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An alternating sign matrix is a square matrix such that (i) all entries are 1, -1, 
or 0, (ii) every row and column has sum 1, and (iii) in every row and column the 
nonzero entries alternate in sign. Striking numerical evidence of a connection 
between these matrices and the descending plane partitions introduced by Andrews 
(Invent. Math. 53 (1979), 193-225) have been discovered, but attempts to prove 
the existence of such a connection have been unsuccessful. This evidence, however, 
did suggest a method of proving the Andrews conjecture on descending plane 
partitions, which in turn suggested a method of proving the Macdonald conjecture 
on cyclically symmetric plane partitions (Znuent. Math. 66 (1982), 73-87). In this 
paper is a discussion of alternating sign matrices and descending plane partitions, 
and several conjectures and theorems about them are presented. 

1. DEFINITIONS 

We begin with a definition. 

DEFINITION 1. An alternating sign matrix is a square matrix which 
satisfies: 

(i) all entries are 1, -1, or 0, 

(ii) every row and column has sum 1, 

(iii) in every row and column the nonzero entries alternate in sign. 

All permutation matrices are alternating sign matrices. For 1 x 1 and 
2 x 2 matrices these are the only alternating sign matrices. There are exactly 
seven alternating sign 3 X 3 matrices, six permutation matrices and the 
matrix 
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There are 42 alternating sign 4 X 4 matrices, 24 permutation matrices, 16 
with one -1, and 2 with two -1’s. 

Let A, be the number of n x n alternating sign matrices, and set 

n-1 (3k + l)! 
D(n) = kco (n + k)! * 

We have observed that A, = D(n) for n < 10. Thus, we make the following 
conjecture: 

Conjecture 1. A, = D(n) for all n. 

We shall give additional numerical results that support this conjecture in 
the next section. 

DEFINITION 2. A shifted plane partition is an array rr = (aij) of positive 
integers, defined only for j > i, that has nonincreasing rows and columns, 
and that can be written in the form 

Qll al2 aI3 .-a alu, 

a22 a23 .a- Q2&2 
. . . 

where: 

(0 rul 2~~ > -a. 2.4, 

(ii) aij > ai,j+ 1 whenever both sides are defined, 

(iii) aij > a,, ,,j whenever both sides are defined. 

For technical reasons the empty array 0 is taken to be a shifted plane 
partition. The parts of a shifted plane partition are the numbers that appear 
in the array. The weight of a shifted plane partition is the sum of its parts. 

With such a partition we associate its “Ferrers graph” F(n), which is the 
set of all integer points (i, j, k) for which aij is defined and 1 < k < aij. 

DEFINITION 3. A strict shifted plane partition is a shifted plane partition 
in which condition (iii) is replaced by 

(iv) aij > ai+lj whenever both sides are defined. 

Thus the term strict means that the columns are strictly decreasing. 

DEFINITION 4. A descending plane partition is a strict shifted plane 
partition such that: 
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(v) qi>l,, 1 Qi<r, 

(vi) qi<l,-,, 1 < i<r, 

where Ai =,q - i + 1 is the number of elements in the ith row. 

Conditions (v) and (vi) imply condition (i). 
R. P. Stanley observed that D(n) is the number of descending plane 

partitions with no parts exceeding IZ, a result that has been proved by 
Andrews [ 11. A simpler proof can be found in [2]. It was this observation 
that gave rise to our interest in descending plane partitions and eventually to 
many of the results in this paper. 

For example there are exactly seven descending plane partitions with parts 
not exceeding 3. These are 

0, 2, 3, 3 1, 3 2, 3 3, 3 3, 
2 

which is in agreement with the number of 3 x 3 alternating sign matrices. 

2. REFINEMENTS OF THE MAIN CONJECTURE 

In this section we discuss two more conjectures, each of which implies 
our main conjecture. Conjecture 2 is a simple refinement of Conjecture 1, 
which involves alternating sign matrices only. It was Conjecture 2 that 
actually came first and led us directly to Conjecture 1. Conjecture 3 suggests 
the existence of a “natural” one-to-one correspondence between n x n alter- 
nating sign matrices and descending plane partitions with no parts exceeding 
n. Since we already know that the number of such descending plane 
partitions is D(n), this one-to-one correspondence would establish Con- 
jecture 1. 

We note that an alternating sign matrix has a single nonzero element in 
the top row, which must be a 1. We classify the alternating sign matrices by 
where this 1 occurs. Thus, we let A(n, k) denote the number of n x n alter- 
nating sign matrices with the 1 in the top row occurring in the kth position. 
It is sometimes convenient to write the A(n, k) as a sort of Pascal’s triangle 
of counts, 

1 1 
2 3 2 

7 14 14 7 
42 105 135 105 42 

., 
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where the nth row contains A@, l), A@, 2),..., A@, n). For example, there 
are exactly 14 alternating sign 4 x 4 matrices with a 1 in the second position 
of the top row. 

