
Coefficient asymptotics of algebraic multivariable
generating functions

Abstract:

Analytic combinatorics in several variables (ACSV) seeks to extract the asymptotic behavior of coefficients

from a generating function in several variables. As much as possible, the extraction should be automatic,

taking as input some finite specification of the generating function. A complexity hierarchy of specifiable

generating functions usually begins with rational functions, then goes up to algebraic functions, D-finite

functions, and perhaps beyond. Already the first two classes contain the majority of combinatorial problems

for which any kind of generating function has been written down. A number of survey papers give examples of

rational multivariate generating functions in combinatorics; for examples of algebraic multivarate generating

functions, see [1]. ACSV machinery developed for rational generating functions uses integrals of residue

forms over intersection cycles to provide asymptotics for coefficients via the multivariate Cauchy integral

formula. By embedding the coefficient array for an algebraic generating function as the generalized diagonal

of the coefficient array of a rational generating function with one more variable, the authors of [1] are able

to reduce coefficient asymptotics for a class of algebraic generating functions to a previously solved problem

involving a rational function in one more variable.

In this paper, we take a different approach, namely to write the Cauchy integral for an arbitrarily specified

algebraic function directly as an integral over the defining surface for the algebraic function. This leads to

a similar computation, without invoking the technical apparatus of residue forms and intersection cycles.

We give examples of how to apply this method to the functions in [1] and compare the difficulty of our

computations and transparency of our formulas to those presented in the online appendix to [1].

Subject classification: 05A16; secondary 57Q99.
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1 Introduction
{sec:intro}

Analytic combinatorics in several variables (ACSV) seeks to extract the asymptotic behavior of coefficients

from a multivariate generating function via analytic means. If F (z) =
∑

r∈Zd arz
r converges in some domain

to an analytic function, then the coefficient ar may be exactly recovered via the multivariate Cauchy integral

formula

ar =

(
1

2πi

)d ∫
T

z−rF (z)
dz

z
(1.1) {eq:mv cauchy}{eq:mv cauchy}

where T is a torus in the open domain of convergence in Cd of the series for F and dz/z is the logarithmic

volume form dz1 ∧ · · · ∧ dzd/
∏d
j=1 zj .

It is usually not feasible to compute this integral exactly, but good approximations are often possible.

Asymptotic formulas for ar are usually valid as r→∞ in a certain direction, meaning that r/|r| converges

to a given unit vector r̂ or equivalently that r converges in projective space; thus directions are specified by

either unit vectors in the nonnegative orthant or by projective vectors [r1 : · · · : rd]. If F (z) = P (z)/Q(z) is

a rational function and the complex algebraic hypersurface V := {z : Q(z) = 0} is smooth, then there is a

finite set E of points on V such that the coefficients C`,w of an asymptotic expansion

ar ≈
∑
w∈E

w−r
∞∑
`=0

Cw,`|r|−d/2−` (1.2) {eq:expansion}{eq:expansion}

may be computed automatically, subject to some further and sometimes more difficult verification of which

finite subset E of the finite set of critical points of V should be summed over. The set E, and the constants

Cw,` depend only on [r] and the approximations are uniform as [r] varies over some compact neighborhood.

If the denominator of the rational function F defines a variety with singularities, the situation is more

complicated but still, in many cases, formulas analogous to (1.2) can be proved. The smooth case was first

analyzed in [2], with other cases following in [3, 4, 5, 6]. The method is the subject of several books [7, 8, 9].

A complexity hierarchy for functions with finite closed form specifications begins with rational functions, then

extends to algebraic functions and so-called D-finite or differentially finite functions. It is known [10, 11]

that the coefficient array of any algebraic function appears as a diagonally embedded sub-array of the

coefficients of some rational function in one more variable. This may be used to reduce the problem of

coefficient extraction for algebraic functions to the same problem for rational functions. The applicability

of the embedding result to ACSV was first noticed by Raichev and Wilson in [4, 12] and is exploited in [1]

to compute coefficients asymptotics for a number of algebraic generating functions of combinatorial interest.

The steps of their diagonal embedding method are as follows.

{i:RW1}
1. Use theorems of Furstenburg or Safonov to embed the coefficient array of an arbitrary algebraic function

F diagonally in the coefficient array of rational function F̃ . {i:RW2}
2. Apply the multivariate Cauchy integral formula. {i:RW3}
3. Transfer the integral to the integral of a residue form over an intersection cycle in the pole variety. {i:RW4}
4. Use Morse theoretic techniques to represent the intersection cycle as a sum of cycles local to critical points

of the height function.
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{i:RW5}
5. Evaluate each of these integrals asymptotically via stationary phase integration methods.

The purpose of the present note is to give an alternative method for algebraic generating functions that

avoids some of the complexities of the Raichev-Wilson method. The primary reason for doing so is not to

streamline the computation, although we do provide specialized formulas for stationary phase asymptotics

that simplify the most common computations arising in coefficient extraction for algebraic series. The chief

motive for developing the alternative lifting method is transparency. Its derivation relies only on stationary

phase methods, and does not use residue forms or intersection cycles. It also avoids the use of a black-box

embedding in Step 1 of the diagonal embedding approach. The lifting method is therefore considerably more

accessible to the analytic combinatorics community.

2 Integral representations
{sec:integrals}

2.1 Notation

To specify an algebraic generating function, one requires a defining polynomial along with a choice of solution

near the origin. Some global notation is as follows. Fix an integer d ≥ 1. The coordinates of Cd+1 will

be denoted z1, . . . , zd, f . The (d + 1)-coordinate plays a different role from the others. Accordingly, we let

π : Cd+1 → Cd denote projection to the first d coordinates, and we make the roles of the z variables visually

easier to distinguish from f by denoting (z1, . . . , zd) by z and (z1, . . . , zd, f) by (z, f). Names of objects in

Cd+1 will typically have a tilde, while names of their projections to Cd will drop the tilde.

We assume throughout that P =
∑m
j=0 pj(z)f j is a real polynomial function on Cd+1, written as a polynomial

in R[z][f ]. Suppose there is a neighborhood N of the origin in Cd on which there is an absolutely convergent

power series F (z) =
∑

r arz
r satisfying P (z, F (z)) = 0. Because there are at most m locally analytic

solutions to P (z, F ) = 0, one of these may be uniquely specified by naming P together with the values of

F at a set of points of cardinality at most m. We assume throughout that P (0, ·) has a simple root at a

real value f0, and that the d-variable algebraic generating function F has been specified by P (z, F ) = 0 and

F (0) = f0. Assume without loss of generality, that P is irreducible and square-free; for if it is not, then

replacing P by its square-free part (the generator of the radical of the ideal generated by P ) defines the same

solutions, and some irreducible factor defines F .

Let Ṽ denote the variety {P = 0} in Cd+1 where the coordinates of Cd+1 are z1, . . . , zd, f . The map

z 7→ (z, F (z)) on the domain of convergence D of F is inverted by π. It is smooth on some neighborhood of

the origin because a power series is smooth on the interior of its domain of absolute convergence. Therefore,

it is a diffeomorphism from such a neighborhood onto its lifting into Ṽ. Letting T be any torus within the

domain of absolute convergence of the series for F , we denote by T̃ the lifting of T into Ṽ. Figure 1 illustrates

these definitions (those in red will be defined later).

The usual methodology of stationary phase integration is to move the contour of integration, T , into a

position where it passes through a stationary phase point where the gradient of the “large term” z−r vanishes.

Univariate functions with branch points typically require a customized contour, for example one that hugs

a slit (a segment or ray whose removal get rid of the branching) at a distance going to zero. A multivariate
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Figure 1: The variety Ṽ, projection π, tori T and T̃ , branch locus br and vertical tangent locus b̃r {fig:proj}

version of such a contour is not obvious. One case, namely a nonintegral power of a polynomial, was handled

in [13]. Our method is distinct from both the branch contour method of [13], and the diagonal method of [4],

namely we will transfer the integral “upstairs” to Ṽ, where everything becomes smooth.

2.2 Integration upstairs
{ss:upstairs}{pr:int over Tt}

Proposition 2.1. The coefficients ar in the Laurent expansion of F are given by

ar =

(
1

2πi

)d ∫
T̃

z−rf
dz

z
(2.1) {eq:eta}{eq:eta}

where z−r denotes
∏d
j=1 z

rj
j and dz/z denotes the logarithmic volume form

 d∏
j=1

z−1
j

 dz1 ∧ · · · ∧ dzd.

Proof: Because π∗dz/z is still dz/z in global coordinates, while π∗F |T = F ◦ π|T̃ = f , we see that

π∗F (z)z−r
dz

z
= z−rf

dz

z
.

Functoriality then implies that the RHS of (2.1) is equal to the RHS of (1.1), proving the proposition. 2

Whereas F may be defined only in a small domain, not extendable around branchpoints or through poles,

the form on the RHS of (2.1), which we denote η := z−rfdz/z, is well defined and holomorphic on all of

Cd+1
∗ . Here, C∗ := C\{0} denotes the set of nonzero complex numbers1. We cannot deform T̃ freely through

Cd+1 without altering the integral, but we can deform it within Ṽ, or any other complex d-manifold in which

it happens to reside. {pr:can slide}

Proposition 2.2. If T̃ and T̃ ′ are homotopic within Ṽ then
∫
T̃
η =

∫
T̃ ′
η.

Proof: Let H : T̃ × [0, 1]→ V be such a homotopy. From Stokes’ Theorem we see that∫
H

dη =

∫
∂H

η =

∫
T̃ ′
η −

∫
T̃

η .

1We use a subscript of ∗ instead of the more conventional superscript in order to avoid a double superscript.
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The integral of the holomorphic (d+ 1)-form dη vanishes over any chain supported in a complex d-manifold.

Because H is a homotopy within Ṽ, the integral of the left-hand side vanishes, proving the proposition. 2

2.3 Stationary phase integration
{ss:stationary}

The integrand in (2.1) is easy to evaluate asymptotically when it has the form of a stationary phase

integral. It is a little easier to see why (2.1) is a stationary phase integral if we let N := |r| =
∑d
j=1 rj , let

r̂ := N−1r, and write the integrand as

I(N) = I(N ;A, φ) := A(z) exp(−Nφ(z)) dz (2.2) {eq:amp phase}{eq:amp phase}

where A(z) := f/
∏d
j=1 zj and φ(z) :=

∑
rj log zj . In an integral of such a form, the term A(z) dz is

called the amplitude and φ is called the phase. We have used N rather than the traditional λ for the

parameter that goes to infinity to remind us that N r̂ is always an integer vector so exp(−Nφ(z)) = z−r and

the branching of the logarithm does not matter. The following defines critical points at smooth points of

algebraic varieties. There is a more general definition of stratified critical points that need not concern us

here.

