℙ
⎛⎜⎜⎝

1

(𝜈∕𝛼)2 ∫ (𝛼∕𝜈)2𝑡
0

𝑒𝜈𝑊𝑢 𝑑𝑢
∈ [𝑥, 𝑥 + 𝑑𝑥]

⎞⎟⎟⎠
= ℙ

⎛⎜⎜⎝
1

∫ (𝛼∕𝜈)2𝑡
0

𝑒𝜈𝑊𝑢 𝑑𝑢
∈ [(𝜈∕𝛼)2𝑥, (𝜈∕𝛼)2𝑥 + (𝜈∕𝛼)2𝑑𝑥]

⎞⎟⎟⎠
=
𝜈2

𝛼2
𝑓𝜈

(
𝜈2

𝛼2
𝑥,
𝛼2

𝜈2
𝑡

)
𝑑𝑥 . (A1)

Consequently, changing variables to 𝜃 = (𝜈2∕𝛼2)𝑥,

𝑚𝛼(𝑡) = ∫
∞

−∞

𝑥𝑓𝛼(𝑥, 𝑡) 𝑑𝑥

=
𝜈2

𝛼2 ∫
∞

−∞

𝑥𝑓𝜈

(
𝜈2

𝛼2
𝑥,
𝛼2

𝜈2
𝑡

)
𝑑𝑥

=
𝛼2

𝜈2 ∫
∞

−∞

𝜃𝑓𝜈

(
𝜃,
𝛼2

𝜈2
𝑡

)
𝑑𝜃

=
𝛼2

𝜈2
𝑚𝜈

(
𝛼2

𝜈2
𝑡

)
,

proving (18). Set 𝜈 = 2 and 𝑡 = 1, plug into (17), and send 𝛼 to infinity to obtain

𝑚𝛼(1) =
𝛼2

4
𝑚2

(
𝛼2

4

)
∼
𝛼2

4

√
2

𝜋𝛼2∕4
=

𝛼√
2𝜋
,

proving (19). ■
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FARHANG-SARDROODI et al. 1047

APPENDIX B: PROOFS SECTION 6
Proof of Lemma 4. For Brownian motion run to time𝑀, the reflection principle gives

ℙ( sup
0≤𝑡≤𝑀 𝐵𝑡 ≤ 𝑢) = 1 − 2ℙ0(𝐵𝑀 ≥ 𝑢),

which is asymptotic to (2∕𝜋)1∕2𝑢𝑀−1∕2 uniformly as 𝑢 varies over the (0,𝑀1∕2−𝜀] for any 𝜀 ∈
(0, 1∕2). Pick 𝛼 > 1∕2. By (20), one then has√

2

𝜋

𝑢 − 𝐶𝛼 log𝑀

𝑀1∕2
− 𝑀−𝛼 ≤ ℙ( max

1≤𝑗≤𝑀 𝑆𝑗 ≤ 𝑢) ≤
√
2

𝜋

𝑢 + 𝐶𝛼 log𝑀

𝑀1∕2
+ 𝑀−𝛼 .

■

Proof of Lemma 6. By (15), we compute

𝔼
𝐵−𝑀

∫ 𝑀
0
exp(2𝐵𝑠) 𝑑𝑠

= ∫
ℝ

−𝑥2𝑒−𝑥𝟏𝑥≤0
𝑀 sinh(𝑥)

𝑑𝑁(0,𝑀)(𝑥)

= ∫
ℝ

−𝑦2𝑒−
√
𝑀𝑦𝟏𝑦≤0

sinh(
√
𝑀𝑦)

𝑑𝑁(0, 1)(𝑦).

As 𝑀 →∞, 𝑒−
√
𝑀𝑦∕ sinh(

√
𝑀𝑦) → −2 ⋅ 𝟏𝑦<0; truncating, integrating, and taking limits then

gives

𝔼
𝐵−𝑀

∫ 𝑀
0
exp(2𝐵𝑠) 𝑑𝑠

→ ∫
0

−∞

2𝑦2𝑑𝑁(0, 1)(𝑦) = 1.