We now consider the ratios between horizontally adjacent entries in each 
row. If we insert these ratios, scaled as shown, between the corresponding 
elements in our triangle, then we get 

1 
1 2:2 1 

2 2~3 3 3~2 2 
7 2~4 14 5~5 14 4~2 7 

42 2:5 105 7:9 135 9:7 105 5~2 42 

. . 

We notice that the left and right sides of these ratios separately satisfy the 
recursion of Pascal’s triangle. In other words, the sum of two consecutive left 
sides of ratios in any row is equal to the left side of the appropriate ratio in 
the next row, and similarly for the right sides of the ratios. This observation 
and the obvious boundary conditions are equivalent to 

Conjecture 2. If 0 < k < n, then 

A(n,k+ l)/A(n,k)=(n-k)(n+k- l)/k(2n-k- 1). 

This conjecture has been verified numerically for n < 10. We will next show 
that it implies Conjecture 1. 

First, we note that 

A,= 5 A(n,k). 
k=l 

(1) 

Secondly, if an n x n alternating sign matrix has a 1 in its upper left-hand 
corner, then the other elements of the first row and the first column are all 
zero, and furthermore the other rows and columns form an (n - 1) x (n - 1) 
alternating sign matrix. Thus, we have 

A(n, 1)=/i,-,. (2) 

Now, suppose that Conjecture 2 holds. Then we have 

A (n, r) -= 
ify (n-k)(n+k- 1) 

A@, 1) k=l k(h-k- 1) 
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Summing this over r, using (1) and (2), and replacing n by IZ + 1, we obtain 

A 
n+’ - 

‘!! A(n + 1,r) 

An ii A(n + 1, 1) r=1 

= zy (“‘i-‘)(“y+l)/( ‘n”) 
=rgo(n;r)(2n;r)/(‘n”)=(3nn+1)/( ‘,“). 

On the other hand, we have 

qn + 1) D(n) = (‘7 l ,ict: 19 
and A, = 1 = D(1). It follows that if Conjecture 2 holds, then A,, = D(n) for 
all n, which is Conjecture 1. 

It is easy to show that Conjecture 2 holds for k = 1 and hence, for 
k = n - 1. So far we have been unable to handle even k = 2. 

We now discuss the evidence in favor of a “natural” one-to-one correspon- 
dence between alternating sign matrices and descending plane partitions. 

A descending plane partition with no parts exceeding n can have at most 
n - 1 parts that are equal to II. Let D(n, k) denote the number of descending 
plane partitions with no parts exceeding IZ, that contain exactly k - 1 parts 
that are equal to n. We have verified that A(n, k) = D(n, k) for n < 10 and 
indeed we conjecture that this is true for all n. This is actually a consequence 
of our next conjecture, so we shall not list it separately. 

Suppose that M = (aii) is an alternating sign matrix. We define the 
number of inversions in M to be 2 UiiUkl’ where the summation is over all 
i, j, k, I such that i < k and j > 1. It is easy to see that this generalizes the 
usual notion of inversions for permutation matrices. It can be shown that the 
number of inversions is a nonnegative integer. Our numerical evidence 
strongly suggests that the number of inversions of an alternating sign matrix 
corresponds to the number of parts in a descending plane partition. 

Another number associated with an alternating sign matrix is the number 
of -I’s in it. We shall say that a part aij of a descending plane partition is 
special if aii < j - i, i.e., if aij does not exceed the number of entries to its left 
in its row. The -1’s in an alternating sign matrix appear to correspond to the 
special elements of a descending plane partition. Indeed, we make 

Conjecture 3. Suppose that n, k, m, p are nonnegative integers, 1 < k < n. 
Let d(n, k, m, p) be the set of alternating sign matrices such that 

(i) the size of the matrix is n X n, 

(ii) the 1 in the top row occurs in position k, 
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(iii) the number of -1’s in the matrix is m, 

(iv) the number of inversions in the matrix is p. 

On the other hand, let G?(n, k, m, p) be the set of descending plane partitions 
such that 

(I) no parts exceed n, 

(II) there are exactly k - 1 parts equal to n, 

(III) there are exactly m special parts, 

(IV) there are a total of p parts. 

Then J(n, k, m, p) and GZ(n, k, m, p) have the same cardinality. 

Conjecture 3 has been verified numerically for all n < 7. It has been 
proved for the case m = 0, as well as for a number of additional special 
cases. 

