Defective
Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrix

Matrix exponential solutions

# Vector Differential Equations: Defective Coefficient Matrix and <br> Matrix Exponential Solutions 

## Math 240 - Calculus III

Summer 2015, Session II
Monday, July 27, 2015


1. Vector differential equations: defective coefficient matrix
2. Matrix exponential solutions

Is there an obvious solution?

$$
y_{1}(t)=e^{a t} \text { and } y_{2}(t)=0
$$

One we didn't already know? Yes!

$$
y_{1}(t)=t e^{a t} \text { and } y_{2}(t)=e^{a t}
$$

Write this in the vector form

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=e^{a t}\left(t\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)
$$

Switching back to the standard basis, these are the solutions

$$
\mathbf{x}_{1}(t)=e^{a t} \mathbf{v}_{1} \text { and } \mathbf{x}_{2}(t)=e^{a t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)
$$

where $\mathbf{v}_{1}, \mathbf{v}_{2}$ is a chain of generalized eigenvectors.

## Example

Find the general solution to

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad A=\left[\begin{array}{cc}
0 & 1 \\
-9 & 6
\end{array}\right]
$$

1. The single eigenvalue is $\lambda=3$.
2. Chain of generalized e-vectors is $\mathbf{v}_{1}=(1,3), \mathbf{v}_{2}=(0,1)$.

$$
(A-3 I) \mathbf{v}_{1}=\mathbf{0} \text { and }(A-3 I) \mathbf{v}_{2}=\mathbf{v}_{1}
$$

3. Fundamental set of solutions is therefore

$$
\mathbf{x}_{1}(t)=e^{3 t} \mathbf{v}_{1} \text { and } \mathbf{x}_{2}(t)=e^{3 t}\left(t \mathbf{v}_{1}+\mathbf{v}_{2}\right)
$$

$$
\begin{aligned}
\mathbf{v}_{1} & =(A-\lambda I)^{p-1} \mathbf{v}, & & \mathbf{v}_{2}=(A \\
\mathbf{v}_{p-1} & =(A-\lambda I) \mathbf{v}, & & \mathbf{v}_{p}=\mathbf{v}
\end{aligned}
$$

check that the following are solutions to $\mathbf{x}^{\prime}=A \mathbf{x}$ :

$$
\begin{aligned}
\mathbf{x}_{1}(t) & =e^{\lambda t} \mathbf{v}_{1} \\
\mathbf{x}_{2}(t) & =e^{\lambda t}\left(\mathbf{v}_{2}+t \mathbf{v}_{1}\right) \\
& \vdots \\
\mathbf{x}_{p}(t) & =e^{\lambda t}\left(\mathbf{v}_{p}+t \mathbf{v}_{p-1}+\cdots+\frac{1}{(p-1)!} t^{p-1} \mathbf{v}_{1}\right)
\end{aligned}
$$

We should also check that $\left\{\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{p}(t)\right\}$ is independent. We know that $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is independent, that is,

$$
\operatorname{det}\left(\left[\begin{array}{llll}
\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}
\end{array}\right]\right) \neq 0
$$

Theorem
The set $\left\{\mathbf{x}_{1}(t), \ldots, \mathbf{x}_{p}(t)\right\}$ is a linearly independent subset of $V_{n}(I)$.

Thus, we can construct a fundamental set of solutions by applying the foregoing construction to each chain of generalized eigenvectors. Coefficient Matrices and Linear DE

Math 240

Defective Coefficient Matrix

## Example

Find the general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ if

$$
A=\left[\begin{array}{ccc}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & -1 & 1
\end{array}\right]
$$

1. Only eigenvalue is $\lambda=1$.
2. On Thursday we found the chain

$$
\mathbf{v}_{1}=(-2,0,1), \mathbf{v}_{2}=(0,-1,0), \mathbf{v}_{3}=(-1,0,0)
$$

3. Thus, solutions are

$$
\begin{aligned}
& \mathbf{x}_{1}(t)=e^{t} \mathbf{v}_{1} \\
& \mathbf{x}_{2}(t)=e^{t}\left(\mathbf{v}_{2}+t \mathbf{v}_{1}\right) \\
& \mathbf{x}_{3}(t)=e^{t}\left(\mathbf{v}_{3}+t \mathbf{v}_{2}+\frac{1}{2} t^{2} \mathbf{v}_{1}\right)
\end{aligned}
$$

