MATH 361 — HOMEWORK 9.

due on Friday, November 13.

Textbook: *"Elementary Classical Analysis"*, second edition by J. E. Marsden and M. J. Hoffman

Topics:

- Chapter 6: Differentiable Mappings
 - 6.1 Definition of the Derivative
 - 6.2 Matrix Representation
 - 6.3 Continuity of Differentiable Mappings; Differentiable Paths 6.4 Conditions for Differentiability
- Multilinear Maps, Functional Calculus (with power series)

Ninth Homework Assignment.

Reading:

• Read Sections 6.1 to 6.4. (We are going to discuss partial derivatives in greater detail next week.) Read the slides (or/and watch the videos).

Exercises:

Problem 1. (See page 330 - problem 4.) Let $f : E \to F$ (E, F Banach Spaces), and suppose there is a constant M such that for $x \in E$, $||f(x)|| \le M ||x||^2$. Prove that f is differentiable at $x_0 = 0$ and that $Df(x_0) = 0$.

Problems:

- Page 330: problems 1,2
- Page 338: problems: 1, 2, 3, 4
- Page 344: problems:2
- Page 383: problems:1, 3