Define the logarithmic gradient of an analytic function g to be the vector whose coordinates are the

partial derivatives in logarithmic coordinates:

∇logg :=

(
zj
∂g

∂zj

)
1≤j≤d

. (2.3) {eq:loggrad}{eq:loggrad}
{def:crit}

Definition 2.3 (critical points and directions).

(i) A (smooth) critical point for a function φ on an algebraic variety M is a point p which is a smooth

point of M and satisfies dφ|M(p) = 0.

(ii) A critical point in direction r̂ on an algebraic variety M is a smooth critical point for the function

φ|r̂ where φr̂(z) :=
∑d
j=1 r̂j log zj.

Smooth critical points on the surface {P = 0} in direction [r] satisfy ∇logP (z) = [r : 0], projectively. This

may be captured by the d+ 1 critical point equations (see [14, equation (7.8)] or [9, page 11]):

P (z) = 0

∂P

∂f
(z) = 0

rjz1
∂P

∂z1
(z)− r1zj

∂P

∂zj
(z) = 0 2 ≤ j ≤ d . (2.4) {eq:CPE}

Generically, this defines a finite set and is easily computed by a computer algebra system. When Ṽ is smooth,

which will usually be the case, these equations precisely define the set of critical points2.

2Where Ṽ is not smooth, i.e., where ∇P vanishes, the last d−1 equations (2.4) are trivially satisfied and one requires further

equations for criticality; this will not concern us, as we assume smoothness.
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{def:stationary}

Definition 2.4 (stationary phase). Suppose a contour Γ contains finitely many critical points for φ. Let

contrib denote the subset of these at which <{φ} achieves its minimum on Γ. Points of contrib are called

stationary phase points for φ on Γ, and if contrib is nonempty, Γ is said to be in stationary phase

position.

We remark that being a critical point on Γ is in principle a weaker condition than being a critical point on a

varietyM that Γ lies in, however it is the same wherever the real tangent space to Γ has the same span over

C as the tangent space to M; this will always be the case for our contours. Existence of stationary phase

points is what makes an integral of the form
∫

Γ
Ae−Nφ easy to evaluate asymptotically. The precise nature

of Γ is not relevant, only the orientation of Γ, along with the fact that p is a critical point at which <{φ} is

minimized on Γ. Off-the-shelf stationary phase computations at this level of generality can be found in [14,

Lemma 5.15], [15, Section 7.1], or [16, Theorem 4.2]. We find it useful to state coordinate-free hypotheses

when possible, while giving the resulting formulae in coordinates. For example in Proposition 2.6, the input

data are a phase function φ on a complex d-manifold and a holomorphic d-form η for the amplitude, while

the formula for the integral uses a coordinate representation A(z)dz for η.

All the examples in this paper have an expansion (1.2) in which all terms with ` = 0 vanish. We therefore

find it convenient to state an explicit formula for the leading term C1, in the special case that the amplitude

η = z−rf dz/z vanishes to order precisely 1 at the stationary phase point. We base our formulae on some

useful reductions for this case that can be found in the Appendix to [15]. {def:sqrt}

Definition 2.5. The notation
√

detM denotes the product of the principal square roots of the eigenvalues

of the matrix M . The notation (detM)1/2 leaves open which choice of square root is intended.

We begin with the case where contrib is a singleton {p}. It is well known that the leading term of a

stationary phase integral is inversely proportional to a curvature invariant at p, which is given in coordinates

by the determinant of the Hessian matrix of the phase function. These formulae make more sense when one

takes into account the way such a determinant transforms under changes of variable. If the Jacobian is J

then at a point where the gradient vanishes, the Hessian matrix H transforms to JTHJ ; as the amplitude

A(z)dz transforms to det(J)A(z′)dz′, this means that

A

det(H)1/2
is independent of the choice of coordinates. (2.5) {eq:indep}{eq:indep}

{pr:cubic term}

Proposition 2.6 (stationary phase formula and case where amplitude vanishes to order 1). Let η be a

homolorphic d-form on a complex d-manifold M and let φ be a holomorphic function on M. Let p be a

point ofM which dφ vanishes. Fix a coordinate system z1, . . . , zd on a neighborhood of p inM and suppose

(i) the form η is represented by A(z)dz;

(ii) the function φ has a nondegenerate Hessian matrix H at p, which condition is invariant under coordi-

nate changes3 by (2.5).

Define quantities
3Technically, a coordinate system is a map Ψ(M,p) → (Cd,0) and we should refer to the Hessian matrix of φ ◦ Ψ−1 at 0,

however continue to use “φ(p) in coordinates”, “A(p) in coordinates” and so forth instead of φ ◦Ψ−1(0), (Ψ−1)∗A(0) and so

forth because most readers can more easily read the former.
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• g(z) := φ(z)− 1
2 (z− p)TH(z− p), in other words, φ with its leading (quadratic) term subtracted off;

• a second order differential operator H :=

d∑
i,j=1

−(H−1)ij
∂

∂zi

∂

∂zj
.

Let N be a neighborhood of the origin in Rd and let Γ : (N ,0)→ (M,p) be a compact, smooth, real d-chain

supported on a set |Γ| on which <{φ} is uniquely minimized at an interior point, p. Then the integral

I(N) :=

∫
Γ

η exp(−Nφ) (2.6) {eq:int}{eq:int}

has an asymptotic series expansion

I(N) ≈ e−Nφ(p)

(
2π

N

)d/2 ∞∑
`=0

C`N
−` (2.7) {eq:I}{eq:I}

for some constants {C`} that can be computed from the partial derivatives of φ and A at p. Specifically,

C` = (detH)−1/2
2∑̀
j=0

(−1)`
H`+j(A · g)

2`+jj!(`+ j)!
(p) . (2.8) {eq:C_l}{eq:C_l}

If A(p) = 0 and dA(p) 6= 0, then C0 = 0 and the leading term is given by

C1 = − 1

2(detH)1/2

[
H(A)(p) +

1

4
H2(A · g)(p)

]
. (2.9) {eq:degree 3}{eq:degree 3}

The square root in (2.9) should be chosen as follows. In the coordinate system that represents η = Adz, the

chain Γ : Rd →M pulls back to a chain γ : Rd → Cd; let J = dz/dt denote the Jacobian matrix of γ; choose

the 1
2 power in (2.9) to be det J/

√
det JTHJ , which is a choice for detH1/2 by (2.5).

Proof: Lemma A.3 and Theorem 5.5 of [15] compute a general asymptotic series expansion for power series

coefficients, first writing this as (2πi)−d
∫
ũ(z) exp(g̃(z))dz and then evaluating this integral asymptotically.

The form of their series is as given in (2.7) – (2.8).

When A(p) = 0, C0 vanishes. When dA(p) 6= 0, C1 does not vanish. Plugging in φ for g̃ and A for ũ, their

result is that our I(N) is asymptotic to

L1(A, φ) N−1

(
2π

N

)d/2
(detH)−1/2

where L1(A, φ) is given by several formulas, of which we use the second displayed equation in their Lemma A.3

due to our assumption that A vanishes to order precisely 1. Equation (2.9) is then a direct statement of

their result.

To check the choice of sign, first note that det J/
√

det JTHJ is indeed a square root of detH. Pulling back

the integral I(N) =
∫

Γ
η exp(−Nφ) to

∫
γ
A(z(t))J dt exp(−Nφ ◦ Γ−1) and applying formula (5.4) of [14]

shows that this sign choice evaluates the integral (see also [14, equation (5.6)]). 2
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Section 5 computes a number of examples, mostly taken from [1], where the majority have d = 2 (bivariate

algebraic generating functions). It is helpful to pre-compute (2.9) for d = 1, 2: not only does this show the

degree of simplification but it gives users an off-the-shelf formula that does not require them to program a

differential operator in their computer algebra platform. Section 5.2 contains some further symbolic algebra

techniques for obtaining simplified representations for algebraic quantities such C1. When d = 1, the Hessian

matrix H reduces to the scalar quantity V := φ′′(p), while the operator H is V −1 times the second derivative

operator. This leads to a rather compact formula. While the explicit formula for d = 2 is somewhat messier,

we will see in Section 5.2 that the formula can simplify drastically when some of the partial derivatives

vanish. {cor:d = 1,2}

Corollary 2.7. When d = 1, the formula (2.9) reduces to the following expresion.

C1 = −1

2
· V −1/2

[
− 1

V
A′′(p) +

1

V 2
φ′′′(p)A′(p)

]
(2.10) {eq:d=1}{eq:d=1}

When d = 2, the formula (2.9) reduces to the following expression, where again H denotes φxxφyy−φ2
xy and

all partial derivatives are evaluated at p = (p1, p2).

C1 = −1

2
H−1/2 ×[

H−1
(
−Axxφyy + 2Axyφxy −Ayyφxx

)
+H−2

(
Axφ

2
yyφxxx −Ayφxxxφxyφyy

−3Axφxxyφxyφyy + (Axφxyy +Ayφxxy)(φxxφyy + 2φ2
xy)

− 3Ayφxyyφxyφxx −Axφyyyφxyφxx +Ayφ
2
xxφyyy

)]
(2.11) {eq:d=2}

The square root in both cases is chosen as in Proposition 2.6.

Proposition 2.6 and Corollary 2.7 extend easily to allow contrib to be a finite set of cardinality greater

than 1. The following generalization can be found in [14, Theorem 5.3; see also Theorem 9.25]. {cor:finite sum}

Corollary 2.8. Proposition 2.6 and Corollary 2.7 continue to hold if the hypothesis of a single critical point

p at which <{φ} is uniquely minimized is replaced by the hypothesis that there are finitely many critical points

p(1), . . . ,p(m) of φ on Γ whose common value of <{φ} attains the minimum on Γ, and the conclusion (2.7) is

altered replacing the right-hand side by a sum of the same quantity with p replaced by p(j), for j = 1, . . . ,m.

