
Rubik’s cube: finite group, pieces and orientations distinguishable by color, de-
scribe as moving edges and moving corners. Edges give an S12 for permutation,
coerners give an S8 for permutation. Edges give an Z12

2 for orientation, corners give
an Z8

3 for orientation. But these groups aren’t entirely independent.
Look at moving a single face. Get a four-cycle on the edges and a four-cycle on the
corners. Both odd. Therefore the parity of the edge permutation is equal to the
parity of the corner permutation. Thus we get that the actual permutation group
is A12,8 = S12 × S8/ ∼.
For the facets on the edge pieces, we have a pair of four cycles, so the facet parity
is even. Hence we can’t flip a single edge, and thus we actually only have an Z11

2

for edge orientation. Similarly, we only have an Z7
3 for corner orientation.

So in total, we have |A8,12|× |Z11
2 ×|Z7

3| as the size of the Rubik’s cube group. This
gives 43,252,003,274,489,856,000 possible states.
As it is a group, we can look for things like its center. It has a Z2 center, with
the nontrivial element being called the superflip, where every piece is in the correct
position, the corners are oriented correctly, and all of the edges are flipped. We
can see this is central because moves that only change orientation are commutative,
and as for moves that permute things, the superflip treats each cublet of the same
type identically.
Furthermore, it is the only nontrivial state with that property, since if one edge is
flipped then all must be flipped, and if one corner is turned by 120 degrees, say,
clockwise, we would need all eight corners rotated the same way, but that would
violate the three-arity. Hence the superflip is the only nontrivial central element.
The superflip is also interesting in that it is the farthest you can get from being
solved. To be more precise, in the half-turn metric, where turning a given face a
quarter turn in either direction or a half turn is counted as a single move, Michael
Reid in 1995 showed that the superflip takes 20 moves to get to from the solved
state, and, by Rokicki, Kociemba, Davidson and Dethridge in 2010, no state takes
more than 20 moves to get to.
The proof was basically checking all the possible sequences of 20 moves and showing
that they hit everything. Lots of computation. Also, the superflip isn’t the only
state that takes 20 moves to get to, but it is the nicest one, and also the one that
was first proven to take no fewer than 20 moves.
Anyway, that’s the Rubik’s cube. There are generalizations in a few different direc-
tions. The most popular one is to increase the number of subdivisions. So we have
cubes with four pieces per edge, and five pieces per edge, and so on. Here we have
the interesting new adjustment that not all of the pieces are distinguishable any-
more, at least for the standard solid coloring. So now we have nontrivial isotropy,
and the action of the group on the cube isn’t free anymore. So in theory we have a
richer situation here. Actually, the original Rubik’s cube group also has isotropy,
in that it is possible to spin a single center piece by 180 degrees without changing
anything else, or to rotate a pair of centers by 90 degrees; since the Rubik’s cube
is classically solid-colored, rotating the centers is undetectable. However, since the
centers don’t move, the sequences that just rotate the centers and leave everything
else fixed form a normal subgroup, so we just take the quotient by default. Alterna-
tively, in both the case of the regular Rubik’s cube and the higher-order cubes, we
can just assume that all of the pieces and their orientations are distinguishable, for
instance if we have a picture cube where instead of solid coloring we have pictures
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with each patch having a distinguished orientation.
We also have the idea of tacking on more dimensions. So we have four-dimensional
Rubik’s hypercubes, which have corners, edges, and now mobile faces, where the
stickers are three-dimensional cubelets. I’ve seen implementations that go up to
ten dimensions, although these are generally plagued by visualization issues even if
the basic solving strategies end up being analogous. Again, this is not what I want
to talk about.
And then we also have objects that aren’t cubes. The puzzle titled the megaminx
is a dodecahedron cut into edges and corners, and again the basic move is to rotate
a face. Again we can use the same techniques to talk about this new object. So
we count the edges and get 30 edges, and we count the corners and get 20 corners,
and so we expect the group to be some subgroup of S30 × S20 × Z30

2 × Z20
3 . Now

we look at a single face and turn it. We get that now we have two five cycles for
the permutation of pieces. Hence the permutation of the edges must be even and
the permutation of the corners must be even independently, whereas with the cube
we had that only the product had to be even. This independent evenness holds for
any of the puzzles where the number of edges per face is odd.
We still get that you can’t flip a single edge or spin a single corner. So now we’re in
(A30×A20)n(Z29

2 ×Z19
3 ). Again the only nontrivial central element is the superflip.

