
2
Using the quotient rule,

tanh′(x) = (ex + e−x)(ex + ex)− (ex − e−x)(ex − e−x)
(ex + e−x)2

= (ex + e−x)2

(ex + e−x)2 −
(ex − e−x)2

(ex + e−x)2

= 1−
(
ex − e−x

ex + e−x

)2

= 1− (tanh x)2.

Therefore

tanh′(tanh−1 x) = 1− (tanh(tanh−1 x))2 = 1− x2.

Therefore using the rule for the derivative of an inverse function,

d

dx
tanh−1 x = 1

tanh′(tanh−1 x)
= 1

1− x2 .

3
In order for these piecewise functions to be differentiable at 1, two things
need to happen:

1. The two pieces need to meet—that is, it needs to be continuous at 1,
so the two parts need to have the same value at 1,

2. The pieces need to meet smoothly—the derivatives of the two parts
need to have the same value at 1.

3a
√

1 = 1 6= 1/2, so this is not continuous at 1, so it cannot be differentiable at
1.

A picture makes pretty clear what goes wrong:
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3b

e1 = e = e · 1, so the two pieces meet at 1. The derivatives are ex and e,
which again agree at 1. In the picture, we can see that the function looks
smooth:
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3c

12 = 1, so the pieces meet at 1. The derivatives are 2x and 1, so at 1 the
derivatives are 2 · 1 6= 1, so the function is not differentiable. In the picture
we see that though there isn’t a jump (the function is continuous), there is a
sharp corner:
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5

5a

The units of Q(p) will be the number of units sold. The units of p will be a
currency, for instance, dollars. The units of Q′(p) will be units per dollar.
For most goods, Q′(p) is negative: if we raise the price, we sell less.

5b

The units are
dollars
units ·

units
dollars

so E(p) is unitless (it has no units).

5c

Since lnQ(p) = ln 3p−1/2 = ln 3 + ln p−1/2 = ln 3− 1
2 ln p, [lnQ(p)]′ = − 1

2p .

5d

E(p) = pQ
′(p)
Q(p) = p[lnQ(p)]′ = p(− 1

2p) = −1
2 .

6
We have d = v2 sin 2θ

g . This problem asks us for to consider two situations.
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First situation

We treat v as constantly equal to 50 and θ as a variable. We want ∆d when
∆θ = 0.2; we use the approximation formula for error: ∆d ≈ d′(θ0)∆θ (where
we take the derivative with respect to θ). We have d(θ) = v2 sin 2θ

g = 502 sin 2θ
g

(because v is constantly 50), so d′(θ) = 2·502 cos 2θ
g , so

∆d ≈ d′(θ0)∆θ = 2 · 502 cos 2θ0
g

∆θ = 2 · 502 cosπ/4
g

∆θ = 0

because θ0 = π/4.

Second situation

We treat θ as constantly equal to π/4 and v as a variable. We want ∆d
when ∆v = 0.2; we use the approximation formula for error, ∆d ≈ d′(v0)∆v
(where we take the derivative with respect to v). We have d(v) = v2 sin 2θ

g =
v2 sin(π/2)

g = v2

g , so d
′(v) = 2v

g . So

∆d ≈ d′(v0)∆v = 2v0
g

∆v = 100
g

∆v = 100
g
· 0.2.

So the error when we get v wrong is much bigger.
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