MATH 361 - HOMEWORK 8.

due on Friday, November 6.

Textbook: "Elementary Classical Analysis", second edition

 by J. E. Marsden and M. J. Hoffman
Topics:

- 5. Uniform Convergence
- 5.10 Power Series
- Multilinear Maps, Functional Calculus (with power series)

Eighth Homework Assignment.

Reading:

- Read your notes. Read the slides (or/and watch the videos).
- You can find some of the Multiliear Maps facts in the "Worked Examples for Chapter 4".

Exercises:

Problem 1. Suppose $(E,\| \|)$ is a Banach space, $T \in L(E)$ and p_{1}, p_{2} power series with radius of convergence (strictly) greater than $\|T\|$.

Prove that

$$
p_{1}(T) p_{2}(T)=\left(p_{1} p_{2}\right)(T)
$$

Problem 2. Use Problem 1. to show that

$$
\exp \left(z_{1} T\right) \exp \left(z_{2} T\right)=\exp \left(z_{1}+z_{2}\right) T
$$

for every $T \in L(E)$ and every $z_{1}, z_{2} \in k(=\mathbb{R}, \mathbb{C})$.
Problem 3. Let $(E,\| \|)$ and $(F,\| \|)$ are normed vector spaces, $f:(a, b) \rightarrow$ $L(E, F)(a, b \in \mathbb{R}, a<b)$ and $v \in E$.

Prove that if f is differentiable at $t_{0} \in(a, b)$, then the function $g:(a, b) \rightarrow$ F, defined by

$$
g(t)=f(t) v \in F
$$

is differentiable at t_{0} and that

$$
\frac{d g}{d t}\left(t_{0}\right)=\frac{d f}{d t}\left(t_{0}\right) v
$$

Problem 4. Write up the analogue of Problem 3. for a complex-differentiable f and prove it.

Problem 5. Suppose $\left(E_{i},\| \|\right)$ and $(F,\| \|)$ are vector spaces, that all the E_{i} 's are finite dimensional of dimension m_{i} and that $\left\{e_{i \ell_{i}} \mid 1 \leq \ell_{i} \leq m_{i}\right\} \subset E_{i}$ are bases.

Prove that any $\varphi \in \mathscr{L}^{(k)}\left(E_{1}, \ldots, E_{k} ; F\right)$ is uniquely determined by the values

$$
\varphi\left(e_{1 \ell_{1}}, e_{2 \ell_{2}}, \ldots, e_{k \ell_{k}}\right) \in F
$$

Conclude that $\mathscr{L}^{(k)}\left(E_{1}, \ldots, E_{k} ; F\right)$ ia isomorphic to $F^{m_{1} m_{2} \cdots m_{k}}$.
Prove that $\mathscr{L}^{(k)}\left(E_{1}, \ldots, E_{k} ; F\right)=L^{(k)}\left(E_{1}, \ldots, E_{k} ; F\right)$.
Problem 6. Write down the proof of the fact that if $\left(E_{i},\| \|\right)$ and $(F,\| \|)$ are N.V.Spaces, then

$$
L^{(k)}\left(E_{1}, \ldots, E_{k} ; F\right) \cong L\left(E_{1}, L\left(E_{2}, \ldots, L\left(E_{k}, F\right) \ldots\right)\right)
$$

Problem 7. Let $E \neq\{0\}$ be a normed vector space. Prove that it is impossible to have $S, T \in L(E)$ such that

$$
S T-T S=I_{E}
$$

where I_{E} is the identity operator on E.
(Hint: Prove that this would imply $S T^{n+1}-T^{n+1} S=(n+1) T^{n}$, and therefore the inequality $(n+1)\left\|T^{n}\right\| \leq 2\|S\|\|T\|\left\|T^{n}\right\|$, which leads to $T^{n}=0$ for large n, so finally $T=0$.)

