Integrating Factors and Reduction of Order
Math 240
Integrating factors

Integrating Factors and Reduction of Order

Math 240 - Calculus III

Summer 2015, Session II
Monday, August 3, 2015 Factors and Reduction of Order

Math 240

Integrating factors
2. Reduction of order

1. Integrating factors

The reduction of order technique, which applies to second-order linear differential equations, allows us to go beyond equations with constant coefficients, provided that we already know one solution.

If our differential equation is

$$
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=F(x)
$$

and we know the solution, $y_{1}(x)$, to the associated homogeneous equation, this method will furnish us with another, independent solution.

To accomplish the process, we will make use of integrating factors.

Order
Integrating factors are a technique for solving first-order linear differential equations, that is, equations of the form

$$
a(x) \frac{d y}{d x}+b(x) y=r(x)
$$

Assuming $a(x) \neq 0$, we can divide by $a(x)$ to put the equation in standard form:

$$
\frac{d y}{d x}+p(x) y=q(x)
$$

The main idea is that the left-hand side looks almost like the result of the product rule for derivatives. If $I(x)$ is another function then

$$
\frac{d}{d x}(I y)=I \frac{d y}{d x}+\frac{d I}{d x} y
$$

The standard form equation is missing an I in front of $\frac{d y}{d x}$, so let's multiply it by I.

Integrating factors

When we multiply our equation by I, we get

$$
I \frac{d y}{d x}+I p(x) y=I q(x)
$$

so in order for the left-hand side to be $\frac{d}{d x}(I y)$, we need to have

$$
\frac{d I}{d x}=p(x) I
$$

Rearranging this into

$$
\frac{d I}{I}=p(x) d x
$$

we can solve:

$$
I(x)=c_{1} e^{\int p(x) d x}
$$

Since we only need one function I, let's set $c_{1}=1$.

Using this I, we rewrite our equation as

$$
\frac{d}{d x}(I y)=q(x) I
$$

then integrate and divide by I to get

$$
y(x)=\frac{1}{I}\left(\int q(x) I d x+c\right) .
$$

Our I is called an integrating factor because it is something we can multiply by (a factor) that allows us to integrate.

Integrating Factors and Reduction of Order

Math 240

Example

Find a solution to

$$
y^{\prime}+x y=x e^{x^{2} / 2}
$$

1. Find the integrating factor

$$
I(x)=e^{\int x d x}=e^{x^{2} / 2}
$$

2. Multiply it into the original equation:

$$
\frac{d}{d x}\left(e^{x^{2} / 2} y\right)=e^{x^{2} / 2} y^{\prime}+x e^{x^{2} / 2} y=x e^{x^{2}}
$$

3. Integrate both sides:

$$
e^{x^{2} / 2} y=\frac{1}{2} e^{x^{2}}+c
$$

4. Divide by I to find the solution

$$
y(x)=e^{-x^{2} / 2}\left(\frac{1}{2} e^{x^{2}}+c\right)
$$

Integrating Factors and Reduction of Order

Math 240

Integrating factors

Example

Solve, for $x>0$, the equation

$$
x y^{\prime}+2 y=\cos x
$$

1. Write the equation in standard form:

$$
y^{\prime}+\frac{2}{x} y=\frac{\cos x}{x} .
$$

2. An integrating factor is

$$
I(x)=e^{2 \ln x}=x^{2}
$$

3. Multiply by I to get

$$
\frac{d}{d x}\left(x^{2} y\right)=x \cos x
$$

4. Integrate and divide by x^{2} to get

$$
y(x)=\frac{x \sin x+\cos x+c}{x^{2}}
$$

We now turn to second-order equations

$$
y^{\prime \prime}+a_{1}(x) y^{\prime}+a_{2}(x) y=F(x)
$$

We know that the general solution to such an equation will look like

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+y_{p}(x)
$$

Suppose that we know $y_{1}(x)$. We will guess the solution $y(x)=u(x) y_{1}(x)$. Plugging it into our original equation yields

$$
u^{\prime \prime} y_{1}+u^{\prime}\left(2 y_{1}^{\prime}+a_{1}(x) y_{1}\right)=F(x)
$$

