Math 240

Integrating factors

Reduction of order

Integrating Factors and Reduction of Order

Math 240 — Calculus III

Summer 2015, Session II

Monday, August 3, 2015

Math 240

Integrating factors

Reduction of order

1. Integrating factors

2. Reduction of order

Math 240

Integrating factors

Reduction of order

The reduction of order technique, which applies to second-order linear differential equations, allows us to go beyond equations with constant coefficients, provided that we already know one solution.

If our differential equation is

$$y'' + a_1(x)y' + a_2(x)y = F(x),$$

and we know the solution, $y_1(x)$, to the associated homogeneous equation, this method will furnish us with another, independent solution.

To accomplish the process, we will make use of *integrating factors*.

Integrating factors

Order Math 240

Integrating

Factors and Reduction of

Integrating factors

Reduction of order

Integrating factors are a technique for solving first-order linear differential equations, that is, equations of the form

$$a(x)\frac{dy}{dx} + b(x)y = r(x).$$

Assuming $a(x) \neq 0$, we can divide by a(x) to put the equation in standard form:

$$\frac{dy}{dx} + p(x)y = q(x).$$

The main idea is that the left-hand side looks almost like the result of the product rule for derivatives. If I(x) is another function then

$$\frac{d}{dx}(Iy) = I\frac{dy}{dx} + \frac{dI}{dx}y.$$

The standard form equation is missing an I in front of $\frac{dy}{dx}$, so let's multiply it by I.

Integrating factors

Reduction of Order Math 240

Integrating

Factors and

Integrating factors

Reduction of order

When we multiply our equation by I, we get

$$I\frac{dy}{dx} + Ip(x)y = Iq(x),$$

so in order for the left-hand side to be $\frac{d}{dx}(Iy)$, we need to have

$$\frac{dI}{dx} = p(x)I.$$

Rearranging this into

$$\frac{dI}{I} = p(x) \, dx,$$

we can solve:

$$I(x) = c_1 e^{\int p(x) \, dx}$$

Since we only need one function I, let's set $c_1 = 1$.

Integrating factors

Integrating Factors and Reduction of Order

Math 240

Integrating factors

Reduction of order

Using this I, we rewrite our equation as

$$\frac{d}{dx}(Iy) = q(x)I,$$

then integrate and divide by \boldsymbol{I} to get

$$y(x) = \frac{1}{I} \left(\int q(x) I \, dx + c \right)$$

Our I is called an **integrating factor** because it is something we can multiply by (a factor) that allows us to integrate.

Math 240

Integrating factors

Reduction of order

Example

Find a solution to

$$y' + xy = xe^{x^2/2}.$$

1. Find the integrating factor $I(x) = e^{\int x \, dx} = e^{x^2/2}.$

2. Multiply it into the original equation: $\frac{d}{dx}\left(e^{x^2/2}y\right) = e^{x^2/2}y' + xe^{x^2/2}y = xe^{x^2}.$

3. Integrate both sides:

$$e^{x^2/2}y = \frac{1}{2}e^{x^2} + c.$$

4. Divide by I to find the solution

$$y(x) = e^{-x^2/2} \left(\frac{1}{2}e^{x^2} + c\right).$$

Math 240

Integrating factors

Reduction of order

Example

Solve, for x > 0, the equation

$$xy' + 2y = \cos x.$$

1. Write the equation in standard form:
$$y'+\frac{2}{x}y=\frac{\cos x}{x}.$$
 2. An integrating factor is
$$I(x)=e^{2\ln x}=x^2.$$

3. Multiply by
$$I$$
 to get

$$\frac{d}{dx}(x^2y) = x \cos x.$$
4. Integrate and divide by x^2 to get

$$y(x) = \frac{x \sin x + \cos x + c}{x^2}.$$

Reduction of order

Integrating Factors and Reduction of Order

Math 240

Integrating factors

Reduction of order

We now turn to second-order equations

2

$$y'' + a_1(x)y' + a_2(x)y = F(x).$$

We know that the general solution to such an equation will look like

$$y(x) = c_1 y_1(x) + c_2 y_2(x) + y_p(x).$$

Suppose that we know $y_1(x)$. We will guess the solution $y(x) = u(x)y_1(x)$. Plugging it into our original equation yields $u''y_1 + u'(2y'_1 + a_1(x)y_1) = F(x)$.