As an example consider the case n = 5, k = 3, m = 1, p = 4. Here, 
~/(5, 3, 1,4) consists of the following 10 alternating sign matrices: 

t 

0 0 1 0 0 
1 o-1 1 0 
0 1 0 0 0 
0 0 0 0 1 
0 0 1 0 0 

i 

0 0 1 0 0’ 
1 0 0 0 0 
0 l-l 10 
0 0 0 0 1 
0 0 1 0 0 

i 

00100 
1 0 0 0 0 
0 0 0 1 0 
0 1 o-1 1 
0 0 0 1 0 

i 0 00100, 0 0 1 0 o-1 0 1 0 0 1 0 0 0 1 0 0 0 1 i i 00100 0 0 0 1 0 0 0 l-l 0 0 1 0 0 0 1 0 0 0 1 1 ) 

i 0 0 00100 0 10000, 0 0 l-l 0 1 0 0 10 0 1 i 

i 0 0 0 0 1 0 o-1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 . 

i 

00100 
1 o-1 0 1 

i i 

01000, 
0 0 1 0 0 
0 0 0 1 0 

0 0 1 0 0 
1 0 0 0 0 

! i 

00010, 
0 l-l 0 1 
00100 

00100 
0 1 0 0 0 

t i 

l-l 0 10 ) 
0 1 0 0 0 
0 0 0 0 1 
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In this case, 9(5, 3, 1,4) consists of the following 10 descending plane par- 
titions: 

5 5 3 1, 5 5 3 2, 5 5 3 3, 5 5 4 1, 5542, 5 5 4 3, 

5 5 1, 5 5 1, 5 5 2, 5 5 2. 

2 3 2 3 

We now set D(n, k, m, p) = I@@, k, m, p)l, the number of descending 
plane partitions in g(n, k, m, p). We have obtained the following generating 
function identity: 

x D(n, k, m, p) wk-‘xmyP = det(G + Zn--l), 
k,m.P 

where I,,-, is the (n - 1) x (n - 1) identity matrix and G is the 
(n - 1) x (n - 1) matrix given by 

for l<i<n-2, l<j<n-1;and 

for l<j<n-1. 
We intend to derive this identity in a subsequent paper. It is analogous to 

a generating function identity proved by Andrews [ 11. 

3. THE PARTIAL ORDERING OF DESCENDING PLANE PARTITIONS 

Let g,, be the set of all descending plane partitions with no parts 
exceeding n. In this section, we define a partial ordering for this set of 
descending plane partitions. Thus, we can regard gE as a partially ordered 
set, and we shall show that this partially ordered set has a unique 
antiautomorphism. We have adopted the working hypothesis that this 
antiautomorphism corresponds to the reversal of the order of the columns of 
alternating sign matrices. This hypothesis has led to several of the 
conjectures in this paper, most notably Conjecture 3 and its symmetric 
variation Conjecture 3S, that appears at the end of this section. 

Let 7c = (ail) and K, = (b,) be descending plane partitions. We shall write 
K > n, if a,/ is defined and aij > b, for all i and j for which b, is defined. 
This defines a partial ordering among the descending plane partitions. It can 
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be readily verified that this ordering gives us a lattice of descending plane 
partitions. 

We shall write 7~ > rri if rr > rri and 71 # z,. 
If YZ = (a,,) is a descending plane partition, we set w(n) = C uii - r, where 

the summation is over all parts of 7c and I is the number of rows of 7~. Since 
a,, > 1, we have w(n) > w(x,) whenever 71 > rrl. If rr > xi and w(n) = 
w(n,) + 1 we shall say that K is a successor of rr, and that rr, is a predecessor 
of 7~. This can happen in three ways; (i) 7r1 is obtained from K by subtracting 
1 from one of its parts, (ii) the last part of one of the rows of 7c is a 1 and n, 
is obtained from 71 by removing this part, and (iii) K has a bottom row that 
consists of the single part 2, and 71, is obtained from 7c by removing this 
bottom row. It is easily seen that ncl is a predecessor of rc if and only if 71, is 
a maximal element satisfying n, < x in the partially ordered set of 
descending plane partitions. 

We shall show that there is a unique one-to-one mapping r of 9Zn onto 
itself such that r(7~i) > r(n) if and only if K > n,. Thus t is an 
antiautomorphism of the partially ordered set G9”. 

We begin by showing that there cannot be more than one such 7. If r, and 
r2 both satisfy the above conditions, then r,r;’ is an automorphism of the 
partially ordered set g”. Thus it is sufficient to prove that the identity is the 
only automorphism of the partially ordered set &9,, . We need two preliminary 
lemmas. 

LEMMA 1. Suppose that n > 4 and that < is an automorphism of the 
partially ordered set 9,, . Then, ((3 1) = 3 1. 

Proof. Let < be any automorphism of the partially ordered set @,,. We 
have w(<(n)) = w(a) for all 71 in aa. 

There are exactly three descending plane partitions K such that w(n) = 4. 
These are the one-rowed partitions 5, 4 1, and 3 2. (Of course the first of 
these is not in G9,, if n = 4.) Of these, 4 1 is the only one with two 
predecessors. Therefore we have c(4 1) = 4 1. 

The one-rowed descending plane partition 4 1 1 is characterized by the 
fact that 4 1 is its only predecessor. Therefore, we have ((4 1 1) = 4 1 1. 

Now 4 4 is the only descending plane partition 71 with exactly one 
predecessor such that w(n) = 7, K > 4 1, but K > 4 1 1 does not hold. It 
follows that, c(4 4) = 4 4. 