2

2.4 The lifting method
{ss:lifting}

Putting together Propositions 2.1, 2.2 and the computation in Proposition 2.6 we obtain the following plan

for computing coefficient asymptotics in a direction [r] for the series F .

(i) Compute the set of critical points on Ṽ.

(ii) Deform T̃ to a contour T̃ ′ in stationary phase position, so that it there is a nonempty finite set contrib

of stationary phase points for φ on T̃ ′ at which <{φ} takes the value infz∈T̃ ′ <{φ(z)}.
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(iii) Use standard stationary phase estimates to asymptotically evaluate
∫
T̃ ′
A(z) exp(−Nφ(z)) dz.

The first and last of these steps require viturally no work, the first being accomplished by (2.4) and Propo-

sition 4.1 and the last by Proposition 2.6 and Corollary 2.8. Already, with these two steps accomplished,

one can get a pretty good idea of the asymptotics of ar. Each critical point p leads to an asymptotic series

of the form (2.7); according to Corollary 2.8, summing these over the correct set contrib of critical points

for φ on Ṽ, with the correct orientations, will give an asymptotic series for ar, provided the torus T̃ may be

deformed into stationary phase position.

Often it is easy to determine by inspection which among finitely many choices for contrib yield the correct

asymptotics. There are also cases where the homotopy mapping taking T̃ to an appropriate chain T̃ ′ is

geometrically obvious. For the remainder of the cases, we develop a number of sufficient conditions for

determining contrib. While rigorous numerical homotopy procedures exist that may be used to investigate

deformations of T̃ into stationary phase position, these are cumbersome and few researchers possess or are

familiar with the software. Lemma 4.4 gives a method to compute contrib without resorting to numerical

homotopies. The remainder of this section contains a prelimiary discussion of the properties of the covering

map π, along with various assumptions that hold in many applications and greatly simplify the identification

of contrib.

One way to deform T̃ into stationary phase position is to enlarge the first d coordinates so as to remain a

torus at every fixed time, while varying f so that (z, f) remains in Ṽ. By the nature of φ, this ensures that

<{φ} is constant on the resulting torus, which means that at the end of the homotopy, the final contour T̃ ′

will be in stationary phase position, provided the set of critical points on T̃ ′ is finite and nonempty. This

type of deformation can be described as a homotopy of T , lifted via π−1 to Ṽ. Computationally, it is easier

keep track of deformations of T in Cd than deformations of T̃ in Ṽ. Therefore, we have two reasons to pursue

deformations that can be described as liftings via π−1 of homotopies in Cd. {def:discr}

Definition 2.9. The discriminant discr(P ) of P with respect to f is the minimal polynomial in z that

vanishes if and only if P (z, ·) does not have distinct roots4. Let br ⊆ Cd denote the branching locus, that is,

the algebraic hypersurface defined by discr(P ). The vertical tangent locus b̃r is the set of points (z, f) ∈ Ṽ
such that ∂P/∂f = 0. Under the assumption that Ṽ is smooth, this is precisely the set of points of Ṽ whose

tangent space is vertical. A lower star, such as br∗, b̃r∗, Ṽ∗, refers respectively to not allowing a zero in the

first d coordinates.

Proposition 2.10. The image of b̃r under π is br. The polynomial discr(P ) may be computed by eliminating

f from the ideal generated by P and ∂P/∂f .

Proof: The first statement, namely that vertical tangents occur precisely where roots coalesce, is well

known. The second follows from the fact that projection to the z-plane corresponds to eliminating f . 2

3 Main results
{sec:main}

To reiterate standing assumptions on P and F , we assume:

4One needs to be careful how one categorizes those z for which one of the roots goes to infinity, but that won’t be relevant

for us.
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• P is a smooth real polynomial on Cd+1 whose zero set is denoted Ṽ.

• All roots of P (0, ·) are simple and discr(P ) is squarefree.

• F is an algebraic power series in a neighborhood of the origin in Cd defined by

the equation P (z, F (z)) = 0 and the initial condition F (0) = f0.

Definition 3.1 (rank). Let ξ1 ≥ · · · ≥ ξk denote the finite real roots of P (0, ·) listed in decreasing order. By

convention we consider P to have ` real roots at +∞ if for all M > 0, all vectors v of positive real numbers,

and sufficiently small ε = ε(M) > 0, the univariate polynomial P (εv, ·) has ` positive real roots greater than

M . If f0 = ξj, we say the rank rk (f0) of f0 is defined to be `+ j.

Definition 3.2 (minimal point). Let T be the centered torus containing a point z ∈ Cd∗ Say that z is weakly

minimal for G if G is nonvanishing on the torus t · T for all 0 < t < 1. Weak minimality is implied by

the usual notion of minimality in ACSV [9, Definition 3.9], namely that G(w) 6= 0 for every w satisfying

|wj | ≤ |zj | for all j, with at least one of the inequalties being strict.

For the next definition, all we need is a real polynomial P , a real number f0 such that P (0, f0) = 0, and the

assumption that all roots of P (0, ·) are simple.

Definition 3.3. Let (z, f1) be a point of Ṽ and let T ′ denote the torus through z. Say that (z, f1) is on

the branch defined by f0 if the map H : T ′ × [0, 1] → Cd by H(w, t) = tw lifts to a continuous map

H̃ : T ′ × [0, 1]→ Ṽ with H̃(w, 0) = f0 for every w ∈ T ′ and H̃(z, 1) = f1.

The following is our main result and will be proved in Section 4. {th:main}

Theorem 3.4. Let z := exp(x) ∈ br be a positive real zero of discr(P ). Assume z is a smooth, critical point

for discr(P ) in direction [r], with pm(z) 6= 0 and z weakly minimal for pm · discr(P ). Let (z, f1) ∈ b̃r be a

real point of the vertical tangent locus.

Conclusion 1:

The point (z, f1) is critical for P in direction [r : 0]. It is on the branch defined by f0 if and only

if f1 = ξrk (f0) where ξ1 ≥ ξ2 ≥ . . . enumerates the real roots of P (z, ·) in decreasing order with

multiplicities.

Assuming that (z, f1) is on the branch defined by f0, suppose the set of y such that there is a complex number

fy with exp(x + iy, fy) is on the branch of Ṽ defined by f0 and critical in direction [r] is finite and denote

this set by W . Finally, assume for each y ∈ W , the root fy of P (exp(x + iy), ·) has multiplicity precisely 2

and that the Hessian determinant of φr :=
∑d
j=1 rj log zj restricted to Ṽ is nonsingular. Then,

Conclusion 2:

ar ≈ exp(−r · x)

∞∑
`=1

∑
y∈contrib

Cy,` exp(−ir · y)|r|−d/2−` (3.1) {eq:asym}{eq:asym}

where the constants Cy,` are the constants C` determined in Proposition 2.6 with p = exp(x + iy), as well

as φ(z) = r̂ · log z and η = fdz1 · · · dzd/
∏d
j=1 zj. The expansion of (3.1) will be nonzero for some ` ≥ 1 and

uniform as [r] varies over compact neighborhoods where the hypotheses hold.

We amplify on the most common form of the final formula, which occurs in the case that |W | = 1. This

corresponds, more or less, to the aperiodic case.
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{cor:final C_1}

Corollary 3.5 (computational form). Suppose that W in Theorem 3.4 is a single point y and denote

p := exp(x + iy). Let η := A(z)dz := fdz/
∏d
j=1 zj and let φ(z) :=

∑
j r̂j log zj. Fix k ≤ d with ∂P/∂zk

nonvanishing at (p, f1). Then

ar ∼ C|r|−d/2−1p−r (3.2) {eq:single point}{eq:single point}

where C is the constant C0,1 from (3.1) and is determined as follows.

Reparametrize Ṽ by {zj : j 6= k} and f . Let H denote the Hessian of φ in the new coordinates, let φ̃ represent

φ in the new coordinates with the quadratic term subtracted off, and let

Ã dVk := A
dzk
df

dVk = A
∂P/∂f

∂P/∂zk
dVk (3.3) {eq:new A}{eq:new A}

denote the form η in the new coordinates, where dVk := df ∧ dz1 ∧ · · · ∧ d̂zk ∧ · · · ∧ dzd. Let H denote the

second order differential operator H :=

d∑
i,j=1

−(H−1)ij
∂2

∂z̃i∂z̃j
where z̃j denotes zj if j 6= k and f if j = k.

Then

C =

(
1

2πi

)d
(2π)d/2C1

with C1 given by (2.9) with Ã in place of A:

C1 = −1

2
(detH)−1/2

[
H(Ã)(p) +

1

4
H2(Ã · g)(p)

]
. (2.9)

The 1
2 power should be taken as id/

∏d
j=1

√
−Nj, where {Nj : 1 ≤ j ≤ d} are the eigenvalues of H, and

√

denotes the principal square root, namely the one in the right half-plane. Finally, one must multiply by −1

if the branch of F at the origin is the larger of the two coalescing at (p, f1).

Proof: This is a straightforward application of Proposition 2.6 except for the choice of square root.

The square root is determined by the oriented tangent plane to the chain of integration near p. In log

coordinates, dφ is positive definite on the real tangent space (by the strong convexity assumption), hence

negative definite on the imaginary tangent space. In the original coordinates, at any real point such as

(p, f1), the imaginary log tangent space maps to the imaginary tangent space. Therefore, the chain Γ

parametrized by (f + it1, p1 + it2, . . . , pk−1 + itk, pk+1 + itk+1, . . . , pd + itd) has a strict minimum of <{φ}
at p. The Jacobian determinant of the parametrization is id and the Hessian is the negative of H, therefore

the integral over Γ with this parametrization has constant C1 determined by (2.9) with (detH)1/2 taken to

be id/
√∏d

j=1 (−Nj).