If we let $w=u^\prime$ then we have reduced our second-order equation to the first-order

$$w' + \left(\frac{2y'_1}{y_1} + a_1\right)w = \frac{F(x)}{y_1}.$$

Reduction of order

Integrating Factors and Reduction of Order

Math 240

Integrating factors

Reduction of order

We may solve

$$w' + \left(\frac{2y_1'}{y_1} + a_1\right)w = \frac{F(x)}{y_1}$$

using the integrating factor technique:

$$I(x) = y_1^2(x) e^{\int^x a_1(s) \, ds}$$

and

$$w(x) = \frac{1}{I(x)} \int^x \frac{I(s)F(s)}{y_1(s)} \, ds + \frac{c_1}{I(x)}.$$

Then integrate w to find u:

$$u(x) = \int^x \frac{1}{I(t)} \int^t \frac{I(s)F(s)}{y_1(s)} \, ds \, dt + c_1 \int^x \frac{1}{I(s)} \, ds + c_2.$$

Reduction of order

Integrating Factors and Reduction of Order

Math 240

Integrating factors

Reduction of order

Finally, we get

$$y(x) = u(x)y_1(x) = c_1y_1(x) \int^x \frac{1}{I(s)} ds + c_2y_1(x) + y_1(x) \int^x \frac{1}{I(t)} \int^t \frac{I(s)F(s)}{y_1(s)} ds dt.$$

Using F = 0 gives us the two fundamental solutions

$$y(x) = y_1(x)$$
 and $y(x) = y_1(x) \int^x \frac{1}{I(s)} ds$.

And using $c_1 = c_2 = 0$, we get a particular solution

$$y_p(x) = y_1(x) \int^x \frac{1}{I(t)} \int^t \frac{I(s)F(s)}{y_1(s)} \, ds \, dt.$$

Math 240

Integrating factors

Reduction of order

Example

Determine the general solution to

$$xy'' - 2y' + (2 - x)y = 0, \quad x > 0,$$

given that one solution is $y_1(x) = e^x$.

1. Set up the equation for w:

$$w' + \frac{2(x-1)}{x}w = 0.$$

$$w(x) = c_1 x^2 e^{-2x}$$

3. Integrate to find

$$u(x) = \int w(x) \, dx + c_2 = -\frac{1}{4}c_1 e^{-2x} (1 + 2x + 2x^2) + c_2.$$

4. Multiply by y_1 for the general solution: $u(x) = c_1 e^{-x} (1 + 2x + 2x^2) + c_2 e^x.$

Math 240

Integrating factors

Reduction of order

Example

Determine the general solution to

$$x^2y'' + 3xy' + y = 4\ln x, \quad x > 0,$$

by first finding solutions to the associated homogeneous equation of the form $y(x) = x^r$.

- 1. Find $y_1(x) = x^{-1}$.
- 2. Put the equation in standard form by dividing by x^2 :

$$y'' + 3x^{-1}y' + x^{-2}y = 4x^{-2}\ln x$$

- 3. Set up the equation $w' + x^{-1}w = 4x^{-1}\ln x.$
- 4. Find $w(x) = 4(\ln x 1) + c_1 x^{-1}$.
- 5. Then $u(x) = 4x(\ln x 2) + c_1 \ln x + c_2$.
- 6. Multiply by $y_1(x) = x^{-1}$:

$$y(x) = 4(\ln x - 2) + c_1 x^{-1} \ln x + c_2 x^{-1}.$$

