Nonhomogeneous Linear Differential Equations

Math 240 - Calculus III
Summer 2015, Session II
Wednesday, July 29, 2015

Introduction

We have now learned how to solve homogeneous linear differential equations

$$
P(D) y=0
$$

when $P(D)$ is a polynomial differential operator. Now we will try to solve nonhomogeneous equations

$$
P(D) y=F(x)
$$

Recall that the solutions to a nonhomogeneous equation are of the form

$$
y(x)=y_{c}(x)+y_{p}(x),
$$

where y_{c} is the general solution to the associated homogeneous equation and y_{p} is a particular solution.

The technique proceeds from the observation that, if we know a polynomial differential operator $A(D)$ so that

$$
A(D) F=0
$$

then applying $A(D)$ to the nonhomogeneous equation

$$
\begin{equation*}
P(D) y=F \tag{1}
\end{equation*}
$$

yields the homogeneous equation

$$
\begin{equation*}
A(D) P(D) y=0 . \tag{2}
\end{equation*}
$$

A particular solution to (1) will be a solution to (2) that is not a solution to the associated homogeneous equation $P(D) y=0$.

Example

Determine the general solution to

$$
(D+1)(D-1) y=16 e^{3 x}
$$

1. The associated homogeneous equation is $(D+1)(D-1) y=0$. It has the general solution $y_{c}(x)=c_{1} e^{x}+c_{2} e^{-x}$.
2. Recognize the nonhomogeneous term $F(x)=16 e^{3 x}$ as a solution to the equation $(D-3) y=0$.
3. The differential equation

$$
(D-3)(D+1)(D-1) y=0
$$

has the general solution $y(x)=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{3 x}$.
4. Pick the trial solution $y_{p}(x)=c_{3} e^{3 x}$. Substituting it into the original equation forces us to choose $c_{3}=2$.
5. Thus, the general solution is

$$
y(x)=y_{c}(x)+y_{p}(x)=c_{1} e^{x}+c_{2} e^{-x}+2 e^{3 x}
$$

Annihilators and the method of undetermined

 coefficientsThis method for obtaining a particular solution to a nonhomogeneous equation is called the method of undetermined coefficients because we pick a trial solution with an unknown coefficient. It can be applied when

1. the differential equation is of the form

$$
P(D) y=F(x)
$$

where $P(D)$ is a polynomial differential operator,
2. there is another polynomial differential operator $A(D)$ such that

$$
A(D) F=0 .
$$

A polynomial differential operator $A(D)$ that satisfies $A(D) F=0$ is called an annihilator of F.

Finding annihilators

Example

Determine the general solution to

$$
(D-4)(D+1) y=16 x e^{3 x}
$$

1. The general solution to the associated homogeneous equation $(D-4)(D+1) y=0$ is $y_{c}(x)=c_{1} e^{4 x}+c_{2} e^{-x}$.
2. An annihilator for $16 x e^{3 x}$ is $A(D)=(D-3)^{2}$.
3. The general solution to $(D-3)^{2}(D-4)(D+1) y=0$ includes y_{c} and the terms $c_{3} e^{3 x}$ and $c_{4} x e^{3 x}$.
4. Using the trial solution $y_{p}(x)=c_{3} e^{3 x}+c_{4} x e^{3 x}$, we find the values $c_{3}=-3$ and $c_{4}=-4$.
5. The general solution is

$$
y(x)=y_{c}(x)+y_{p}(x)=c_{1} e^{4 x}+c_{2} e^{-x}-3 e^{3 x}-4 x e^{3 x}
$$

Example

Determine the general solution to

$$
(D-2) y=3 \cos x+4 \sin x
$$

1. The associated homogeneous equation, $(D-2) y=0$, has the general solution $y_{c}(x)=c_{1} e^{2 x}$.
2. Look for linear dependencies among derivatives of $F(x)=3 \cos x+4 \sin x$. Discover the annihilator $A(D)=D^{2}+1$.
3. The general solution to $\left(D^{2}+1\right)(D-2) y=0$ includes y_{c} and the additional terms $c_{2} \cos x+c_{3} \sin x$.
4. Using the trial solution $y_{p}(x)=c_{2} \cos x+c_{3} \sin x$, we obtain values $c_{2}=-2$ and $c_{3}=-1$.
5. The general solution is

$$
y(x)=c_{1} e^{2 x}-2 \cos x-\sin x
$$

Motivating example

Example

Find the general solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=4 \cos 2 x
$$