And of course we can do the previous generalizations to this guy as well, increasing
the number of pieces per edge, so that a dodecahedron with each edge divided into
5 gives us the Gigaminx, and with 7 we get the Teraminx, and 9 would give us a
Petaminx. And I suppose you could move into four dimensions and try to manip-
ulate a 120-cell. I don’t think I’ve ever seen this implemented in code.
But let’s think of another way to think about twisting puzzles. Look at the 7x7x7
Rubik’s cube. It bulges outward slightly for mechanical reasons, but we can think
about going all the way and simply projecting the entire thing onto an enveloping
sphere. So all the faces distort into disks on the sphere with circular boundaries,
and the inner layers into annuli. Moreover, this gives us a nice way to unify the
three-dimensional twisting puzzles, as spheres covered by rotatable patches that
have circular boundaries, such that proper rotations preserve the network of circu-
lar cuts. And so we see that these twisting puzzles are actually two-dimensional in
terms of information content. We don’t really care about the inside of the cube or
dodecahedron at all, except when trying to make a physical instantiation of these
things.
Let’s define a Rubik’s surface to be a surface covered by disks such that for each
disk di, there is an integer ni such that rotation of the disk around its center by
2π/ni sends

⋃
j ∂dj to itself, i.e. it preserves the network of cuts so that rotations

can be composed. We might as well impose the restriction that if di is contained
in dj , first that di and dj are concentric and that ni = nj . We can worry about
colorings and such later. Here we just assume that all the pieces are distinguishable.
This allows us to talk about cases like the skewb, where we have a cube sliced not
parallel to the faces, but across the long diagonals, so that rotations occur around
a corner with angle 120 degrees. It is isomorphic to a Rubik’s octahedron except
the coloring is weird because it thinks it’s a cube. We just assume that all the
pieces are distinguishable from each other and that all orientations are detectable
for corners, edges and faces. If we want we can later impose isotropy to get rid of
distinctions.
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We’ve seen now instances of Rubik’s surfaces whose underlying manifold is a sphere.
What about other surfaces? What about surfaces with positive genus? What about
nonorientable surfaces?
Let’s look at the nonorientable case first. We have a physical model of a nonori-
entable Rubik’s surface, specifically a Rubik’s real projective plane. Normally, to
get the real projective plane you take a sphere and identify opposite points. So
we take a Rubik’s cube and identify opposite cubes. Thus turning the front face
clockwise is automatically accompanied by turning the back face counterclockwise,
and so on. The result just looks like what you’d get if you made the corners all
act as one unit. Alternatively, you can think of it as just moving the middle slices
instead of the faces. You can also build such a thing out of the megaminx, or out of
an octohedral or icosahedral puzzle. Note: I have never seen a decent, face-turning
icosahedral twisting puzzle. Most twisting puzzles that are shaped like icosahedrons
are really just other puzzles that have been sanded down into icosahedrons.
Now let’s look at orientable, positive genus. The simplest case is the torus. The
simplest nontrivial case on the torus is either divide the torus into a pair of trian-
gles or a pair of squares to get dihedrons. But it turns out that dihedrons aren’t
very interesting, because rotating either face moves all of the mobile pieces, and
preserves all of the adjacencies and relative orientations. So really it’s just spinning
the centers around. Note that this is also the case for dihedrons on the sphere.
So next up is the trihedron of three hexagonal faces on a torus. If we were to
take a universal cover of this thing, we’d get the plane tiled with hexagons, with
identifications. The tiling of the torus has three faces, six corners, and nine edges.
Again, turning a single face gives us an odd permutation of the edges and an odd
permutation of the corners, so again every turn of a face is even overall. This tells
us pretty quickly that the superflip is impossible here, since that would require nine
flips. It also turns out that you can’t rotate the corners relative to each other.
So we can move on to the more interesting case, wherein a pair of faces share at
most one edge. In this case coloring is sufficient to distinguish all of the pieces. The
next simplest torus covering I can think of is a triangular grid with four different
faces, but it turns out that this just becomes the tetrahedron; in particular, it turns
into a sphere with four degree-2 singular points, but the singular points are hidden
as vertices so we don’t notice them.
After that, we get to the next case, which is a torus with a square grid and five