3. Our fundamental set of solutions is

$$
\begin{gathered}
\mathbf{x}_{1}(t)=e^{2 t} \mathbf{e}_{1}, \quad \mathbf{x}_{2}(t)=e^{2 t}\left(\mathbf{e}_{2}+t \mathbf{e}_{1}\right), \quad \mathbf{x}_{3}(t)=e^{5 t} \mathbf{e}_{3} \\
\mathbf{x}_{4}(t)=e^{5 t} \mathbf{e}_{4}, \quad \mathbf{x}_{5}(t)=e^{5 t}\left(\mathbf{e}_{5}+t \mathbf{e}_{4}\right) \\
\mathbf{x}_{6}(t)=e^{5 t}\left(\mathbf{e}_{6}+t \mathbf{e}_{5}+\frac{1}{2} t^{2} \mathbf{e}_{4}\right)
\end{gathered}
$$

Defective
Recall that, if $A$ is an $n \times n$ matrix of constants, then

$$
e^{A t}=I_{n}+A t+\frac{1}{2}(A t)^{2}+\frac{1}{2 \cdot 3}(A t)^{3}+\cdots+\frac{1}{k!}(A t)^{k}+\cdots
$$

is a matrix function called the matrix exponential function.
Theorem
If $A$ is diagonalizable, with $S^{-1} A S=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, then

$$
e^{A t}=S \operatorname{diag}\left(e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}\right) S^{-1}
$$

How is this relevant to differential equations? Differentiating term by term, we find that

$$
\frac{d}{d t} e^{A t}=A e^{A t}
$$

## Theorem

If $\mathbf{b}$ is any constant vector, the initial value problem $\mathbf{x}^{\prime}=A \mathbf{x}$, $\mathbf{x}(0)=\mathbf{b}$ is solved uniquely by $\mathbf{x}(t)=e^{A t} \mathbf{b}$.

## Example

Solve the above initial value problem with

$$
A=\left[\begin{array}{rr}
-2 & -7 \\
-1 & 4
\end{array}\right] \text { and } \mathbf{b}=\left[\begin{array}{r}
-10 \\
2
\end{array}\right]
$$

You determined for homework that $S^{-1} A S=\operatorname{diag}(5,-3)$, with $S=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right], \mathbf{v}_{1}=(-1,1), \mathbf{v}_{2}=(7,1)$. Thus, $e^{A t}=S\left[\begin{array}{cc}e^{5 t} & 0 \\ 0 & e^{-3 t}\end{array}\right] S^{-1}=\left[\begin{array}{cc}\frac{1}{8} e^{5 t}+\frac{7}{8} e^{-3 t} & -\frac{7}{8} e^{5 t}+\frac{7}{8} e^{-3 t} \\ -\frac{1}{8} e^{-5 t}+\frac{1}{8} e^{-3 t} & \frac{7}{8} e^{5 t}+\frac{1}{8} e^{-3 t}\end{array}\right]$
and

$$
\mathbf{x}=e^{A t}\left[\begin{array}{r}
-10 \\
2
\end{array}\right]=\left[\begin{array}{c}
-3 e^{5 t}-7 e^{-3 t} \\
3 e^{5 t}-e^{-3 t}
\end{array}\right]
$$

Defective Coefficient Matrices and Linear DE

This theorem can be used "backwards" to determine the matrix exponential function by solving a vector differential equation.

## Example

Determine $e^{A t}$ if $A=\left[\begin{array}{ll}6 & -8 \\ 2 & -2\end{array}\right]$.
Find the JCF of $A: J=S^{-1} A S$ where

$$
S=\left[\begin{array}{ll}
4 & 1 \\
2 & 0
\end{array}\right] \text { and } J=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]
$$

This leads to the fundamental set of solutions

$$
\mathbf{x}_{1}(t)=e^{2 t}\left[\begin{array}{l}
4 \\
2
\end{array}\right], \mathbf{x}_{2}(t)=e^{2 t}\left[\begin{array}{c}
1+4 t \\
2 t
\end{array}\right]
$$

Then, if $X(t)=\left[\begin{array}{ll}\mathbf{x}_{1} & \mathbf{x}_{2}\end{array}\right]$, we have $X^{\prime}=A X$ and $X(0)=S$.
So $e^{A t} X(0)=X(t)$, and thus

$$
e^{A t}=X(t) X(0)^{-1}=\left[\begin{array}{cc}
(1+4 t) e^{2 t} & -8 t e^{2 t} \\
2 t e^{2 t} & (1-4 t) e^{2 t}
\end{array}\right]
$$

## Definition

If $\mathbf{x}^{\prime}=A \mathbf{x}$ is a vector differential equation and $\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right\}$ is
a fundamental set of solutions then the corresponding fundamental matrix is

$$
X(t)=\left[\begin{array}{lll}
\mathbf{x}_{1} & \cdots & \mathbf{x}_{n}
\end{array}\right] .
$$

Theorem
If $A$ is an $n \times n$ matrix and $X(t)$ is any fundamental matrix for the equation $\mathrm{x}^{\prime}=A \mathrm{x}$ then the matrix exponential function can be calculated by

$$
e^{A t}=X(t)(X(0))^{-1} .
$$