1. Recall from yesterday that the complementary function is

$$
y_{c}(x)=c_{1} e^{-3 x}+c_{2} e^{2 x} .
$$

2. The right-hand side would be annihilated by $D^{2}+4$.
3. Since $\pm 2 i$ is not already a root of the auxiliary polynomial, use the trial solution $y_{p}(x)=c_{3} \cos 2 x+c_{4} \sin 2 x$.
4. Plugging y_{p} into the original equation yields $c_{3}=-\frac{5}{13}$ and $c_{4}=\frac{1}{13}$.
5. The general solution is

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}-\frac{5}{13} \cos 2 x+\frac{1}{13} \sin 2 x
$$

Motivating example

Example

Find the general solution to

$$
y^{\prime \prime}+y^{\prime}-6 y=4 e^{2 i x}
$$

1. The complementary function is $y_{c}(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}$.
2. If we're using complex numbers, use the trial solution $y_{p}(x)=c_{3} e^{2 i x}$.
3. Plugging y_{p} into the original equation yields $c_{3}=-\frac{1}{13}(5+i)$.
4. Thus, the general solution is

$$
y(x)=c_{1} e^{-3 x}+c_{2} e^{2 x}-\frac{1}{13}(5+i) e^{2 i x} .
$$

Complex-valued trial solutions

Which problem was easier? Depends on your opinion of complex numbers, but the second only involved one unknown coefficient while the first had two. So it may be advantageous, when the nonhomogeneous term is $c x^{k} e^{a x} \cos b x$ or $c x^{k} e^{a x} \sin b x$, to change it to $c x^{k} e^{(a+b i) x}$, solve, and take the real or imaginary part.

Theorem

If $y(x)=u(x)+i v(x)$ is a complex-valued solution to

$$
P(D) y=F(x)+i G(x)
$$

then

$$
P(D) u=F(x) \quad \text { and } \quad P(D) v=G(x) .
$$

Proof.

If $y(x)=u(x)+i v(x)$, then

$$
P(D) y=P(D)(u+i v)=P(D) u+i P(D) v .
$$

Equating real and imaginary parts gives

$$
P(D) u=F(x) \quad \text { and } \quad P(D) v=G(x)
$$

Solutions to the nonhomogeneous polynomial differential equations

$$
P(D) y=c x^{k} e^{a x} \cos b x \quad \text { and } \quad P(D) y=c x^{k} e^{a x} \sin b x
$$

may be found by solving the complex equation

$$
P(D) z=c x^{k} e^{(a+b i) x}
$$

and then taking the real and imaginary parts, respectively, of the solution $z(x)$.

Bonus

Solve two equations at once!

Example

Solve $y^{\prime \prime}-2 y^{\prime}+5 y=8 e^{x} \sin 2 x$.

1. The complementary function is

$$
y_{c}(x)=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) .
$$

2. Instead, solve $z^{\prime \prime}-2 z^{\prime}+5 z=8 e^{(1+2 i) x}$.
3. Since $1+2 i$ is a root of the auxiliary polynomial, use the trial solution $z_{p}(x)=c_{3} x e^{(1+2 i) x}$.
4. Plugging z_{p} into $z^{\prime \prime}-2 z^{\prime}+5 z=8 e^{(1+2 i) x}$ yields $c_{3}=-2 i$.
5. Thus, the particular solution is

$$
z_{p}(x)=-2 i x e^{(1+2 i) x}=-2 x e^{x}(-\sin 2 x+i \cos 2 x)
$$

6 . To get $8 e^{x} \sin 2 x$ on the right-hand side, take the imaginary part

$$
y_{p}(x)=\operatorname{Im}\left(z_{p}\right)=-2 x e^{x} \cos 2 x .
$$

7. The general solution is

$$
y(x)=e^{x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)-2 x e^{x} \cos 2 x
$$