The partition 3 2 is the only descending plane partition 71 such that 
4 4 > x, W(Z) = 4, and 7c # 4 1. It follows that <(3 2) = 3 2. 

The partition 3 1 is the only predecessor of 3 2 so that we have 
((3 1)=3 1. 

LEMMA 2. Suppose that q,, x1, and x2 are descending plane partitions 



348 MILLS, ROBBINS, AND RUMSEY 

such that q, is the only predecessor of 7c,, q, is the only predecessor of x2, 
and 71, # 71,. Then, one of ?rl, II, is 4 and the other one is 3 1. 

Proof. It will suffice to show that rco = 3. 
Suppose that rc is either z1 or rc2. Then z,, is obtained from 7c by 

subtracting 1 from the last part of the bottom row, or by removing the last 
part of the bottom row when this part is 1, or by removing the entire bottom 
row when this row consists of the single part 2. Thus 71 can be obtained from 
z,, by one of these three operations: 

(i) adding 1 to the last part of the bottom row, 

(ii) adjoining a new part of 1 to the bottom row, 

(iii) adjoining a new row consisting of a single 2. 

Since 7~~ # 7r2, two of these three operations lead from n, to a descending 
plane partition with a unique predecessor. 

First, suppose that operation (iii) leads from 7c,, to a descending plane 
partition z with a unique predecessor. Then, either rro = 0 or the bottom row 
of 7~~ is 3 3. In these cases neither operation (i) nor (ii) leads to a descending 
plane partition. 

Thus, without loss of generality, we suppose that operation (i) leads to 7c, 
and operation (ii) leads to 7~~. Since rr2 has only one predecessor, it can be 
shown that the bottom row of 7co must be one of 3, 4 1, 5 1 1, 6 1 1 l,.... 
Here, z, is a desceding plane partition with a unique predecessor only if the 
bottom row of 7~,, is 3. 

Now we know that the bottom row of z,, must be 3. Suppose that 7~~ has 
more than one row. The bottom row of 71, is 4, and since it has only one 
predecessor 7co, the next to the bottom rows of 71, and z,, must both be 
5 5 1 1. Similarly, the bottom row of x2 is 3 1, and since it has only one 
predecessor R,,, the next to the bottom rows of 7c2 and 7~ must both be 4 4 2, 
which is a contradiction. Thus, we have shown that the only possible z,, is 3, 
which completes the proof. 

THEOREM 1. The identity is the only automorphism of the partially 
ordered set G,,. 

Proof. Let c be an automorphism of the partially ordered set @,,. We 
shall show that r(n) = 7c for all 71 in g,,. We proceed by induction on w(a). 

For W(K) = 0, we must have K = 0 so our result holds. We now suppose 
that <(zi) = II, for all 7c, such that w(n,) < w(n). 

Case 1. Here, 7c has more than one predecessor. Let x1 and n2 be distinct 
predecessors of n. Then 7c is the unique element of 9,, that is a successor of 
both rr, and x2. Since {(n,) = n, , and c(z,) = IL* by the induction hypothesis, 
this implies that r(n) = K. 
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Case 2. Here, n has exactly one predecessor no. Since &a,,) = zO by the 
induction hypothesis, it follows that r(z) also has exactly one predecessor 
and this predecessor is rc,,. By Lemma 2, either r(r) = K, or one of rc and c(n) 
is 4 and the other is 3 1. By Lemma 1 we have ((3 1) = 3 1, so that we 
always have r(x) = X. This completes the induction, so that < must be the 
identity and the proof is complete. 

Theorem 1 implies that the partially ordered set Qn cannot have more 
than one antiautomorphism. We now proceed to exhibit such an 
antiautomorphism r. This 5 was originally constructed by tracing the steps in 
the proof of Theorem 1. In order to construct such a mapping 7 we introduce 
a new type of plane partition. 

DEFINITION 5. A cyclically twisted partition is a shifted plane partition 7c 
such that when i <j< k - 2 we have (i, j, k) E F(z) if and only if 
(j, k - 2, i) E 1;(z), where F(z) is the Ferrers graph of 7~. 

Let P, denote the set of all integer points (i, j, k) in the triangular prism 

Let 9n denote the set of all cyclically twisted partitions 7~ such that 
F(a) E P,. Let g” denote the set of all strict shifted plane paritions, with no 
parts exceeding n + 1, each of whose row leaders is exactly 2 more than the 
corresponding row length. We will show that there are “natural” one-to-one 
correspondences between 9n and gn and between gn and GZ,,. Moreover, 
there is a way of complementing and rotating the Ferrers graph of a 
cyclically twisted partition that corresponds to the mapping 7 that we want. 

This procedure was suggested by the analogy with the procedure used for 
cyclically symmetric plane partitions in [2]. 

