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Introduction

We’ve learned how to find a matrix S so that S−1AS is almost
a diagonal matrix. Recall that diagonalization allows us to solve
linear systems of diff. eqs. because we can solve the equation

y′ = ay.

Jordan form will instead give us small systems that look like

y′1 = ay1 + y2,
y′2 = ay2.

Is there an obvious solution?

y1(t) = eat and y2(t) = 0.

One we didn’t already know? Yes!

y1(t) = teat and y2(t) = eat.

Write this in the vector form[
y1
y2

]
= eat

(
t

[
1
0

]
+

[
0
1

])
.
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2× 2 defective systems

Switching back to the standard basis, these are the solutions

x1(t) = eatv1 and x2(t) = eat(tv1 + v2)

where v1,v2 is a chain of generalized eigenvectors.

Example

Find the general solution to

x′ = Ax, A =

[
0 1
−9 6

]
.

1. The single eigenvalue is λ = 3.

2. Chain of generalized e-vectors is v1 = (1, 3), v2 = (0, 1).

(A− 3I)v1 = 0 and (A− 3I)v2 = v1.

3. Fundamental set of solutions is therefore

x1(t) = e3tv1 and x2(t) = e3t (tv1 + v2) .
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Longer chains

What about chains of generalized eigenvectors longer than 2?

If A is an n× n matrix with eigenvalue λ and chain of
generalized eigenvectors

v1 = (A− λI)p−1v, v2 = (A− λI)p−2v, . . .
vp−1 = (A− λI)v, vp = v,

check that the following are solutions to x′ = Ax:

x1(t) = eλtv1

x2(t) = eλt (v2 + tv1)

...

xp(t) = eλt
(
vp + tvp−1 + · · ·+ 1

(p−1)! t
p−1v1

)
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Longer chains

We should also check that {x1(t), . . . ,xp(t)} is independent.
We know that {v1, . . . ,vp} is independent, that is,

det
([
v1 v2 · · · vn

])
6= 0.

Theorem
The set {x1(t), . . . ,xp(t)} is a linearly independent subset of
Vn(I).

Thus, we can construct a fundamental set of solutions by
applying the foregoing construction to each chain of
generalized eigenvectors.
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Example

Find the general solution to x′ = Ax if

A =

1 2 0
1 1 2
0 −1 1

 .
1. Only eigenvalue is λ = 1.

2. On Thursday we found the chain

v1 = (−2, 0, 1), v2 = (0,−1, 0), v3 = (−1, 0, 0).
3. Thus, solutions are

x1(t) = etv1,

x2(t) = et (v2 + tv1) ,

x3(t) = et
(
v3 + tv2 +

1
2 t

2v1

)
.
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Example

Find the general solution to x′ = Ax if

A =



2 1 0 0 0 0
0 2 0 0 0 0
0 0 5 0 0 0
0 0 0 5 1 0
0 0 0 0 5 1
0 0 0 0 0 5

 .

1. Eigenvalues are λ1 = 2 and λ2 = 5.

2. Eigenvectors and generalized eigenvectors are

Ae1 = 2e1, Ae2 = 2e2 + e1, Ae3 = 5e3,

Ae4 = 5e4, Ae5 = 5e5 + e4, Ae6 = 5e6 + e5.

3. Our fundamental set of solutions is

x1(t) = e2te1, x2(t) = e2t (e2 + te1) , x3(t) = e5te3,

x4(t) = e5te4, x5(t) = e5t (e5 + te4) ,

x6(t) = e5t
(
e6 + te5 +

1
2 t

2e4
)
.
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What is the matrix exponential, again?

Recall that, if A is an n× n matrix of constants, then

eAt = In +At+
1

2
(At)2 +

1

2 · 3
(At)3 + · · ·+ 1

k!
(At)k + · · ·

is a matrix function called the matrix exponential function.

Theorem
If A is diagonalizable, with S−1AS = diag(λ1, . . . , λn), then

eAt = S diag(eλ1t, . . . , eλnt)S−1.

How is this relevant to differential equations? Differentiating
term by term, we find that

d

dt
eAt = AeAt.
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Matrix exponential solutions

Theorem
If b is any constant vector, the initial value problem x′ = Ax,
x(0) = b is solved uniquely by x(t) = eAtb.

Example

Solve the above initial value problem with

A =

[
−2 −7
−1 4

]
and b =

[
−10

2

]
.

You determined for homework that S−1AS = diag(5,−3), with
S =

[
v1 v2

]
, v1 = (−1, 1), v2 = (7, 1). Thus,

eAt = S

[
e5t 0
0 e−3t

]
S−1 =

[
1
8e

5t + 7
8e
−3t −7

8e
5t + 7

8e
−3t

−1
8e
−5t + 1

8e
−3t 7

8e
5t + 1

8e
−3t

]
and

x = eAt
[
−10

2

]
=

[
−3e5t − 7e−3t

3e5t − e−3t
]
.
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Now do it backwards

This theorem can be used “backwards” to determine the matrix
exponential function by solving a vector differential equation.

Example

Determine eAt if A =

[
6 −8
2 −2

]
.

Find the JCF of A: J = S−1AS where

S =

[
4 1
2 0

]
and J =

[
2 1
0 2

]
.

This leads to the fundamental set of solutions

x1(t) = e2t
[
4
2

]
, x2(t) = e2t

[
1 + 4t
2t

]
.

Then, if X(t) =
[
x1 x2

]
, we have X ′ = AX and X(0) = S.

So eAtX(0) = X(t), and thus

eAt = X(t)X(0)−1 =

[
(1 + 4t)e2t −8te2t

2te2t (1− 4t)e2t

]
.
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Fundamental matrix

Definition
If x′ = Ax is a vector differential equation and {x1, . . . ,xn} is
a fundamental set of solutions then the corresponding
fundamental matrix is

X(t) =
[
x1 · · · xn

]
.

Theorem
If A is an n× n matrix and X(t) is any fundamental matrix for
the equation x′ = Ax then the matrix exponential function can
be calculated by

eAt = X(t) (X(0))−1 .
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