Definitions for \mathbb{E}^3 (my version)

These definitions are based on \mathbb{R}^3 , that is, it is assumed we know definitions and names of points, lines and planes in \mathbb{R}^3 , as well as which points lie on which lines and planes in \mathbb{R}^3 , and which lines of \mathbb{R}^3 are contained in which planes.

The set of **points** of \mathbb{E}^3 consist of two kinds.

- ordinary points are just the points of \mathbb{R}^3
- ideal points are denoted $P_{[[k]]}$ where k is some line in \mathbb{R}^3 and [[k]] denotes the set of all lines parallel to k (this includes k itself). Therefore, $P_{[[k]]} = P_{[[m]]}$ (they are the same ideal point) if and only if $k \parallel m$.

The set of lines of \mathbb{E}^3 consist of two kinds.

- ordinary lines are lines k_* where k is a line of \mathbb{R}^3 and k_* is $k \cup P_{[[k]]}$. That is, as a set, k_* contains all the points of k together with exactly one ideal point, $P_{[[k]]}$.
- ideal lines are denoted $\ell_{[[\alpha]]}$ where α is some plane in \mathbb{R}^3 and $[[\alpha]]$ denotes the set of all planes parallel to α (this includes α itself). Therefore, $\ell_{[[\alpha]]} = \ell_{[[\beta]]}$ if and only if the planes α and β are parallel (including the case that they are equal).

Ideal lines contain no ordinary points, only ideal points. Specifically, $P_{[[k]]} \in \ell_{[[\alpha]]}$ if and only if k is parallel to α , which includes the case $k \subset \alpha$.

The set of **planes** of \mathbb{E}^3 consist of two kinds.

- ordinary planes are planes α_* where α is a plane in \mathbb{R}^3 and $\alpha_* = \alpha \cup \ell_{[[\alpha]]}$. Thus, an ideal point $P_{[[k]]}$ is in α_* if and only if $k \parallel \alpha$.
- the ideal plane denoted π_{∞} is defined to be the set of all ideal points. Therefore, a line is in the plane π_{∞} if and only if it is an ideal line.

Note: I changed the name of the ideal plane from α_{∞} to π_{∞} because we often like to use α for a particular plane in some context. You can use pretty much any Greek letter in place of α or π with an infinity subscript and I'll know you mean the plane at infinity, but you might as well use whichever of α or π you find more natural.