1 **Definitions**

Partitions

 $\lambda = (\lambda_1, \lambda_2, \ldots), \ \lambda \vdash n \iff \lambda_1 + \lambda_2 + \cdots = n.$ Young diagram: e.g. $\lambda = (4, 2, 1) \rightarrow \square$

Conjugate partition: λ' - transpose of the Young diagram of λ , e.g. if $\lambda = (4,2,1) \rightarrow \square$, then $\longrightarrow \lambda' = (3,2,1,1)$ Dominance order: $\lambda \leq \mu \vdash n$ iff $\lambda_1 + \cdots + \lambda_i \leq \mu_1 + \cdots + \mu_i$ for every i.

1.2 Bases of Λ

- Monomial: $m_{\lambda} = \sum_{\alpha} x^{\alpha}$, where $\alpha = (\alpha_1, \alpha_2, ...)$ ranges among all different permutations of $\lambda = (\lambda_1, \lambda_2, \ldots)$.
- Elementary: $e_n = \sum_{i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \dots x_{i_n}, e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \dots$
- Complete Homogeneous: $h_n = \sum_{i_1 < i_2 < \dots < i_n} x_{i_1} x_{i_2} \dots x_{i_n} = \sum_{\lambda \vdash n} m_{\lambda}, h_{\lambda} = h_{\lambda_1} h_{\lambda_2} \dots$
- Power sum: $p_n = \sum_i x_i^n$, $p_\lambda = p_{\lambda_1} p_{\lambda_2} \cdots$.

1.3 Maps

Endomorphism $\omega : \Lambda \to \Lambda$, defined by $\omega(e_n) = h_n$.

Scalar product $\langle , \rangle : \Lambda \times \Lambda \to \Lambda$, defined by $\langle m_{\lambda}, h_{\mu} \rangle = \delta_{\lambda \mu}$.

2 ${f Theorems}$

Theorem 1. If $\lambda \vdash n$, then $e_{\lambda} = \sum_{\mu \vdash n} M_{\lambda \mu} m_{\mu}$, where $M_{\lambda \mu}$ is the number of (0,1)-matrices $A = (a_{ij})$ with $\sum_{j} a_{ij} = \lambda_1$ and $\sum_{i} a_{ij} = \mu_j$. Hance M is a symmetric matrix and $M_{\lambda \mu} = 0$ unless $\mu \leq \lambda'$ and $M_{\lambda\lambda'} = 1$.

Theorem 2. If $h_{\lambda} = \sum N_{\lambda\mu} m_{\mu}$, then $N_{\lambda\mu}$ is the number of N-matrices A with $\sum_{j} a_{ij} = \lambda_1$ and $\sum_{i} a_{ij} = \mu_{j}$. Hence N is symmetric.

Theorem 3. If $p_{\lambda} = \sum R_{\lambda\mu} m_{\mu}$, then $R_{\lambda\mu}$ is the number of ordered set partitions (B_1, \dots, B_k) of $[1,\ldots,l]$ $(k=l(\mu,\overline{l}=l(\lambda)),$ such that $\mu_j=\sum_{i\in B_j}\lambda_i,$ $1\leq j\leq k.$ Hence $R_{\lambda\mu}=0$ unless $\lambda\leq\mu$ and $R_{\lambda\lambda}=m_1!m_2!\ldots$, where $\lambda=1^{m_1}2^{m_2}\ldots$ Theorem 4. We have that

$$\prod_{i,j} \frac{1}{(1 - x_i y_j)} = \sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y), \tag{1}$$

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda} e_{\lambda}(x) m_{\lambda}(y), \tag{2}$$

$$\prod_{i,j} \frac{1}{(1 - x_i y_j)} = \sum_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x) p_{\lambda}(y), \tag{3}$$

$$\prod_{i,j} (1 + x_i y_j) = \sum_{\lambda} \epsilon_{\lambda} z_{\lambda}^{-1} p_{\lambda}(x) p_{\lambda}(y), \tag{4}$$

where $z_{\lambda} = 1^{m_1} m_1! 2^{m_2} m_2! \cdots$, $\epsilon_{\lambda} = (-1)^{|\lambda| - l(\lambda)}$.

Theorem 5. The endomorphism ω is an involution. Moreover, $\omega(p_{\lambda}) = \epsilon_{\lambda} p_{\lambda}$.

Theorem 6. The scalar product \langle , \rangle is symmetric, i.e. $\langle f, g \rangle = \langle g, f \rangle$ for all $f, g \in \Lambda$. We also have that $\langle p_{\lambda}, p_{\mu} \rangle = z_{\lambda} \delta_{\lambda \mu}$ and hence is positive definite $(\langle f, f \rangle \geq 0)$ and is 0 iff f = 0.