By differentiating eq. (5.7) of Ref. 52 twice with respect to 𝜆, we have that

𝔼
⎡⎢⎢⎣
(
∫

𝑀

0

exp(2𝐵𝑠) 𝑑𝑠

)−2 ||||𝐵𝑀 = 𝑥
⎤⎥⎥⎦ =

𝑒−2𝑥
(
𝑥2 sinh(𝑥) + 𝑀𝑥 cosh(𝑥) − 𝑀 sinh(𝑥)

)
𝑀2 sinh(𝑥)3

.

This implies that

𝔼[𝑌2𝑀]√
𝑀

=∫
ℝ

𝑒−2𝑥𝟏𝑥<0(𝑥
4 sinh(𝑥) + 𝑀𝑥3 cosh(𝑥) − 𝑀𝑥2 sinh(𝑥))

𝑀5∕2 sinh(𝑥)3
𝑑𝑁(0,𝑀)(𝑥)

=∫
ℝ

𝑒−2𝑦
√
𝑀𝟏𝑦<0(𝑀

2𝑦4 sinh(
√
𝑀𝑦) +𝑀5∕2𝑦3 cosh(

√
𝑀𝑦) −𝑀2𝑦2 sinh(

√
𝑀𝑦))

𝑀5∕2 sinh(
√
𝑀𝑦)3

𝑑𝑁(0, 1)(𝑦).
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1048 FARHANG-SARDROODI et al.

The integrand converges to −4𝑦3𝟏𝑦<0 as 𝑀 →∞; truncating, integrating, and taking limits
shows

𝔼[𝑌2𝑀]√
𝑀

→ ∫
ℝ

−4𝑦3𝟏𝑦<0𝑑𝑁(0, 1)(𝑦) = 4

√
2

𝜋
.

■

Proof of Lemma 7. Using Lemma 6 together with Chebyshev’s inequality, we see that

ℙ[𝑌𝑀 ≥ 𝑡] ≤ 𝐶√𝑀𝑡−2
for some constant 𝐶. This implies that

𝔼[𝑌𝑀𝟏𝑌𝑀≥𝑀1∕2+𝜀∕2 ] = ∫
∞

𝑀1∕2+𝜀∕2

ℙ[𝑌𝑀 ≥ 𝑡] 𝑑𝑡 ≤ 𝐶𝑀−𝜀∕2 = 𝑜(1).

We then may write

𝔼[𝑌𝑀𝟏𝐸] = 𝔼[𝑌𝑀𝟏𝐸𝟏𝑌𝑀≥𝑀1∕2+𝜀∕2 ] + 𝔼[𝑌𝑀𝟏𝐸𝟏𝑌𝑀<𝑀1∕2+𝜀∕2 ] ≤ 𝑜(1) + 𝑀1∕2+𝜀∕2ℙ[𝐸] → 0.

■

Proof of Lemma 10. By Lemma 3, there exists a coupling of { 𝑆𝑡

𝛿′∕
√
2
}0≤𝑡≤𝑇 and {𝐵𝑡}0≤𝑡≤𝑇 so that

ℙ

[
sup
𝑡∈[0,𝑇]

||||||
𝑆𝑡

𝛿′∕
√
2
− 𝐵𝑡

|||||| ≥ 𝐶 log(𝑇)
]
≤ 1

𝑇2
.

Let 𝐸 denote the event in the above probability; conditioned on 𝐸𝑐, we have

𝐴 = ∫
𝑇

0

exp(𝑆𝑠) 𝑑𝑠 = ∫
𝑇

0

exp(𝛿′𝐵𝑠∕
√
2 + 𝑂(𝛿′ log(𝑇))) 𝑑𝑠 ∼ ∫

𝑇

0

exp(𝛿′𝐵𝑠∕
√
2) 𝑑𝑠,

where the last asymptotic equality follows 𝛿′ log(𝑇) = 𝑂(𝛿 log 𝛿) → 0. This means that

𝔼[𝐴−1] = 𝔼[𝐴−1𝟏𝐸] + 𝔼[𝐴
−1𝟏𝐸𝑐 ] = 𝑂(𝑇

−2) + (1 + 𝑜(1))𝔼
𝟏𝐸𝑐

∫ 𝑇
0
exp(𝛿′𝐵𝑠∕

√
2) 𝑑𝑠

. (B1)

