Units 12-13: Integrals over the whole real line and probability densities

Vocabulary and notation

<table>
<thead>
<tr>
<th>Improper integral</th>
<th>DNE</th>
<th>undefined integral</th>
<th>\int^{∞}</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability density</td>
<td>probability</td>
<td>random variable</td>
<td>mean</td>
</tr>
<tr>
<td>exponential density</td>
<td>normal density</td>
<td>standard normal</td>
<td>uniform density</td>
</tr>
<tr>
<td>standard deviation</td>
<td>median</td>
<td>average value</td>
<td>normalizing constant</td>
</tr>
<tr>
<td>Φ</td>
<td>half life</td>
<td>convolution</td>
<td></td>
</tr>
</tbody>
</table>

Skills

- Know the definition of an improper integral via limits
- Know for which k, p and q these integrals converge:
 - $\int_{1}^{\infty} e^{kx} \, dx$
 - $\int_{1}^{\infty} x^{p} \, dx$
 - $\int_{1}^{\infty} (\ln x)^{q} x^{-1} \, dx$
- Know the relation between convergence of $\int_{b}^{\infty} f(x) \, dx$ and convergence of $\int_{b}^{\infty} g(x) \, dx$ when $f \ll g$ or $f \sim g$ as $x \to \infty$.
- Know how to find p so that $f(x) \sim cx^{p}$ as $x \to \infty$ when f is a more complicated function.
- Know the relation between convergence of series and convergence of integrals
- Know the exponential, uniform and normal densities
- Be able to compute the mean and median of the exponential
- Have an idea of when to use these distributions in modeling
- Know how to standardize a normal random variable (last sentence of the Unit)
- Know how to compute a convolution of two probability densities and what this means probabilistically