To go from the integral over Γ to the integral over T̃ ′, observe first that the local homology group has rank 1

at a quadratically nondegenerate critical point, hence T̃ ′ is homologous either to Γ or −Γ. By Lemma A.1,

where T∗ is used for T̃ ′ and Tε is used for the original small torus T̃ , the orientation of T∗ is positive with

respect to df∧η if and only if f0 is the lesser of the two roots eventually coalescing at (p, f1). The orientation

of Γ with respect to df ∧ η is positive, hence the integral computed by this parametrization requires a sign

flip to compute the integral over T̃ ′ if and only if f0 is the greater of the two coalescing roots. 2
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Simplifying conditions

Theorem 3.4 does not guarantee the existence of such a pair (z, f1) satisfying the hypotheses. In fact a

number of further hypotheses hold in many examples that help to assure this. We take as our base of

examples the twenty examples analyzed in [1]. Our simplifying assumptions are catalogued in Table 1 along

with which examples from [1] satisfy them. The first is set off because it is a standing hypothesis, repeated

here so as to display which examples satisfy it. Four of these do not satisfy our standing hypothesis that P

should be smooth; twelve of the twenty satisfy all our simplifying assumptions. All eight of the examples

in [1] that don’t satisfy our simplifying hypotheses are among the ten for which no final asymptotic formula

given.

1 P is smooth 16 out 20 examples (all except 1, 5, 6, 20)

2 pm is a monomial 13 out of 20 examples (all except 1, 2, 3, 5, 6, 11, 12)

3 all coefficients of F are nonnegative 20 out of 20 examples

4 P is quadratic in f 18 out of 20 examples (all except 6, 20)

Table 1: simplifying conditions {table:1}

The following result will be proved in the next section. {th:nice}

Theorem 3.6. In addition to the standing hypotheses, assume all three remaining hypotheses in Table 1.

Suppose there is a weakly minimal critical point (w, f) of P in direction [r : 0]. Define zj := |wj |. Then

the point z is a minimal critical point of pm · discr(P ) in direction [r], where the factor discr(P ) is the one

that vanishes; the fiber π−1(z) contains a single point (z, f1); this point is a minimal critical point for P in

direction [r : 0], and is on the branch determined by f0. Consequently, the conclusions of Theorem 3.4 hold.

4 Proofs and effective procedures
{sec:proofs}

4.1 Proof of Theorem 3.4

The critical point equations (2.4) define a (generically) finite subset of Cd+1 and may be rewritten as P (z) = 0

together with ∇logP (z) = [r : 0] in CPd. The next proposition shows that critical points for P in direction

[r : 0] upstairs correspond to critical points for discr(P ) in direction [r] downstairs. This establishes the first

part of Conclusion 1 of Theorem 3.4. {lem:project}

Lemma 4.1. Let (z, f) be a critical point in direction [r : 0] for P . Then z is a critical point in direction

[r] for discr(P ). Conversely, if z is a critical point in direction [r] for discr(P ) and (z, f) ∈ b̃r, then (z, f)

is critical for P in direction [r : 0].

Proof: Assume (z, f) ∈ b̃r. The tangent space T(z,f)(Ṽ) is a d-dimensional linear space containing the

elementary basis vector in the f -direction. Consequently, it is mapped by π to a (d−1)-dimensional subspace

of Tz(Cd). Because Ṽ ⊇ b̃r, T(z,f)(Ṽ) ⊇ Tz(b̃r), hence

π(T(z,f)(Ṽ)) ⊇ π(T(z,f)(b̃r)) = Tz(π(b̃r)) = Tz(br) .

12



As the first and last linear spaces both have dimension d− 1, they must coincide. By hypothesis, T(z,f)(Ṽ)

consists of all vectors orthogonal to [z1r1 : · · · : zdrd : 0]. Hence Tz(br) consists of all vectors orthogonal to

[z1r1 : · · · : zdrd]. This establishes the conclusion in both directions. 2

The restriction of π to Ṽ is an m-to-1 covering map except over points of two kinds: the branch locus br

and the pole variety pole, defined by the vanishing of the leading coefficient pm. On the pole variety the

degree of P (z, ·) is less than m, corresponding to one or more roots at infinity. The following proposition

states a well known property of algebraic branched coverings; see, e.g., [17, Section 1.3] for further definitions

involving covering spaces. {pr:covering space}

Proposition 4.2. Let A := Cd∗ \ (pole ∪ br) and denote Ã := π−1(A). Then π : Ã → A is an m to 1

covering of A. 2

Covering spaces are useful because homotopies on the base space lift uniquely to homotopies on the covering

space. {lem:cover}

Lemma 4.3. Let T be a torus in the closure of the domain of convergence of F . Let H : T × [0, 1] → Cd

be a homotopy from T to a chain T ′ such that H(z, t) ∈ A when t < 1 and H(z, 1) /∈ pole. Then there is a

unique lifting of H to a homotopy H̃ : T × [0, 1] → Ṽ such that H̃(z, 0) is the chain T̃ . The lifted chain is

smooth for every t < 1 and continuous at t = 1. Consequently,

ar =

(
1

2πi

)d ∫
T̃ ′

z−rf
dz

z
. (4.1) {eq:minimal}{eq:minimal}

Proof: For any t < 1, existence and uniqueness of H̃|[0,t] follow from the homotopy lifting property [17,

Proposition 1.30]. When H(z, 1) ∈ A, define H̃(z, 1) = γ̃(1) where γ̃ is the unique lifting of the path

H(z, t) : 0 ≤ t ≤ 1. When H(z, 1) ∈ br, define H̃(z, 1) := limt↑1 H̃(z, t). The limit exists because there is

no pole; approaching the branch point, the lift within any branch approaches a limit. Proposition 2.2, along

with the identity (2.1) then establishes (4.1). 2

Continuing with the proof of Theorem 3.4, let T be the torus containing z. For every t < 1, the torus t · T
is in the domain of convergence of F because the only possible singularities of an algebraic function are at

poles and branchpoints, and the open polydisk on whose boundary T lies has no poles or branchpoints by

the assumption that z is minimal for pm · discr(P ). Applying Lemma 4.3 establishes that (z, f) is on the

branch defined by f0 for some f satisfying P (z, f) = 0. To finish proving Conclusion 1 we need to see that

choosing f = ξrk (f0) yields the correct branch. This is accomplished by the following lemma, which in one

variable goes by the name of the Algebraic Continuation Algorithm [18, Proposition VII.8]; the multivariate

argument is nearly identical; see [19] for a prior mention and [9, Example 2.16] for a development in the case

where the coefficients of F are known to be nonnegative. {lem:no change}

Lemma 4.4. Suppose the line segment γ := {tv : 0 < t < 1} lifts to a path avoiding b̃r, satisfying γ̃(0) = f0

and γ̃(1) = f1. Then, listing the positive real roots of P (v, ·) in decreasing order with multiplicities, f1 will

occur at index rk (f0).

Proof: The homotopy lifting property guarantees a unique lifting because the path γ remains in A up to

time 1 and is not in pole at time 1. Without coalescing, real roots of a continuously varying family of real

univariate polynomials cannot become complex nor can complex roots become real. Therefore the real roots

of P (tv, ·) along γ remain in the same order. By hypothesis they remain finite. Coalescing can occur at
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the end, but counting with multiplicity preserves the order. By continuity and by definition of how infinite

roots are handled, for sufficiently small ε > 0, γ̃(ε) will be the real root of P (εv, ·) of index f0, hence this

will persist up to time γ̃(1). By continuity, this persists at 1 if one counts multiplicities. 2

Proof of remaining conclusion in Theorem 3.4: By definition, the fact that (z, f1) is on the branch

defined by f0 means that the lift T̃ of a small torus is homotopic to a torus T̃ ′ through (z, f1). By Lemma 4.3,

we have the formula (4.1) for ar. Having assumed that T̃ ′ passes through finitely many critical points for

φ on Ṽ, we see that T̃ ′ is in stationary phase position for φ. Proposition 2.6 then implies Conclusion 2,

provided we verify that A(z, f1) = 0. But the form η necessarily vanishes at the point exp(x + iy) because

dz1 ∧ · · · ∧ dzd vanishes on Ṽ wherever ∂P/∂f = 0. Hence, each coefficient Cy,0 from [14, Theorem 5.3] will

vanish, leaving only terms with ` ≥ 1.

To argue that the sum in (3.1) is not identically zero, the form of [15, (5.2)] implies that for each y ∈ W ,

at least one of the coefficients Cy,` is nonzero. The quantities e−ir·y are linearly independent over C as

functions of r, hence nonvanishing of Cy,` for a single pair (y, `) implies nonvanishing of the double sum.

The set contrib varies continuously wherever the hypotheses of the theorem hold, implying uniformity of

the estimate (2.7) and finishing the proof of Theorem 3.4. 2

4.2 Proof of Theorem 3.6

In proving Theorem 3.6, we also take care of one detail not stated in the theorem, namely how one checks

weak minimality of w under the nonnegativity assumption. Section 4.3 deals with the more difficult algorithm

checking minimality in the general case.

Begin by recalling some concepts about polynomial amoebas, e.g., from [20, 21]. Define the coordinatewise

log magnitude map Relog by

Relog(z) := (log |z1|, . . . , log |zd|) .

The amoeba of a polynomial function g : Cd → C is the image of the zero set of g under the Relog. The

amoeba is a closed set whose complement is divided into finitely many open convex connected components.

If g(0) 6= 0 then there is a unique component G0 of the complement of amoeba(g) and a real number M

such that G0 contains (−∞,M ]d. Such a number M can be effectively computed. The torus T in (1.1) can

be taken to be the product of circles with radius eM .

Fix a critical point z in direction [r] on the variety V defined by g. A more general definition of minimality

is that x = Relog z lie on the boundary of amoeba(g), and for an ordinary power series, specifically on

∂G0. When z ∈ V, the condition x ∈ ∂G0 is equivalent to D(z) being in the domain of convergence of

the power series for 1/g, where D is the open polydisk {w : |wj | < |zj |, 1 ≤ j ≤ d}. For functions F not

necessarily rational but represented by power series absolutely convergent in some domain D containing the

origin (necessarily the union of tori), minimality again generalizes to the condition that z ∈ ∂D.

When all coefficients of a power series are known to be nonnegative, checking minimality is particularly easy.

This is the case for the power series F in all our examples, but unfortunately this does not help as much

as one might think because the minimality testing we need to do is for g = discr(P ) or g = pm · discr(P ),

in neither case leading to a series likely known to have nonnegative coefficients. We therefore also require

a condition to ensure minimality upstairs and downstairs are the same, which will be seen below to follow

from the second and fourth conditions in Table 1.
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Proof of Theorem 3.6: The multivariate version of Pringsheim’s Theorem (see, e.g., [14, Proposition 6.38])

says that if the power series coefficients of a function F are known to be nonnegative, and if z = exp(x + iy)

and x ∈ ∂G0, then the positive real point |z| := (|z1|, |z2|, . . . , |zd|) is singular for F . For algebraic functions,

this means z is a branchpoint or a pole.