We illustrate the one-to-one correspondence between 59” and ‘Z’,, with an 
example. Consider the following cyclically twisted partition rc in ~8~: 

77766 
7642 

63 1 
1. 

The “outer shell” of a Ferrers graph consists of the points in the graph at 
least one of whose coordinates is 1. Suppose 1 < i < j < IZ. Then aii > 1 if 
and only if (i, j, 1) E F(z), which is equivalent to (1, i, j + 2) E F(z), which 
in turn is equivalent to aii > j + 2. Thus the top row of n determines the 
outer shell of F(z) completely. When we remove this shall, and subtract one 
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from the coordinates of the remaining points, we obtain the Ferrers graph of 
a new cyclically twisted partition, 

6531 
5 2. 

Its outer shell is determined by its top row 6 5 3 1, and when this shell is 
removed and one is subtracted from the coordinates of the remaining points, 
we are left with the single row 4 1. Thus the entire partition rt can be 
recovered from the array z’, 

17766 

6531 
4 1. 

The array n’ is a strict shifted partition with row leaders 2 more than its row 
lengths, so it is in gn, 

More formally, if (b,) E Sn, we set cij = b, - i + 1 for all i and j such 
that this expression is defined and positive. It can be verlied that the 
mapping (b,) ++ (c,) is a one-to-one mapping of A?,, onto gn, which we shall 
denote by ,u. 

Given a partition in ga’,, we obtain a descending plane partition in $?,, by 
removing all the l’s and subtracting 1 from the remaining parts of qn. This 
gives us a one-to-one mapping of gn onto &VU, which we shall denote by V. 
For example, v maps the partition rr’ above onto the descending plane 
partition z”, 

66655 

542 

We next show how to complement and rotate the Ferrers graph of an 
element 71 = (bij) of 9” to obtain a new cyclically twisted partition in 9”. 
The Ferrers graph F(z) is contained in the triangular prism P,. We take the 
set of all points in P, that are not in F(z). When we rotate this prism so as 
to exchange the triangular faces, this set becomes the Ferrers graph of a new 
cyclically twisted partition. 

Consider the cyclically twisted partition n in ~8~ given above. The 
complementation and rotation of 71 gives us the partition rr,, 

7765 1 
643 1 

1 1. 
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For example, the first row of the above partition is obtained from the last 
column of 71 by subtraction from 7 and reversing the order. 

More precisely, we set aii = n + 1 - b,-j,,-i if b,-j,,-i < n. We set 
Uij = n + 1 if b,-J,n-i is undefined, and oil is undefined if b,-j,,-i = n + 1. 
Let p denote this mapping of (b,) into (aij). Now suppose that i < j < k - 2. 
Then .we see that (i, j, k) E F((aij)) if and only if k < aij, which is equivalent 
to (n - j, n - i, n + 2 - k) & F((b,)). Since (b,) is cyclically twisted this is 
equivalent to (n + 2 - k, n - j, n + 2 - i) 4 F((b,)), which is true if and 
only if (j, k - 2, i) E F((aij)). Therefore (uij) is also cyclically twisted, so 
that p maps A?,, onto itself. 

The partition rr,, is mapped by ,D into 

7765 1 
532 

in Vek, which v maps into 

4654 
421 

in ge. Thus for n = 6, v-‘y-‘p,~v maps 

66655 
542 into 

6 6 5 4 
4 

3 
2 1. 

We set r = v -‘,B - *p,~v. It is readily seen that r reverses the partial ordering 
of C9,, so that it is an antiautomorphism of this partially ordered set. 

If we analyze the above construction carefully, we obtain the following 
briefer description of the mapping r: 

Let x = (a,) be a descending plane partition in Bn. We set 
b,= j-i+ 1 -u,-~+~-~ if u,,-~,~-~ is defined and u,-~,~-~< j-i. We set 
6, = n + 1 - i - 6, if 1 < i < j < n and un-j,n-i is not defined, where 6, is 
the number of integers x such that 

U Xq,-j>n+2-i-x, l<x<n-j. 

Finally, b, is undefined if u,-~,~- i > j - i. Then r(x) = (b,). 
It is a straightforward matter to verify directly that r is an 

antiautomorphism of the partially ordered set .@,,. There are, however, many 
details to be checked. 

Next we discuss some properties of this mapping t which are consistent 
with the hypothesis that r corresponds to the reversal of the order of the 
columns of alternating sign matrices. Thus, we suppose that r is the unique 
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antiautomorphism of the partially ordered set g”, and that r maps the 
descending plane partition (uij) into the descending plane partition (b,). 

We have called the part aij a special part of (aij) if 1 < aij < j - i. We see 
that a n-j,n- i is a special part of (uij) if and only if b, is a special part of 
(bii). 

Let S, be the set of all (i, j) for which un-j,n-i is defined and let S, be the 
set of all (i, j) for which b, is defined. Then S, u S, is the set of all (i, j) 
such that 1 < i < j < n, and S, n S, is the set of all (i, j) such that b, is a 
special part of (b,). 

