MATH 361 — HOMEWORK 12.

due on Thursday, December 10.

Textbook: *"Elementary Classical Analysis"*, second edition by J. E. Marsden and M. J. Hoffman

Topics:

- Chapter 6: Differentiable Mappings
 - 6.8 Taylor's Theorem and Higher Derivatives
 - 6.9 Maxima and Minima
- Chapter 7: The Inverse and Implicit Function Theorems and Related Topics
 - 7.1 Inverse Function Theorem

Twelvth Homework Assignment.

Reading:

• Read Sections 6.9 and 7.1. Read the slides (or/and watch the videos).

Exercises: (In what follows E and F are Banach Spaces).

Problem 1. Prove that the inverse map Inv : $GL(E, F) \rightarrow GL(F, E) \subset L(F, E)$ is of class C^{∞} and that the *n*-th derivative is given by the formula

$$D^{n}Inv(X)(H_{1},...,H_{n}) = (-1)^{n} \sum_{\sigma \in S_{n}} X^{-1}H_{\sigma(1)}X^{-1}\cdots X^{-1}H_{\sigma(n)}X^{-1},$$

for every $X \in GL(E, F)$ and every $H_1, \ldots, H_n \in L(E, F)$.

(Use Induction and either the formula for the first derivative or the series for $(X + H)^{-1}$ proven in class.)

Problem 2. Prove that the Taylor polynomial of order n of Inv about $X \in GL(E, F)$ is given by

$$T^{n}_{\text{Inv},X}(H) = X^{-1} - X^{-1} H X^{-1} + X^{-1} H X^{-1} H X^{-1} + \dots + (-1)^{n} X^{-1} (H X^{-1})^{n}.$$

Problems:

- Page 367: 1, 3, 6
- Page 396: problems: 1,3
- Page 438: problems: 3, 5