By Brownian scaling,

∫
𝑇

0

exp
(
𝛿′𝐵𝑠∕

√
2
)
𝑑𝑠 = ∫

𝑇

0

exp
(
2(𝐵(𝛿′)2𝑠∕23)

)
𝑑𝑠 = 23(𝛿′)−2 ∫

𝑇(𝛿′)2∕23

0

exp(2𝐵𝑠) 𝑑𝑠

because 𝛿′ ∼ 2𝛿.
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FARHANG-SARDROODI et al. 1049

By assumption, 𝑇(𝛿′)2 → ∞; further, the uniform integrability statement in Lemma 5 shows
that

𝔼
⎡⎢⎢⎣
(
∫

𝑇(𝛿′)2∕23

0

exp(2𝐵𝑠) 𝑑𝑠

)−1
𝟏𝐸𝑐

⎤⎥⎥⎦ ∼ 𝔼
⎡⎢⎢⎣
(
∫

𝑇(𝛿′)2∕23

0

exp(2𝐵𝑠) 𝑑𝑠

)−1⎤⎥⎥⎦
because the variables 𝟏𝐸𝑋𝑀∕𝔼[𝑋𝑀] converge almost surely to 0 (because ℙ(𝐸) → 0) and are uni-
formly integrable. From here, (B1) then gives

𝔼[𝐴−1] = 𝑂(𝑇−2) + (1 + 𝑜(1)) ⋅
(𝛿′)2

23
⋅

√
2

𝜋𝑇
⋅
23∕2

𝛿′
= 𝑂(𝑇−2) + (1 + 𝑜(1))

22

𝛿′
1√
𝜋𝑇

∼
𝛿√
𝜋𝑇

.

Similarly,

𝔼[𝑍−∕𝐴] = 𝔼

[
𝑍−

𝐴
⋅ 𝟏𝐸

]
+ 𝔼

[
𝑍−

𝐴
⋅ 𝟏𝐸𝑐

]

= 𝑂(𝑇−2) +
𝛿′√
2
𝔼

⎡⎢⎢⎢⎣
𝐵−𝑇 𝟏𝐸𝑐

∫ 𝑇
0
exp

(
𝛿′𝐵𝑠∕

√
2
)
𝑑𝑠

⎤⎥⎥⎥⎦+𝑂
⎛⎜⎜⎝𝛿 log(𝑇)𝔼

⎡⎢⎢⎣
(
∫

𝑇

0

exp(𝛿′𝐵𝑠∕
√
2) 𝑑𝑠

)−1⎤⎥⎥⎦
⎞⎟⎟⎠

= 𝑂

(
log(𝑇)√

𝑇

)
+
𝛿′√
2
𝔼

⎡⎢⎢⎢⎣
𝐵−𝑇 𝟏𝐸𝑐

∫ 𝑇
0
exp

(
𝛿′𝐵𝑠∕

√
2
)
𝑑𝑠

⎤⎥⎥⎥⎦.
Using the same Brownian scaling as in below (B1), note

𝐵−𝑇

∫ 𝑇
0
exp(𝛿′𝐵𝑠∕

√
2) 𝑑𝑠

𝑑
=

𝛿′

23∕2

𝐵−
(23∕2∕𝛿′)2𝑇

∫ (23∕2∕𝛿′)2𝑇
0

exp(2𝐵𝑠) 𝑑𝑠

=
𝛿′

23∕2
𝑌𝑀,

where we set𝑀 = (23∕2∕𝛿′)2𝑇. By Lemma 7 together with Lemma 6, we have

𝔼[𝑌𝑀𝟏𝐸𝑐 ] = 𝔼[𝑌𝑀] + 𝑜(1) = 1 + 𝑜(1).

Combining the above equalities provides

𝔼[𝑍−∕𝐴] = 𝑂

(
log(𝑇)√

𝑇

)
+ (1 + 𝑜(1)) ⋅

𝛿′√
2
⋅
𝛿′

23∕2
∼ 𝛿2.
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