Let z and w be as in the statement of the theorem. It is shown in [9, Proposition 5.5.4] that weak minimality

of w along with nonnegative coefficients implies minimality of w (hence z) for F . Letting T ′ denote the

torus in Cd∗ through π(z), this implies that the lifting of the homotopy t ·T ′, 0 < t < 1 does not intersect b̃r.

Under the assumption that P is quadratic in f , this is equivalent to the homotopy t · T ′, 0 < t < 1 avoiding

br. Because there are only two branches, we know that p ∈ br and (p, f) ∈ Ṽ imply (p, f) ∈ b̃r. From

the assumption that pm is a monomial, we conclude that pole is empty in Cd∗, hence π(z) is minimal for

pn ·discr(P ); in fact it is minimal in direction [r] by Lemma 4.1. Again, because there are only two branches,

π−1(z)∩ Ṽ contains a single point (z, f1), and at this point the two solutions with different initial conditions

merge. Hence this solution is on the branch determined by either initial condition. 2

4.3 Verification of minimal points
{ss:minimal}

When P is not quadratic, the correspondence between the branch locus and the vertical tangent locus may

not be complete. In this case minimality upstairs and downstairs need not coincide and one would need

nonnegativity of coefficients of 1/g as well as of F , in order to test minimality both upstairs and downstairs.

There is no reason to expect 1/g to have nonnegative coefficients.

Minimality is effectively testable regardless of any nonnegativity condition, because it is a real semi-algebraic

condition. To make full use of the results of this paper requires such an algorithm. We briefly describe one

presented by Melczer, referring the reader to [9, Section 7.1.3] for details.

We let g< and g= denote the unique polynomials in the 2d real variables x1, . . . xd and y1, . . . yd such that

g(x + iy) = g<(x,y) + ig=(x,y). Augment the original d complex critical point equations for g (d, not d+ 1

as we are dealing with g rather than P ) to d+ 1 equations via a complex parameter N describing the ratio

between ∇logg(p) and r̂. These d + 1 critical point equations expand to 2d + 2 equations in x and y and

the real and imaginary parts of N , involving g<, g= and their partial first derivatives in place of g and its

derivatives. Thus far these still describe all critical points of g. Next one write equation for another real

solution on a linearly shrunken torus via the d + 2 equations (x′j)
2 + (y′j)

2 = t(x2
j + y2

j ) for 1 ≤ j ≤ d and

g<(x′,y′) = g=(x′,y′) = 0.

This gives 3d + 4 equations in 4d + 3 variables, whose real solutions give pairs of critical points on similar

tori. It is shown that minimal critical points for g in direction r̂ correspond precisely to real solutions

(x,y) of the critical point equations for which there are no real solutions (x′,y′, t) to the pair equations

with t ∈ (0, 1). This criterion has alternating quantifiers ranging over infinite sets so is not yet algorithmic.

However, introducing a new parameter ν and d representing the common argument in each coordinate of a

hypothetical smaller solution in a pair, and d more equations to force this to be the argument, one obtains

a set of 4d + 4 equations in 4d + 4 variables whose real solutions with t ∈ (0, 1) correspond to refutations

of minimality for (x,y). This results in an algorithm which will either determine some nondegeneracy

hypotheses have not been met, or will find all real solutions, eliminate refuted solutions, and correctly

produce a set of minimal critical points in direction r̂.

We summarize in a proposition.
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{pr:hard minimality}

Proposition 4.5 ([9, Section 7.1.3]). Under mild nondegenearcy assumptions, testing for minimality can be

accomplished by searching for real solutions to 4d + 4 polynomial equations in 4d + 4 variables, constrained

to an interval. Such real semi-algebraic equation solving is effective and is carried out in pseudo-code in [9,

Algorithm 3]. 2

5 Worked examples
{sec:examples}

Before presenting examples to exhibit the main results, we give a couple of examples showing that algebraic

functions are not always determined by integrals through branchpoints.

Example 5.1. In one variable, let F (x) = (1−x)−3/2. The defining polynomial is P (x, f) := (1−x)3f2−1 =

0, with discr(P ) = 4(1− x)3. The unique branchpoint x = 1 is also a pole: br = pole = {1}, so integration

through this point is not possible. Not coincidentally, the hypothesis that discr(P ) be squarefree is also

violated. {eg:starr}

Example 5.2. The generating function

β(x, y, z) =
1√

(1− x− y)2 − 4xy − z

generates certain hypergeometric sums arising when counting solutions to Ulam’s problem [22]. The discrim-

inant locus is where the quantity under the radical vanishes. The locus of vanishing is the parabola inscribed

in the positive x-y-quadrant and tangent at (0, 1) and (1, 0); see Figure 2. The pole locus is where the quantity

under the radical is equal to z. For fixed z ∈ (0, 1) this vanishes on an arc in the positive quadrant hitting

the axes at 1 −
√
z. The minimal points of pole ∪ br are the ones on this arc, where β has a pole, not a

branchpoint. The coefficient asymptotics there are governed by the usual ACSV smooth point formula given,

for example, in [7, Theorem 9.2.7].

Figure 2: pole variety (red) and branching locus (blue) {fig:parabola}

The remainder of the section gives examples of the application of Theorems 3.4 and 3.6 and Corollary 3.5.
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5.1 Toy example: Catalan GF
{ss:catalan}

In this example d = 1 so the generating function F is a univariate algebraic function, for which well known

methods such as the transfer theorems of Flajolet and Odlyzko [23] could be applied (see also far earlier

works). This example illustrates our methods in the simplest case.

Let F (z) = (1 −
√

1− 4z)/(2z) =
∑∞
n=0 anz

n be the generating function for the Catalan numbers an :=(
2n
n

)
/(2n+ 1). A minimal polynomial representing F via P (F, z) = 0 and F (0) = 1 is

P (F, z) := zf2 − f + 1 .

The discriminant of P is 1− 4z and the pole polynomial is z. A graph of F in the R× R subspace of C2 is

shown on the left of Figure 3.

Figure 3: Left: R× R graph of the Catalan GF; Right: coordinates in C of the lifted torus {fig:graph1}

Here, m = 2 but because the origin is a zero of pm, there is only one function F with a finite value at the

origin. This branch has F (0) = 1, while the other possible branch, (1 +
√

1− 4z)/(2z), has a pole at zero.

The discriminant of P with respect to f is 1 − 4z, whose amoeba is the singleton set {log(1/4)} . Thus a

circle of radius ε about the origin, call it T , may be expanded without hitting without hitting br or pole

until it has radius 1/4, which circle we call T ′. Lifting the homotopy from T to T ′ into the algebraic curve

P (z, f) = 0 yields a homotopy

Yt(θ) := (teiθ, F (teiθ))

between circles T̃ and T̃ ′ within Ṽ.

We are now in a position to apply Theorem 3.4. This toy example is intended to explain the working parts of

the theorem, hence instead of actually applying the theorem we will follow the proof of the theorem to derive

the asymptotic expansion from Proposition 2.6 and Corollary 2.7. We begin by determining the oriented

stationary phase integral defined by the contour T̃ ′.

For z positive and sufficiently small, the branch of f that blows up at z = 0 takes positive real values, hence

the branch defining F will be the lower of two branches coalescing at 2 when z = 1/4. Because F (z) is the

smaller real root of P (z, f) = 0 for small positive real z, Lemma A.1 implies that T̃ ′ is positively oriented
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with respect to d(if). To see the significance of this, look on the right of Figure 3, where the z and f

coordinates of the circle T̃ ′ ⊆ Ṽ are shown. The projection of T̃ ′ to the f -coordinate is nondifferentiable at

z = 1/4 because the square root in f = (1±
√

1− 4z)/(2z) is the principal root (the one lying in the right

half plane); mapping the blue circle by 1 − 4z gives a circle tangent to the imaginary axis and lying in the

closed right half-plane, whence taking the principal square root produces a discontinuity in the argument

resulting in the nondifferentiability in the figure.

The phase φ(z, f) = log |z| on the circle T̃ ′ is constant. We can further deform T̃ ′ so that the f -coordinate

adheres locally to the line <(f) = 2, and so that the minimum of hr̂ is achieved strictly at (1/4, 2). This

illustrates that the imaginary direction is always a direction along which the height, in this case log |z|, will

have a local minimum.

Contours with phase minimized at (1/4, 2) are of course not unique. We could deform the f -coordinate to

a circle f = 2eiθ and the z-coordinate to z = (f − 1)/f2, for example, however in this case it is simplest

to choose the chain Γ obtained from deforming a small arc on the right of the circle to lie on the segment

f = 2 + it,−ε ≤ t ≤ ε. Along with z = (f − 1)/f2, this defines a parametrization of a curve, along which

the derivatives in Corollary 2.7 are computed with minimal effort. Reparametrizing everything in terms of

f , we get dz = (2− f)df/f3 and (f/z)dz = [(2− f)/(f − 1)]df and (4.1) becomes

an =
1

2πi

∫
Γ

z−nf
dz

z

=
1

2πi

∫
Γ

2− f
f − 1

e−nφ(f) df

where φ(f) = log z = log((f − 1)/f2) has power series expansion around f = 2 given by

φ(f) ≈ − log 4− 1

4
(f − 2)2 +

1

4
(f − 2)3 +O(f − 2)4 .

To fit into the set-up of Proposition 2.6, we need to recenter the critical point z = 1/4, f = 2 at the origin.

So by a shift of the coordinate, we get

an =
1

2πi

∫
Γ′

−f
f + 1

e−nφ(f+2) df (5.1)

=
1

2πi
en log(4)

∫
Γ′

−f
f + 1

e−nΦ(f) df (5.2) {eq:catalan}

where Φ(f) = φ(f + 2) + log(4) has power series expansion at the origin given by

Φ(f) ≈ −1

4
f2 +

1

4
f3 +O(f)4 .