Let p be the number of parts and let m be the number of special parts of 
(aij). It follows at once that (b,) has exactly m - p + n(n - 1)/2 parts. 

It can also be shown that the sum of the number of parts of (uij) that are 
equal to n and the number of parts of (b,) that are equal to n is n - 1. 

Thus r exchanges the sets 9(n, k, m, p) and @(n, n + 1 - k, m, m - p + 
n(n - 1)/2) of Conjecture 3. 

On the other hand, if we take an alternating sign matrix (uij) and reverse 
the order of the columns, we get an alternating sign matrix (b,) with 
bij=ai,n+l-j* Let m denote the number of -1’s and let p denote the number 
of inversions in (a,). Clearly, the number of -1’s in (b,) is exactly m. The 
total number of inversions I in these two alternating sign matrices is given by 
I = C aiju,,, where the summation is over all integers i, j, k, 1 between 1 and 
n such that k > i and If j. It follows from the definition of an alternating 
sign matrix that n 

r 
k=xl 

aijakj = - 1, if ai,= -1, 

= 0, otherwise. 

Using this and the fact that all the row sums are 1, we get 

1 = m + n(n - 1)/2. 
i=l k:i+l 

Therefore, reversal of the order of the columns exchanges the sets 
&‘(n, k, m, p) and ~‘(n, n + 1 - k, m, m - p + n(n - 1)/2) of Conjecture 3. 

For n odd, there are certain alternating sign matrices that remain 
unchanged when the order of the columns is reversed, and there are certain 
descending plane partitions that are left fixed by the mapping r. For these 
alternating sign matrices the 1 in the top row must occur in the center 
column, and these descending plane partitions must have exactly (n - 1)/2 
parts that are equal to n. If we are correct about the one-to-one correspon- 
dence, then these symmetric alternating sign matrices must correspond to 
these descending plane partitions fixed by t. Thus we have a symmetric 
variation of Conjecture 3. 
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Conjecture 3s. Let n be odd and let -pP’(n, m, p) be the set of all alter- 
nating sign matrices in &(n, (n + 1)/2, m, p) that are unchanged when the 
order of the columns is reversed. Let ka’(n, m, p) be the set of all descending 
plane partitions in g(n, (n + 1)/2, m, p) that are left fixed by t. Then 
&‘(n, m, p) and g’(n, m, p) have the same cardinality. 

This also has been verified for n < 7. 
It is clear that d’(n, m, p) and G2’(n, m, p) are both empty unless 2p = 

m + n(n - 1)/2. 
It can be easily shown that the sum of the number of rows of a descending 

plane partition 7c in a,, and the number of rows of rz is always n - 1, but we 
do not know what this means in terms of the alternating sign matrices. 

If we reverse the order of the rows of an alternating sign matrix, we 
clearly get another alternating sign matrix. We have no idea, however, what 
this corresponds to for descending plane partitions. More generally, there are 
eight obvious symmetries for alternating sign matrices. In terms of the 
descending plane partitions we can account for only two of these, the identity 
and the one that reverses the order of the columns. 

4. GENERATING FUNCTIONS FOR SETS OF ALTERNATING SIGN MATRICES 

We recall that the weight of a descending plane partition is the sum of its 
parts. Suppose that we form the polynomial Q,Jq) such that the coefftcient 
of qk is the number of descending plane partitions with weight k and no part 
exceeding n. These polynomials are the subject of the Andrews conjecture 
which was proved in [2]. They are given by known products of cyclotomic 
polynomials. We have not been able to find a weight for an alternating sign 
matrix that corresponds to the weight of a descending plane partition. There 
is, however, a weight for alternating sign matrices that seems to be very 
natural, namely, the number of -1’s in the matrix. 

Let us denote by A,(x) the generating function for the set of all n x n 
alternating sign matrices. That is A,(x) is the polynomial in x such that the 
coefficient of x”’ is the number of n X n alternating sign matrices with m 
entries that are equal to -1. Then, the first few functions are given by 

A,(x)= 1, A*(X) = 2, As(x) = 6 + x, A‘,(x) = 24 + 16x + 2x2. 

Next, we shall discuss a number of properties of these polynomials, which 
hold for small values of n, and which we conjecture hold for all n. We can 
break up A,(x) into pieces, where the kth piece A,Jx) corresponds to the 
alternating sign matrices with a 1 in the /cth position of the top row, in the 
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same way that the A, was partitioned into the A(n, k). These pieces give us a 
triangle of polynomials, 

1 1 
2 2+x 2 

6+x 6+7x+x* 6+7x+x2 6+x (3) 
:. 

For example, if we consider only the 4 x 4 alternating sign matrices with a 
1 in the second position of the top row, then there are 6 such matrices with 
no -l’s, 7 such matrices with one -1, and 1 with two -l’s, which gives us 
the polynomial 6 + 7x + x2. 