If we let $w=u^{\prime}$ then we have reduced our second-order equation to the first-order

$$
w^{\prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+a_{1}\right) w=\frac{F(x)}{y_{1}}
$$

Integrating Factors and Reduction of Order

Math 240

Integrating factors

Reduction of order

Reduction of order

We may solve

$$
w^{\prime}+\left(\frac{2 y_{1}^{\prime}}{y_{1}}+a_{1}\right) w=\frac{F(x)}{y_{1}}
$$

using the integrating factor technique:

$$
I(x)=y_{1}^{2}(x) e^{\int^{x} a_{1}(s) d s}
$$

and

$$
w(x)=\frac{1}{I(x)} \int^{x} \frac{I(s) F(s)}{y_{1}(s)} d s+\frac{c_{1}}{I(x)}
$$

Then integrate w to find u :

$$
u(x)=\int^{x} \frac{1}{I(t)} \int^{t} \frac{I(s) F(s)}{y_{1}(s)} d s d t+c_{1} \int^{x} \frac{1}{I(s)} d s+c_{2}
$$

Integrating Factors and Reduction of Order

Math 240

Integrating factors

Reduction of order

Reduction of order

Finally, we get

$$
\begin{aligned}
& y(x)=u(x) y_{1}(x)=c_{1} y_{1}(x) \int^{x} \frac{1}{I(s)} d s+c_{2} y_{1}(x) \\
& \quad+y_{1}(x) \int^{x} \frac{1}{I(t)} \int^{t} \frac{I(s) F(s)}{y_{1}(s)} d s d t
\end{aligned}
$$

Using $F=0$ gives us the two fundamental solutions

$$
y(x)=y_{1}(x) \text { and } y(x)=y_{1}(x) \int^{x} \frac{1}{I(s)} d s
$$

And using $c_{1}=c_{2}=0$, we get a particular solution

$$
y_{p}(x)=y_{1}(x) \int^{x} \frac{1}{I(t)} \int^{t} \frac{I(s) F(s)}{y_{1}(s)} d s d t
$$

Example

Determine the general solution to

$$
x y^{\prime \prime}-2 y^{\prime}+(2-x) y=0, \quad x>0
$$

given that one solution is $y_{1}(x)=e^{x}$.

1. Set up the equation for w :

$$
w^{\prime}+\frac{2(x-1)}{x} w=0
$$

2. Solve for w :

$$
w(x)=c_{1} x^{2} e^{-2 x}
$$

3. Integrate to find

$$
u(x)=\int w(x) d x+c_{2}=-\frac{1}{4} c_{1} e^{-2 x}\left(1+2 x+2 x^{2}\right)+c_{2} .
$$

4. Multiply by y_{1} for the general solution:

$$
y(x)=c_{1} e^{-x}\left(1+2 x+2 x^{2}\right)+c_{2} e^{x} .
$$

Example

Determine the general solution to

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=4 \ln x, \quad x>0
$$

by first finding solutions to the associated homogeneous equation of the form $y(x)=x^{r}$.

1. Find $y_{1}(x)=x^{-1}$.
2. Put the equation in standard form by dividing by x^{2} :

$$
y^{\prime \prime}+3 x^{-1} y^{\prime}+x^{-2} y=4 x^{-2} \ln x
$$

3. Set up the equation $w^{\prime}+x^{-1} w=4 x^{-1} \ln x$.
4. Find $w(x)=4(\ln x-1)+c_{1} x^{-1}$.
5. Then $u(x)=4 x(\ln x-2)+c_{1} \ln x+c_{2}$.
6. Multiply by $y_{1}(x)=x^{-1}$:

$$
y(x)=4(\ln x-2)+c_{1} x^{-1} \ln x+c_{2} x^{-1} .
$$