Now we pull back the integral
∫

Γ′
−f
f+1e

−nΦ(f) df to R. We obtain∫
Γ′

−f
f + 1

e−nΦ(f) df ≈
∫ ε

ε

−it
1 + it

e−nΦ(it) i dt

where Φ(it) = log( 1+it
(2+it)2 )+log(4). Here, we use ≈ and ε because the portion of Γ away from the critical point

contributes exponentially small value to the integral. We can recognize the amplitude function A(t) = −it
1+it

and the phase function Φ(it).
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In Corollary 2.7, V = 1/2, A′(0) = −i, A′′(0) = −2,Φ′′′(0) = − 3i
2 . By Corollary 3.5, the choice of V 1/2 should

be the positive one. By (2.10), the leading constant C1 for the integral is
√

2. Therefore, Proposition 2.6

gives

an ≈ 1

2π
en log(4)

∫ ε

ε

−it
1 + it

e−nΦ(it) dt

≈ 1

2π
4n
(

2π

n

)1/2 (√
2 n−1

)
=

4n√
π
n−3/2

To sum up, we have derived asymnptotics for Catalan numbers by constructing an explicit lifting of the

univariate Cauchy integral to an integral within the algebraic curve zf2−f +1 = 0 that witness the Catalan

generating function as algebraic.

Theorem 3.4 automates most of this procedure. Having checked that (1/4, 2) is a minimal point, we apply

the theorem to (4.1) using Proposition 2.6 and its Corollary 2.7 for the computation. Plugging in A(f) = −f
f+1

and Φ(f) = log((f + 1)/(f + 2)2) + log(4) immediately yields ar = ±4nn−3/2/
√
π. The sign (should it be in

doubt) is determined by Lemma A.1 to be positive because the generating function F (z) = (1−
√

1− 4z)/(2z)

is the lower of two branches in a neighbrhood of the origin.

5.2 Assembly trees
{ss:assembly}

In this example d = 2 and F is the generating function for the number of assembly trees of the complete

bipartite graph, counted by the sizes of the left and right vertex sets [24]. This generating function is given

by

F (x, y) = 1−
√

(1− x)2 + (1− y)2 − 1

satisfying an obvious polynomial equation

P (F, x, y) := F 2 − 2F − x2 − y2 + 2x+ 2y = 0 .

The discriminant is given by

discr(P ) = (x− 1)2 + (y − 1)2 − 1 .

The branch locus br where this vanishes is the circle of radius 1 centered at (1, 1). The defining variety Ṽ is

the hyperboloid {P = 0} and the vertical tangent locus in Ṽ, which projects to b̃r, is the intersection of the

hyperboloid with the horizontal plane {f = 1}. The branch locus is depicted on the left of Figure 4, with Ṽ
and b̃r shown on the right.

Given a direction r̂ = (r̂, 1− r̂), there is a corresponding minimal point (x, y) on the branch locus, specifically

on the quarter-circle arc joining (1, 0) to (0, 1). This point is given by

x(r̂) =
1

2
+ r̂ −

√
1 + 4r̂ − 4r̂2

2
; y(r̂) =

3

2
− r̂ −

√
1 + 4r̂ − 4r̂2

2
.

The point (x(r̂), y(r̂)) lifts to a unique point (x(r̂), y(r̂), 1) in the hyperboloid where the two solutions of

P (x, y, f) coincide. It follows from (3.1) that, uniformly when r/s and s/r are bounded,

ar,s ∼ C(r + s)−2e−r log x(r̂)−s log y(r̂)
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Figure 4: Left: the branch locus br; Right: Ṽ, with b̃r shown in black {fig:assembly}

where r̂ := r/N , N := r + s, and C is given by computing the stationary phase integral (4.1) on a contour

passing through p := (x(r̂), y(r̂), 1).

Parametrizing Ṽ near p by x and f (we could have chosen f and any ax+ by other than the one orthogonal

to Ṽ) we rewrite f dx dy as fJ dx df where

J =
∂y

∂f
= −∂P/∂f

∂P/∂y
.

The exponential factor e−r log x(r̂)− s log y(r̂) =
(
x(r̂)−r̂y(r̂)r̂−1

)N
comes from the stationary phase integral∫

A(x, f)e−Nφ(x,f)dx df by Corollary 3.5 where φ(x, f) = r̂ log x+ (1− r̂) log(y(x, f)) and

A(x, f) :=
f · J

x · y(x, f)
=

f(1− f)

x y(x, f)(1− y(x, f))
;

here, y = 1−
√

1 + (1− f)2 − (1− x)2, taking the principal root which is well defined near (x(r̂), y(r̂), 1).

One can use either Proposition 2.6 or Corollary 2.7 to calculate the constant C1. In practice, we use

Corollary 2.7. This avoids computing H2(A · f2), which is not only messy but wasteful, computing out to

four partial derivatives when Corollary 2.7 shows that only third partial derivatives are required. Also, many

of the partial derivatives in (2.11) arise only in products with other partial derivatives, meaning that the

vanishing of some partial derivatives allow us to avoid the computation of many more. In this case, for

example, vanishing partial derivatives lead to the following simple expression for C1, all partial derivatives

being evaluated at x = x(r̂), f = 1.

C1 =
Affφxx

2
(φxxφff )

− 3
2 (5.3) {eq:assemblyC1}{eq:assemblyC1}

Having reduced the computation to the evaluation of partial derivatives of algebraic expressions, we illustrate

how computer algebra systems handling polynomial computations via Gröbner bases can be harnessed to

differentiate algebraic functions. Note that built-in differentiation operators in computer algebra systems

such as Sage and Maple do not handle radicals well. Compare (5.4), for example, with the expression taking

up a full line in line 45 of the online worksheet attached to [1].

The idea is that if the arguments to a function B(x1, . . . , xk) are algebraic expressions in other variables

yi,j , 1 ≤ i ≤ k, 1 ≤ j ≤ mi, then implicit differentiation can be used to compute derivatives of B as rational
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functions of all the variables involved. One can then clear denominators and eliminate the y variables to

obtain an algebraic representation for the derivatives of B. To illustrate: in the present example, we need to

compute Aff (x, f); originally A was represented as a rational function of x and y; reparametrizing by x and

f requires substituting an algebraic expression in x and f for y, via P (x, y, f) = 0. We then use the identity

∂A(x, y(x, f), f)

∂f
=
∂A(x, y, f)

∂f
+
∂A(x, y, f)

∂y

∂y(x, f)

∂f
.

Implicitly differentiating P , this becomes

∂A(x, y(x, f), f)

∂f
=
∂A(x, y, f)

∂f
− ∂A(x, y, f)

∂y

∂P/∂f

∂P/∂y
. .

Computing terms in (5.3) in this way represents Aff , φxx and φff as rational functions of x, f and y. A

Gröbner basis computation using P to eliminate y, and using the critical point equations to eliminate f and

x, one obtains a polynomial satisfied by r and Aff , another satisfied by r and φxx and a third satisfied by

r and φff . These polynomials are quadratic, leading to the following solutions by radicals:

Aff (x(r̂), 1) =
(−r̂ − 1)

√
−4r̂2 + 4r̂ + 1 + 2r̂2 − 3r̂ − 1

4r̂3(r̂ − 1)2

φff (x(r̂), 1) =
1 +
√
−4r̂2 + 4r̂ + 1

4r̂(r̂ − 1)

φxx(x(r̂), 1) =
(4r̂2 − 2r̂ − 1)

√
−4r̂2 + 4r̂ + 1 + 4r̂2 − 4r̂ − 1

16r̂3(r̂ − 1)2

These three polynomials, along with the polynomial relation between Aff , φxx, φff and C1 obtained from

squaring (5.3) and clearing denominators gives an elimination polynomial

(
r̂2 − r̂ − 1

4

)
C4

1 + 4 satisfied by

C1 and r̂, yielding the radical expression

C1 = − 2

(1 + 4r̂ − 4r̂2)1/4
. (5.4) {eq:simpleC1}{eq:simpleC1}

Putting this all together, using φ(x(r̂), 1) = r̂ log(x(r̂)) + (1 − r̂) log(y(r̂)) along with equation (4.1) and

Proposition 2.6, yields

ar ≈
−C1

2π

(
x(r̂)−r̂y(r̂)r̂−1

)N
N2

.

Expanding,

ar ≈

(
1

2
+ r̂ −

√
1 + 4r̂ − 4r̂2

2

)−Nr̂ (
3

2
− r̂ −

√
1 + 4r̂ − 4r̂2

2

)N(r̂−1)(
1

(1 + 4r̂ − 4r̂2)1/4π
N−2

)
where N = |r| and r̂ = r

|r| . For example, when r̂ = 1/2 and N is even, aN/2,N/2 ≈ 3.4142N (0.2677N−2),

agreeing with the value given by the considerably more complicated expression in [1, online attachment].
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5.3 Bi-colored Motzkin paths

A bicolored Motzkin path on the x-y plane starts at the origin and ends at the x-axis, never goes below

the x-axis and takes steps U = (1, 1), D = (1,−1), and two colored horizontal steps H1 = (1, 0) and

H2 = (1, 0). Let M2 be the set of bicolored Motzkin paths. Define u(M), d(M), h1(M), h2(M) to be the

number of U,D,H1, H2 steps in the bicolored Motzkin path M ∈M2 respectively. The generating function

F (x, y) =
∑
M∈M2 xd(M)+h1(M)yu(M)+h2(M) is counting the number of paths by the total number of D and

H1 steps and the total number of U and H2 steps. In particular, [xiyj ]F (x, y) is the number of such paths

with i steps in D and H1 and j steps in U and H2. [25, Lemma 2.1] shows that

F (x, y) =
1− x− y −

√
(1− x− y)2 − 4xy

2xy
.

Let r̂ = (r̂, 1− r̂) and let r = (r, s) = N r̂. We calculate the asymptotic formula for ar = [xr̂Ny(1−r̂)N ]F (x, y).

The minimal polynomial P (x, y, f) satisfying P (x, y, F (x, y)) = 0 is

P (x, y, f) = xyf2 + (x+ y − 1)f + 1 .

Notice that P satisfies all four assumptions in Table 1.

The discriminant is given by

discr(P ) = (1− x− y)2 − 4xy .

Given r̂ = (r̂, 1− r̂) with 0 < r̂ < 1, there is one minimal critical point on the branch locus, given by

x(r̂) = r̂2, y(r̂) = r̂2 − 2r̂ + 1.

