Beta priors and posteriors.

(a) Construct a model in which p is a parameter picked according to a probability distribution μ on $[0, 1]$ and (given that) $\{X_n\}$ are IID Bernoulli variables with mean p. You should have a formal probability space on which p and the X_n are random variables with the correct properties.

(b) What is the conditional distribution $(p | X_1)$ of p given X_1? This is called the **posterior** distribution of p given the prior distribution μ and data X_1.

NOTE: This part is the heart of this exercise. The way to rigourously compute a conditional distribution is to guess and verify.

(c) What is the posterior after seeing n bits of data, that is, what is $(p | X_1, \ldots, X_n)$?

(d) Specialize to $\mu \sim \beta(a, b)$, that is, a beta distribution with parameters a and b. What is $(p | X_1)$? What is $P(X_2 = 1 | X_1 = 1)$?

(e) In the case $\mu \sim \beta(a, b)$ what is $(p | X_1, \ldots, X_n)$?

(f) What is $P(X_{n+1} = 1 | X_1, \ldots, X_n)$?