Now we let p,(x) denote the manic greatest common divisor of the 
polynomials in the nth row of this triangle. We find that 

PI(X) = P*(X) = I%(x) = 13 P.&) = 6 + x, P&> = 2 +x9 

p6(x) = 60 + 70x + 12x2 +x3. 

We notice that Ad(x) = 2p4(x)ps(x). With a little calculation we can verify 
that A&) =P~x)P&). 

Conjecture 4. If n is odd, then A”(x) = p,(x)p,+ r(x); and if n is even, 
then A,(x) = &dx)~,+,(xZ 

Conjecture 4 has been verified through n = 9. It implies that p,(x) has 
integer coefficients. Conjecture 5 in the next section gives an interpretation 
for the polynomial p,(x) for n odd. We have no similar interpretation of 
p,(x) for n even. Using Conjecture 3 we can obtain a descending plane 
partition version of Conjecture 4, which we are actually able to prove. 

5. MONOTONE TRIANGLES 

We now take up the techniques which allow computer counts of alter- 
nating sign matrices to be made readily up to size of 10 X 10, or even a bit 
larger. The key construction is a transformation that maps alternating sign 
matrices to other combinatorial objects which we shall call monotone 
triangles. The transformation is illustrated as 
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On the left is an alternating sign matrix. In the center is a matrix whose 
kth row is the sum of the first k rows of the alternating sign matrix. Because 
of the conditions on columns of alternating sign matrices, the second matrix 
is all O’s and 1’s. Finally, on the right is a triangle whose kth row is a list of 
the positions of the l’s in the kth row of the second matrix. A complete 
monotone triangle of size n is a triangle obtained in this way by transforming 
an n X n alternating sign matrix. 

One may easily verify that the complete monotone triangles of size n are 
characterized by: 

(Tl) all rows are strictly increasing, 

(T2) the numbers in the triangles are nondecreasing in the polar 
directions +60” and -6O”, 

(T3) the bottom row is 1, 2 ,..., n. 

Alternatively, the second condition can be described less precisely by 
saying that any two consecutive rows are “weakly interleaved.” 

Now let us say that a triangle of nonnegative integers satisfying (Tl) and 
(T2), but not necessarily (T3), is a monotone triangle. 

We let f(a,, a2 ,..., a,) be the number of monotone triangles whose bottom 
row is a,, a, ,..., ak. It is clear that f can be computed inductively with the 
formulas 

f(a,> = 1, f(a,, a,,..., ak) = If@,, b2,..., bkel), 

where the sum is over all strictly increasing sequences b,, b2,..., b,- I such 
that 

a <b <a <b <...<b,-,<a,. IL 11 2L 2L 

With this algorithm we can calculate f(a,, a2,..., a,J by computer for all 
sequences a,, a2 ,..., ak such that 1 <a, < ,.. < ak < 10. Thus we can find 
A, =S(l, 2,..., n) for n up to 10. 

The numbers A(n, k) described earlier are given by f( 1,2,..., I;,..., n), where 
k  ̂means that k is missing, since the set of these monotone triangles can be 
seen to correspond to the n x n alternating sign matrices with a 1 in position 
k of the bottom row. 

The recursion for computing f can be generalized to a technique for 
computing generating functions for various classes of alternating sign 
matrices and monotone triangles. 

One may readily verify that the -1’s in an alternating sign matrix give rise 
to entries of the corresponding monotone triangle which are strictly between 
their two neighbors on the row below. Therefore, we define the weight of a 
monotone triangle to be the number of entries which are strictly between 
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their neighbors in the row below. Then the generating function for a set of 
monotone triangles is the polynomial in which the coefficient of xm is the 
number of triangles in the set whose weight is m. In particular, we define 
f@ i ,..., uk ; x) to be the generating function of the set of monotone triangles 
with bottom row a,,..., a,; a, < u2 < ..= < uk. These generating functions can 
be computed recursively by 

f(a,;x)=l, f(al,u2 ,..., ~~;x)=~X~(~,*)f(b,,b~ ,..., bkel;x), (4) 

where the sum is again over the strictly increasing sequences b,, b2,..., b,-, 
that are interleaved with the sequence of the ai, and ~(a, b) is the number of 
I’S such that ai < b, < ai+,. 

This allows us to calculate the A,(x) = f (1,2,..., n; x) and the pieces 
An,&) =f(L L., L..., n; x) that make up the triangle of counts of Eq. (3). 

We now return to the polynomials p,(x) that appear in Conjecture 4. Our 
calculations give us 

P&)=f(l;X), p5(x)= f(l,3;x), 

P,(X)=f(L 3,5;x), p&x> =f(L 39% 7;x). 

On the basis of this evidence we make 

Conjecture 5. If n is odd, then p,(x) = f (1, 3,5 ,..., n - 2; x). 

This last polynomial is closely related to the generating function for the 
set of all it x n alternating sign matrices that are unchanged when the order 
of the columns is reversed. 

