Unit $0+$ preface: Functions

Vocabulary and notation

upper bound	lower bound	estimate	set-builder notation
$[a, b]$	$[a, b)$	interval notation	$\{x \in S: \cdots\}$
$\operatorname{sign}(x)$	$\delta(x)$	sign function	delta function
concave up	concave down	increasing function	decreasing function
local maximum	local minimum	strictly increasing	strictly decreasing
\mapsto	upper bound	lower bound	monotone function
$\lfloor x\rfloor$	$\lceil x\rceil$	floor function	ceiling function
domain	range	even function	odd function
free variable	bound variable	definition by cases	greatest integer function
$:=$	tangent line	chord	

Skills

- Fluency translating between equations and graphs (see graphing tips)
- Equation of a tangent line
- Tangent line estimate
- Recognize increasing and decreasing regions in a graph of a function
- Recognize concave upward and downward regions in a graph of a function
- Relation between concavity and tangent line estimate
- Write a verbally defined set in set-builder notation
- Recognize upper and lower bounds
- Start to be able to find upper and lower bounds
- Relation between shifts of a graph and algebra such as $f(x+c), f(x)-c$, etc.
- Relation between dilations of a graph and algebra such as $f(c x), f(x) / c$, etc.
- Moving between different ways of specifying functions:
a verbal rule
a set of ordered pairs
a lookup table
a graph
"mapsto" notation $x \mapsto \cdots$
definition by formula $f(x):=\cdots$.