distnct squares. Note that we can’t tile the torus by four squares and have each pair
touching only once. In our five-square case, we can look at for the usual features.
The tiling gives us five faces, ten edges, and five corners; the corners here have four
facets. Let’s look at local constraints. Turning a face gives us a four-cycle for edge
permutation and a four-cycle for corner permutation, so the S10×S5 restricts to an
A10,5. We get a pair of four-cycles for the edge facets, so edge orientation is always
even, and we get a quartet of four-cycles for corner facets, so corner orientation has
four-arity.
One question that arises naturally is how do we flip even one edge, ignoring every-
thing else? Well, on the normal Rubik’s cube the quickest way is to pick a corner
adjacent to the edge, and turn the faces adjacent to that corner all in the same di-
rection so that the edge circles around the corner. Because the cube has three faces
per edge, the orientation of the edge relative to the corner changes three times and
hence when it reaches its original position it’s flipped. In the case of this five-tiled
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torus, we get that we can’t do that kind of thing with the corners, because the edge
would flip an even number of times. However, we can rotate each of the faces 180
degrees so that the edge moves around the whole torus, and when it gets back to
its starting position it’s now flipped.
Interestingly, if we compare this to a similar tiling with eight facets, arranged as
so, then we get that we can’t flip any edge. We can see this by just two-coloring
the faces, and then we only have to pay attention to which side of the edge is which
color. Since every rotation preserves this, we get that if the edge returns to its
original position it must be in its original orientation.
So we can then say that a single edge can be flipped if and only if the graph that is
dual to the tiling is not 2-colorable. This is equivalent to saying that a single edge
can be flipped only if there is a cycle in the dual graph that has odd length; you
just rotate each face corresponding to the vertex in the dual graph along the cycle.
So this gives us a global condition that gives us a constraint, as opposed to our
previous analyses which only looked at constraints coming from local conditions.
So local conditions, i.e. the constraints that we get by looking at the rotation of a
single face, are insufficient. There might be more complicated constraints coming
from other global considerations, but I don’t know what they are.
So far I’ve been dealing solely with disk structures on manifolds. We don’t have
to do that. If we were to take, say, a megaminx, i.e. a dodecahedron, then we can
identify two commuting generators, in other words two disks that don’t intersect.
And we’d still get a viable Rubik’s structure, but there’s no manifold that we could
put disks onto to realize this structure with a one-to-one correspondence between
disks and faces.
But I have a conjecture, that this is the only bad thing that can happen. We say
that M covers R if M is also a Rubik’s structure such that R can be obtained from
M by identifying disks in M .
Conjecture: If for every cover M of R such that M is a manifold, if for each disk
d and each lift d̂ of d, the set of disks that intersect d̂ are the same for all lifts,
then R is realizable as a manifold. The heuristic is that rotatability gives us a local
manifold structure, and thus we can always cover by some M that can be realized
on a manifold. Regularizing the idenfication, which is what that hypothesis does,
should prevent indentifications of faces of M that would prevent R from being a
manifold as well.
Finally, we can ask when even the group paradigm fails. So let’s look at the so-
called helicopter cube. Instead of rotating around the faces or corners, this one
rotates around the edges. So once you start rotating, you have to rotate it 180
degrees to get back to a cube.
That last statement is a lie. We actually have other things we can do, like turning
an edge part of the way, and then turning an adjacent edge, and so on. Note that
after doing the first partial turn, certain other edges become fixed. You can actually
reach positions where only three of the twelve edges can be turned. So we don’t
have a group for the helicopter cube; we have a groupoid. And the partial turns
make the projection onto a sphere not injective with respect to the surface of the
puzzle.
We might hope that the partial turns do not add any new cube-shaped states, but
alas, the set of states accessible using only 180 degree turns is a proper subset of
the cube shaped states accessible by partial turns. For example, the group of 180
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degree turns partitions the center pieces into four orbits, with each piece of the
same coloring being in a different orbit. Using partial turns, you get one orbit.