6. OTHER VALUES OF x 

It is clear that A,(l) = A,, . Moreover, A,(O) gives us a generating function 
for permutation matrices so that A,(O) = n! . In this section, we discuss A,(2) 
and A,(3). 

It turns out that we can actually evaluate f (a,, a,,..., ak ; 2). It is equal to 
a power of 2 times the determinant of a certain k x k matrix: 

THEOREM 2. If a, < a, < 1-e < a,,, then 

f (a,, a,,..., Qk ; 2) = 2 (:I ai 
I( )I 

,w ll C”j - ai) 

j- l i,j=1,2 ,..., k= O! l! 2! ..a (k- l)! ’ 

where the product is over all i and j such that 1 Q i < j < k. 

Proof. The second equality is obtained by application of the Vander- 
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monde identity and routine column operations. We proceed to prove the first 
equality by induction on k. We consider a, ,..., ak to be fixed integers, and set 

g(t) = 1, if t = a, for some i, 

= 2, otherwise. 

For b,<b,<...<bk...l we set 

fo(b,, bz,..., b,- 1; 2) = 0, ifbi=bi+,forsomei, 

= f(b, , bz,..., b,- 1; 21, otherwise. 

We can use (4) to obtain 

S(a, , a2 ,-.., Q,; 2)= -? g(b,) -+- 
bFa, 

f g(b,- ,)f,(b, , b, ,..., b,- 1; 2). 
bk-,=ak-, 

Note that the sum over strictly increasing b’s interleaved with the u’s has 
been replaced by arbitrary b’s interleaved with the a’s. 

The induction hypothesis gives us fo(b,, bz,..., b,- i ; 2)--indeed, we can 
use the same expression for fO, whether or not some of the bls are equal. 
Each of the sums in the resulting expression is evaluated by using the 
formula 

(;)+2(“;‘)+2(mJ2)+...+2(7)+(;) 

= L:1)+ (;I:)- (j;l)-(yt’:)~ 

which holds when m < n. We find that f(a,, Us,..., a,; 2) is 2’k-‘)(k-2)‘2 
times the (k - 1) x (k - 1) determinant 

Dl= 1 (“y )+ (Ui+;+ ‘)- (4’)- (“i”) ji.i-l.*..i~,* 
We now consider the k x k determinant 

D2= 1(4’)+ ((li:I)Ji=1.2 ,..., k;j=O.l,..., k-l’ 

If we subtract consecutive pairs of rows of D, starting at the bottom, and 
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then note that the first column is all O’s except for the top entry which is 2, 
we see that D, = 20,. Finally, since 

(4)+ (3=2 (9)+ (j(ll)’ 

we can use column operations to obtain D, = 2kD,, where 

i=l.Z....,k;j=O,l,...,k-I 

It follows that D, = 2k-’ D,, which proves the theorem. 

It follows from Theorem 2 that 

f( 1, 2,..., n) = 2( : ) 

and 

f(1,2 )..., k  ̂)...) +2(“;‘) 
( 1 

;I; . 

Thus, we have the following result for x = 2: 

COROLLARY. A,(2)= 2(:) and 

A,,,(2)= ,(“;I) 11; . 
( 1 

An analogous result holds for descending plane partitions. 
Finally, we discuss the case x = 3. Here our position is similar to our 

position for the basic case x = 1. We have results which hold for small n and 
which we conjecture hold for all II. 

Conjecture 6. For all positive 

A Zn+lP) = 3” 

A,“(3) 

and 

integrs n, we have 

Conjecture 6 was arrived at by calculating A,(3) for n < 10, and guessing 
the formula guided by analogy with Conjecture 1. 
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In an attempt to find a conjecture analogous to Conjecture 2, we 
substituted x = 3 in the triangle of counts (3). This gives us 

1 1 
2 5 2 

9 36 36 9 
90 495 855 495 90 

. . 

We do not have an expression for the general element in this triangle. If, 
however, one treats the elements of the nth row of this array as the coef- 
ficients of a polynomial g,(w), then these polynomials display an interesting 
pattern of factorization. We have 

&72(w) = w  + 1, 

g3(w) = 2w2 + 5w + 2 = (w + 2)(2w + l), 

g4(w) = 9w3 + 36~’ + 36w + 9 = 9(w + l)(w’ + 3w + l), 

g5(w) = 90w4 + 495~~ + 855~~ + 495~ + 90 

= 45(w + 2)(2w + l)(wZ + 3w + 1). 

Moreover, gJw) and g,(w) are (up to a constant factor) 

(w + l)f(w) and (w + 2)(2w + 1 )f(w), 

where f(w) = 5w4 + 30w3 + 56w2 + 3Ow + 5. A similar relationship holds 
between g,(w) and g,(w). Thus, we are led to our final conjecture. 

Conjecture 7. For any positive integer n there is a constant c, such that 

kT2" t I(W)/&(W) = c,(w + ww + 1 >l(w + 1). 

If such a constant c, exists, it can be computed assuming Conjecture 6. 
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