The point (x(r̂), y(r̂)) lifts to a unique point p = (x(r̂), y(r̂), f(r̂)) where f(r̂) = − r̂
2 − r̂ + 1

(r̂ − 1)r̂
. The branch

defining F is the lower of two branches, the other being at +∞. Hence, the rank of f0 = F (0, 0) = 1 is 2.

Therefore, when we apply Corollary 3.5, we don’t need to flip the sign.

Next, we parametrize near p by x and f coordinates. The Jacobian is J = ∂y/∂f is −Pf/Py, the amplitude

function is A(x, f) = fJ/(x · y(x, f)), and the phase function is φ(x, f) = r̂ log(x) + (1− r̂) log(y(x, f)). By

Proposition 2.6, equation (4.1) becomes

ar ≈
(

1

2πi

)2

e−Nφ(x(r̂),f(r̂))

(
2π

N

)
C1N

−1

=

(
1

2πi

)2

(x(r̂)−Nr̂y(r̂)−N(1−r̂))

(
2π

N

)
C1N

−1

= − 1

2π

(
r̂−2Nr̂(r̂ − 1)2N(r̂−1)

)
C1N

−2 ,

where the constant C1 is computed by Corollary 2.7. None of partial derivatives of A and φ involved in (2.11)

of Corollary 2.7 vanishes at the critical point. However, when pieced together, they yield a simple form for

the constant C1:

C1 = − 1

2(detH)1/2

2

r̂2(r̂ − 1)
.

Furthermore, detH = (1− r̂)2, with Corollary 3.5 specifying that the choice (detH)1/2 is to be interpreted

as −
√

detH, in other words, the negative real root. Therefore, C1 = −1/(r̂2(r̂ − 1)2) and

ar ≈
(

1

r̂2r̂ (1− r̂)2(1−r̂)

)N
1

2πr̂2(r̂ − 1)2
N−2 .
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5.4 0-2-5 Trees

The usual definition of a binary tree is a rooted tree in which each vertex has either zero or two children.

The number of binary trees with n nodes is the nth Catalan number, due to the recursion satisfied by binary

trees, as follows. If we allow the empty tree, a binary tree is either empty, or a root with a left and right

subtree. Thus, the generating function f(z) :=
∑∞
n=0 anz

n for the numbers an of n-vertex binary trees is

equal to 1 + zf(z)2.

One can generalize this to allow the number of children to be either zero or a member of a given subset

E of the positive integers. Such trees can be counted by the number of nodes having m children, for each

m ∈ E. When E is a finite set, this leads to an algebraic generating function in finitely many variables. The

numbers nj of vertices having j children in such a tree, if non-empty, satisfy the linear relation:

N := n0 +
∑
j∈E

nj = 1 +
∑
j∈E

jnj .

For this reason, the number of independent statistics by which these trees can be counted is |E| rather than

|E|+ 1; for example, one might keep track of N and all but one of the nj .

This subsection analyzes one example, E = {2, 5}, in other words, trees where every vertex has zero, two or

five children. Let aij count 0-2-5 trees T with N(T ) = j and n5(T ) = i. Let F (y, z) =
∑
i,j≥0 aijy

izj . The

relation F (y, z) = 1+z[((F (y, z)−1)2 +1) +y(F (y, z)−1)5] follows from the recursive description of a 0-2-5

tree as either being empty or consisting of a root and either zero or two trees (counted by 1 or (F − 1)2,

respectively), or five subtrees (counted by (F − 1)5 with an extra factor of y to keep track of the addition of

a 5-child vertex). The total number N(T ) of a nonempty such tree T is equal to 1 + 2n2(T ) + 5n5(T ).

When counting by N and n5, there is a periodicity because N − 1 − 5n5 = 2n2 implies N + n5 ≡ 1 mod 2.

Therefore, the generating function has nonconstant terms only of odd total degree5. In classical generating

function singularity analyses, periodicity is reflected by summing asymptotic series around more than one

critical point; the coordinates of the critical points differ by factors that are roots of unity; see, e.g., [26]

for a discussion of the univariate case. The same holds for the present analysis. Because F − 1 is an odd

function, critical points come in pairs (x, y) and (−x,−y), whose asymptotics series exactly cancel in even

degrees (as we know they must, to produce zero) and are equal in odd degrees.

Let P (y, z, f) = 1− f + z[((f − 1)2− 1) + y(f − 1)5]. Then P (y, z, F ) = 0 and F (0, 0) = 1 uniquely specifies

F as an algebraic function, analytic in a neighborhood of the origin in C2. We chose the class of 0-2-5 trees

to analyze rather than, say, 0-2-3 trees, in order to show that nothing changes when F cannot be expressed

via radicals. The term with the highest degree in f is the f5 term, whose coefficient is xy. Therefore, the

pole variety pole is the union of two coordinate axes, and the expanding torus will not run into it. Using

computer algebra, we verify that P defines a smooth variety and compute the branch locus br defined by

the discriminant

discr(P ) = 3125y2z5 − 2250yz4 + 108z5 + 1600yz2 − 27z3 − 256y .

As expected, this is an odd function, meaning that discr(P )(−y,−z) = −discr(P )(y, z), and leading to an

antipodal symmetry among roots (y, z) of the discriminant. However, the polynomial P has degree 5 in f ,

5Indeed, this can be detected directly from the annihilating polynomial P . In this case, for example, letting F = G− 1, the

defining polynomial is G = z(1 +G2 + yG5); the support (the exponents of monomials) is {(0, 0, 1), (1, 0, 0), (1, 0, 2), (1, 1, 5)},
which is contained in the odd sublattice of Z3.
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violating the last assumption in Table 1 and requiring extra care. To carry out the branch determination

in Conclusion 1 of Theorem 3.4 we determine the rank of F (0, 0) = 1 within the ordering of real roots

of P (0, 0, ·). A little extra work is needed in this case because the coefficients of P (0, 0, ·) vanish beyond

degree 1, so four of the five roots are at infinity. Computing Puiseux expansions, we see that the roots of

P (ε, ε, ·) occur at roughly 1 + ε,±ε−1/2 and c± iε−1/2. We see that three are real, and that F (0) is the limit

of the middle one of the three.

Critical points in the direction n5/N = r̂/(1− r̂) correspond to the equation Q := r̂z Pz − (1− r̂)y Py = 0.

Computing a Gröbner basis for the ideal generated Q,P and ∂P/∂f gives the generators [
(
4 r̂2 − 8 r̂ + 4

)
z2+

12 r̂2 + 4 r̂− 1,
(
216 r̂3 − 108 r̂2 + 18 r̂ − 1

)
y−

(
8 r̂3 − 4 r̂2 − 4 r̂

)
z, (2 r̂ − 2) z+ (2 r̂ + 1) f − 2 r̂− 1], in other

words, precisely two points (y0, z0, f0) and (−y0,−z0, 2 − f0). Projected to the y-z plane, both of these lie

on the same centered torus. We verify, using the techniques described in Section 4.3, that the positive point

is a minimal point for discr(P ) in direction n5/N = r̂/(1 − r̂), hence both points are. Computer algebra

output of this verification is omitted.

To complete the homotopy continuation, we check that the critical point is on the same branch of F as is

(0, 0, 1). It suffices to check this for any single r̂ in the feasible interval (0, 1/6), as long as we also check

that roots do not coalesce further for any value of r̂ in this interval, which follows from checking that along

the subset of the curve in the (y, z)-plane defined by discr(P ) parametrized by 0 < r < 1/6, the polynomial

F (x(r), y(r), ·) always has precisely one doubled root, never more. Computer algebra output is again omitted.

Now we set r̂ = 1/11, obtaining the Gröbner basis [400 z2 − 65, 125y + 520 z,−13 − 20 z + 13 f ]. At the

positive real point (y0, z0) on this curve, the defining polynomial factors into(
26 f3 +

(
4
√

65− 78
)
f2 +

(
108− 8

√
65
)
f + 9

√
65− 56

)(
−13 f + 13 +

√
65
)2

Then f0 is the root of the second polynomial, roughly 1.62. This root is doubled and greater than the third

real root, which is roughly −0.28, coming from the first polynomial. Therefore the branch of F containing

the initial condition (0, 0, 1) is the lower of two branches passing through (y0, z0, f0), and lifting a homotopy

from T to the torus T ′ through (y0, z0, f0) yields a homotopy of T̃ to T̃ ′, a torus in the pre-image π−1T ′

that passes through (y0, z0, f0) with positive orientation and is supported at height lower that h1/11(y, z)

elsewhere.

The upshot of this is that we have verified that the coefficients ar of the generating function F for 0-2-5-trees

counted by total nodes and outdegree-5 nodes can be estimated by the integral(
1

2πi

)2 ∫
T̃ ′

exp(−Nφ)fdz dy (5.5) {eq:025integral}{eq:025integral}

over a positively oriented T̃ ′ ⊆ Ṽ that passes through the points (y0, z0, f0) and (−y0,−z0, 2− f0), at which

it is stationary for the phase function φ = r̂ log y+ (1− r̂) log z. We may compute the result for the positive

point only and double it to estimate all ars with r + s odd, the even coefficients being zero.

Given a direction r̂ = (r̂, 1− r̂), we calculate the asymptotics of ar where r = N r̂, Nr̂ ∈ N, and N(1− r̂) ∈ N.

To make ar have combinatorical meaning, we restrict 0 < r̂ < 1/6. There are two antipodal minimal critical

points on the branch locus defined by the discriminant, the positive one of which is

y0(r̂) = −2(2r̂ + 1)r̂
√
−12r̂2 − 4r̂ + 1

(6r̂ − 1)3
z0(r̂) = −

√
−12r̂2 − 4r̂ + 1

2(r̂ − 1)
.
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This lifts uniquely to the vertical tangent locus at (y0, z0, f0); we will not need an explicit expression for f0;

moreover, we omit the argument r̂ unless comparing expressions for different directions. The exponential

growth rate is
(
y−r̂0 zr̂−1

0

)N
.

