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Introduction

We have now learned how to solve constant-coefficient linear
differential equations of the form P (D)y = F for a sizeable
class of functions F .

We are going to use this knowledge to study the motion of
mechanical systems consisting of a mass attached to a spring.
Let’s begin by modeling our system using a differential
equation.
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The setup

A mass of m kg is attached to
the end of a spring with spring
constant k N/m whose natural
length is l0 m. At equilibrium,
the mass hangs without moving
at a displacement of L0 m, so
that mg = kL0. Spring-mass system in static equilibrium.
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The setup

To analyze the system in motion, we let y(t) denote the
position of the mass at time t and take y = 0 to coincide with
the equilibrium position. The forces that act on the mass are

1. The force of gravity,
Fg = mg.

2. The spring force,
Fs = −k(y(t) + L0).

3. A damping force
proportional to the
velocity of the mass,
Fd = −cdydt .

4. Any external driving
force, F (t).

A damped spring-mass system.
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Our equation

Newton says, the equation governing motion of the mass is

m
d2y

dt2
= Fg + Fs + Fd + F (t)

= mg − k(L0 + y)− cdy
dt

+ F (t).

Rearranging gives us the linear differential equation

y′′ +
c

m
y′ +

k

m
y =

1

m
F (t).

We may also have initial conditions

y(0) = y0 and y′(0) = v0.

These indicate that at t = 0 the mass is displaced a distance of
y0 m and released with a downward velocity of v0 m/s.
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Free oscillation

First consider the case where there are no external forces acting
on the system, that is, set F (t) = 0. Our differential equation
reduces to

y′′ +
c

m
y′ +

k

m
y = 0.

We will study the two subcases

I no damping: c = 0 and

I damping: c > 0.
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No damping

Setting c = 0 in our equation, we have

y′′ + ω2
0y = 0,

where ω0 =
√
k/m. This equation has the general solution

y(t) = c1 cosω0t+ c2 sinω0t.

From the constants c1 and c2 we can derive

I the amplitude, A0 =
√
c21 + c22,

I the phase, φ = arctan(c2/c1).
c
2

c
1



A
0

Using these new constants, the equation of our motion is

y(t) = A0 cos(ω0t− φ).
This is simple harmonic motion. The constant ω0 is called
the circular frequency.
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Simple harmonic motion

This function is periodic with a period of T = 2π
ω0

= 2π
√

m
k .

Its frequency is f = 1
T = ω0

2π = 1
2π

√
k
m .

Note that these quantities are independent of the initial
conditions. They are properties of the system itself.



Oscillations of
Mechanical
Systems

Math 240

Free
oscillation

No damping

Damping

Forced
oscillation

No damping

Damping

Damped motion

The motion of the system is damped when c > 0. Our
equation is then

y′′ +
c

m
y′ +

k

m
.

The auxiliary polynomial has roots

r =
−c±

√
c2 − 4km

2m
.

The behavior of the system will depend on whether there are
distinct real roots, a repeated real root, or complex conjugate
roots. This can be determined using the (dimensionless)
quantity c2/(4km). We say that the system is

I underdamped if c2/(4km) < 1 (complex conjugate roots),

I critically damped if c2/(4km) = 1 (repeated real root),

I overdamped if c2/(4km) > 1 (distinct real roots).



Oscillations of
Mechanical
Systems

Math 240

Free
oscillation

No damping

Damping

Forced
oscillation

No damping

Damping

Underdamping

The two complex roots of the auxiliary polynomial give rise to
the general solution

y(t) = e−ct/(2m)(c1 cosµt+ c2 sinµt),

where µ =
√
4km− c2/(2m). Using amplitude and phase, it’s

y(t) = A0e
−ct/(2m) cos(µt− φ).

Although the amplitude decays exponentially, this motion has a
constant quasiperiod T = 2π

µ = 4πm√
4km−c2 .
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Critical damping

Critical damping happens when c2/(4km) = 1. Then the
equation

y′′ +
c

m
y′ +

c2

4m2
y = 0

has general solution

y(t) = e−ct/(2m)(c1 + c2t).

The motion is not oscillatory—it will pass through y = 0 at
most once.
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Overdamping

When c2/(4km) > 1 we have two real roots of the auxiliary
polynomial:

r1 =
−c+

√
c2 − 4km

2m
and r2 =

−c−
√
c2 − 4km

2m
.

Thus, our general solution is

y(t) = e−ct/(2m)(c1e
µt + c2e

−µt),

where µ =
√
c2 − 4km/(2m).

Overdamped motion is qualitatively similar to critically
damped—it is not oscillatory and passes through the
equilibrium position at most once.
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Sanity check

Notice that in all three cases of damped motion, the amplitude
diminishes to zero as t→∞. This is certainly what we expect
in such a system.
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Forced oscillation

Let’s investigate the nonhomogeneous situation when an
external force acts on the spring-mass system. We will focus on
periodic applied force, of the form

F (t) = F0 cosωt,

for constants F0 and ω. Our general equation is now

y′′ +
c

m
y′ +

k

m
y =

F0

m
cosωt.
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Setting c = 0, we want to solve

y′′ + ω2
0y =

F0

m
cosωt,

where again ω0 =
√
k/m is the circular frequency. We have

seen that the complementary function is

yc(t) = A0 cos(ω0t− φ).
Our trial solution will depend on whether ω = ω0.
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Forced harmonic oscillation

When ω 6= ω0, we can use the trial solution

yp(t) = A cosωt+B sinωt.

Then we can find the particular solution

yp(t) =
F0

m(ω2
0 − ω2)

cosωt,

so the general solution is

y(t) = A0 cos(ω0t− φ) +
F0

m(ω2
0 − ω2)

cosωt.

From this we see that the motion will look like a superposition
of two simple harmonic oscillations.
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Forced harmonic oscillation

If ω/ω0 is a rational number, say, p/q, then the resulting
motion will have a period of

T =
2πq

ω0
=

2πp

ω
.

Otherwise, it will be oscillatory but not periodic.
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Forced harmonic oscillation

Interesting things happen when ω is very close to ω0:
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Resonance

If instead we have ω = ω0, then we must use the trial solution

yp(t) = t(A cosω0t+B sinω0t).

This leads to the particular solution

yp(t) =
F0

2mω0
t sinω0t

and general solution

y(t) = A0 cos(ω0t− φ) +
F0

2mω0
t sinω0t.

Notice that the amplitude increases without bound as t→∞.
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Finally, we will consider a damped nonhomogeneous equation

y′′ +
c

m
y′ +

k

m
y =

F0

m
cosωt,

with c > 0. The trial solution yp(t) = A cosωt+B sinωt
yields the particular solution

yp(t) =
F0

(k −mω2)2 + c2ω2

[
(k −mω2) cosωt+ cω sinωt

]
.

Letting

H =
√
m2(ω2

0 − ω2)2 + c2ω2 and η = arctan

(
cω

m(ω2
0 − ω2)

)
turns it into

yp(t) =
F0

H
cos(ωt− η).
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As before, the system can be underdamped, critically damped,
or overdamped. Which one will determine the complementary
function.

In each case of damped harmonic motion, the amplitude dies
out as t gets large. But the driving force has a constant
amplitude and thus it will dominate. We therefore refer to the
complementary function as the transient part of the solution
and call yp the steady-state solution.
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