Unit 2: Limits

Vocabulary and notation

$$
\begin{array}{llll}
\lim _{x \rightarrow a} f(x) & \lim _{x \rightarrow a^{+}} f(x) & \lim _{x \rightarrow a^{-}} f(x) & \lim _{x \rightarrow \infty} f(x) \\
\lim _{x \rightarrow-\infty} f(x) & \text { continuous } & \text { continuous on an open interval } & \text { continuous on a closed interval } \\
& \text { horizontal asymptote } & \text { limit of a sequence } &
\end{array}
$$

Skills

- Formal definition of a limit: know it and be able to use it in simple cases
- Recognition of limits from graphs
- Limits at infinity: definition
- One-sided limits: definition
- Limits of $\pm \infty$, as a subclass of UNDEFINED limits
- Definition of continuity

Know when these results apply and how to use them:

- Intermediate value theorem
- Theorems for computing limits: sums/differences, products/quotients, composition with continuous functions
- Conjugate radical trick
- Sandwiching theorem