By Proposition 2.6, the next thing left to calculate in the integral (5.5) is the constant term C1. We show

the C1 for the integral (5.5) at the critical point (y0, z0, f0). That of the integral at the other critical point

is the same. We parametrize near (y0, z0, f0) using the z − f coordinates. The Jacobian J := ∂y/∂f at

(y0, z0, f0) is −Pf/Py evaluated at the point. The amplitude function A is fJ/(yz) and the phase function

φ is r̂ log(y) + (1 − r̂) log(z). Using the techniques of implicit differentiation introduced in Section 5.2, we

can calculate every partial derivatives of A and φ needed in Corollary 2.7. Unlike Section 5.2, none of these

partial derivatives vanishes. The good news is that the calculation shows that these partial derivatives at the

critical point do not depend on the critical point they are evaluated at. For example, at the critical point,

φzf = −8(r̂ − 1)2/(6r̂ − 1), which doesn’t involve any y, z or f in which we need to plug y0, z0 and f0. All

partial derivatives in (2.11) for these two critical points are the same and so the constants C1 are the same.

In particular,

C1 =
2(1− r̂)

r̂
√

1− 6r̂
√

1 + 2r̂(detH)1/2

where detH =
4(1− r̂)3(1 + 2r̂)

(1− 6r̂)r̂
. The square root on detH is chosen to be −

√
detH by Corollary 3.5.

Therefore,

C1 = − 1√
r̂
√

1− r̂(1 + 2r̂)
.

Combining everything together, by Proposition 2.6, the integral 5.5 at the critical point (y0, z0, f0) is(
1

2πi

)2 ∫
T̃ ′

exp(−Nφ)fdz dy ≈
(

1

2πi

)2 (
y−r̂0 zr̂−1

0

)N 2π

N
C1N

−1

=

(
y−r̂0 zr̂−1

0

)N
2π
√
r̂
√

1− r̂(1 + 2r̂)
N−2

When N is even the parity constraint implies ar = 0. When N is odd, the two critical points contribute

equally to the asymptotics, leading to

ar =

(
y−r̂0 zr̂−1

0

)N
π
√
r̂
√

1− r̂(1 + 2r̂)
N−2 .

For example, when r̂ = (1/11, 10/11), one obtains aN/11,10N/11 ≈ 2.1792N

0.3397πN
−2 for N an odd multiple of 11.

When r̂ = 0, we are counting binary trees. The number of binary trees with N nodes is the ((N − 1)/2)-th

Catalan number. We can see that the exponential growth rate of ar here agrees with that in Section 5.1 in

this case, both yielding (2 + o(1))N .
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A Appendix: orientation
{sec:orientation}

We recall those hypotheses from Theorem 3.4 that will be needed for sign determination. The first two follow

from the standing hypotheses preceding the theorem.

real The defining polynomial P = P (z, f) is real.

branches All roots of the restriction of P to the F axis are simple (i.e. discr(0) 6= 0), and one of them defines

the generating function F we consider.

boundary The polydisk of convergence of F has radii (ep1 , . . . , epd), and the corresponding point p = (p1, . . . , pd)

lies on the boundary of the component of the complement to the amoeba of the discriminant discr

(and is inside the same component of the complement to the amoeba of the leading coefficient of P ,

as image of the small torus).

simple The vertical fiber {z = z∗} has a simple tangency to the variety {P = 0} at the real point (z∗, f∗);

here z∗ = (ep1 , . . . , epd) and f∗ = limz→z∗ fj(z).

convex The logarithmic Gauss map br→ CPd−1 is strongly convex, meaning quadratically nondegenerate at

z∗ (here br = {discr = 0}).

If (z∗, f∗) ∈ Ṽ is a critical point of the phase |zr|, it follows that near that critical point, the defining

polynomial P can be represented as

P = r̂ · (z− z∗) + q(z− z∗, f − f∗) (A.1) {eq:eq}{eq:eq}
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where q = Q + R3, where Q is a real quadratic form, Rk, here and throughout, denotes a remainder term

vanishes to order k in f − f∗ and z− z∗. {lem:orient roots}

Lemma A.1. Assume the hypotheses of the theorem. Let F be algebraic function, and r̂ is the logarithmic

gradient of the discriminant at z∗. Then

1. The lift of a small d-torus Tε around the origin to the branch of Ṽ defining f = fj is homologous (can

be in fact deformed within the space of embeddings into Ṽ) to a d-torus T∗ ∈ Ṽ passing through z∗
so that the restriction of the phase function |zr̂| to T∗ attains its global maximum at (z∗, f∗), and is

Morse there.

2. Let η be a (d − 1) holomorphic form defined in a vicinity of z∗, such that dφ ∧ η = ω , where ω :=∏
k

1
2πi

dzk
zk

. Then df ∧ η defines the orientation on T∗ (near (z∗, f∗)) consistent with the orientation

inherited from the the orientation of Tε if the real branch of f approaches f∗ from below, and with

opposite orientation if the real branch of f approaches f∗ from above.

Remark. The second claim of the proposition seems to depend unexpectedly on the orientation of the f axis;

we remark that the integrated form includes a factor ∂q/∂f , which flips sign together with df , leaving the

final integral invariant with respect to such flips.

Proof: To prove the first claim, we can consider a radii increasing homotopy of the tori in the z-space to

the torus whose radii given by exp(p). During this expansion, up to the last point, all the tori are disjoint

from br, hence, over the domain of this deformation, the projection Ṽ∗ → Cd∗ is a covering, and the homotopy

can be lifted to Ṽ, producing at time t = 1 the torus T̃ ′. For ε > 0 sufficiently small, we will need to analyze

the time-(1− ε) torus, which we denote by T−.

We switch to local exponential coordinate chart centered at p∗: we chose the real at p∗ branch of the

logarithm, and denote all variables in log space by upper case letters, except for p. Thus, zk = exp(pk+Zk),

with Zk = Xk + iYk. We do the same with the f coordinate: f = f∗ exp(G+ iH).

One can always perform a real translation and linear volume preserving transformation on Z so that in the

new coordinates (W1, . . . ,Wd) we have W1 = r̂ ·Z. Further, we can choose the W1 axis and the deformation

of tori so that it ends with a short segment on the negative half-axis W1.

All these transformations together result in the local description of the variety V in the new coordinates

(F,W1,W) (here W = (W2, . . . ,Wd)) as

V = {W1 = φ(F,W)}, (A.2) {eq:local}{eq:local}

with φ vanishing at the origin to order 2.

The [simple] condition implies that we can expand the quadratic part φ2 of φ as (the reason for the signs

will become clearer later):

φ2 = −aF 2 + 2Fb ·W − q(W) .

Here, b is a real covector, and q is a real quadratic form.

By the [branches] condition, two real branches of f merge at z∗ when z follows the homotopy from the origin

to ep∗ , implying that for ε > 0 there are real solutions to −ε = −aF 2 + R3, obtained by setting W = 0 in

(A.2), so that a > 0.
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As the logarithmic coordinate change acts in each coordinate independently, the discriminant can be com-

puted in logarithmic coordinates. This can be accomplished by eliminating F from an equation that tracks

sufficiently many terms to give us the leading (quadratic) expression for W1 in terms of the other variables:

0 =
∂φ

∂F
= −2aF + 2b ·W +R2;W1 = φ(F,W) .

This results in

W1 =
(b ·W)2

a
− q(W) +R3

as the local equation defining the discriminant variety br.

The real part of br projects under the log mapping to the contour of the amoeba of discr(P ). The [convex]

condition implies that the contour near the origin is smooth, coincides with the boundary of the amoeba,

and is quadratically convex, hence the quadratic form
(b ·W)2

a
− q(W) is negative definite.

After these preliminaries, we can look at the lift of the torus T−, i.e., the intersection of the preimage of

the torus in Cd under the projection along F with the variety Ṽ. In our local log coordinates, where we

denote the real and imaginary parts as Wk = Uk + iVk, k = 2, . . . , d, this preimage corresponds to setting

W1 = −ε+ iV1,Wk = iVk, k ≥ 2, and F = G+ iH.

Expanding the terms above, we arrive at

−ε+ iV1 = −a(G2 −H2)− 2aiGH + 2Gb · iV + 2iHb · iV + q(V) +R3

where the indices of V run from 2 to d, that is, V = (V2, . . . , Vd). The real part of this equation is

aG2 = ε+ aH2 − 2Hb ·V + q(V) = ε+ a(H − b ·V/a)2 − (b ·V)2/a+ q(V) +R3.

The quadratic form on right hand side above is positive definite because (b·V)2/a−q(V) is negative definite.

Hence, for small ε > 0, the equation above defines a hypersurface diffeomorphic to a two-sheeted hyperboloid

in the (G,H,V) space. The sign of G on the branch below the merge point, is negative; above, positive.

Projection of this surface to H,V gives coordinates on the sheet, so that G becomes a function of H,V.

Now, one can also express

V1 = −2aGH + 2Gb ·V +R3 .

This shows that locally, the chain T− can be locally coordinatized by H,V.

In our new coordinates the real part of the phase is U1; the torus T− is situated at the level set of the phase.

Outside a vicinity of (z∗, f∗) the gradient of the phase φ is non-vanishing, and, by compactness, one can

deform the chain there to the zero sublevel set of <{φ}. Within the vicinity of the critical point, one can

use the coordinatization by H,V to deform the chain to the d-space spanned by H,V: along that subspace,

U1 = Re(φ(F,W)) = aH2 + q(V) +R3

showing U1 to be Morse and positive definite.

To compute the orientation, we represent ω = (2πi)−ddW1 ∧ · · · ∧ dWd in local logarithmic coordinates. On

the variety Ṽ one has, using (A.2)

ω =
1

(2πi)d
∂φ

∂F
dF ∧ dW
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where dW := dW2 ∧ · · · ∧ dWd.

Coordinatizing the variety Ṽ locally by F,W, we obtain

ω =
−2

(2πi)d
(aF − b ·W)dF ∧ dW .

At the point where W1 = −ε and W = 0, this reduces to

ω =
−2

(2π)d
(aG) dH ∧ dV .

Thus ω is a positive multiple of dF ∧ dW on T− on the branch where G < 0, i.e. f < f∗, and negative

where f > f∗. Equivalently, the orientation is given by dH ∧ dY2 ∧ . . . ∧ dYd on the lower branch of f , and

is opposite that on the upper branch. 2

30


	Introduction
	Integral representations
	Notation
	Integration upstairs
	Stationary phase integration
	The lifting method

	Main results
	Proofs and effective procedures
	Proof of Theorem 3.4
	Proof of Theorem 3.6
	Verification of minimal points

	Worked examples
	Toy example: Catalan GF
	Assembly trees
	Bi-colored Motzkin paths
	0-2-5 Trees

	Appendix: orientation

