Generalized Eigenvectors

Math 240 - Calculus III

Summer 2015, Session II

Thursday, July 23, 2015

Definition

Computation
and Properties

Chains

Jordan
canonical form

1. Definition
2. Computation and Properties
3. Chains
4. Jordan canonical form

Defective matrices cannot be diagonalized because they do not possess enough eigenvectors to make a basis. How can we correct this defect?

Example

The matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ is defective.

1. Only eigenvalue is $\lambda=1$.
2. $A-I=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
3. Single eigenvector $\mathbf{v}=(1,0)$.
4. We could use $\mathbf{u}=(0,1)$ to complete a basis.
5. Notice that $(A-I) \mathbf{u}=\mathbf{v}$ and $(A-I)^{2} \mathbf{u}=\mathbf{0}$.

Maybe we just didn't multiply by $A-\lambda I$ enough times.

Definition

If A is an $n \times n$ matrix, a generalized eigenvector of A corresponding to the eigenvalue λ is a nonzero vector \mathbf{x} satisfying

$$
(A-\lambda I)^{p} \mathbf{x}=\mathbf{0}
$$

for some positive integer p. Equivalently, it is a nonzero element of the nullspace of $(A-\lambda I)^{p}$.

Example

- Eigenvectors are generalized eigenvectors with $p=1$.
- In the previous example we saw that $\mathbf{v}=(1,0)$ and $\mathbf{u}=(0,1)$ are generalized eigenvectors for

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \text { and } \lambda=1
$$

Example

Determine generalized eigenvectors for the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

1. Characteristic polynomial is $(3-\lambda)(1-\lambda)^{2}$.
2. Eigenvalues are $\lambda=1,3$.
3. Eigenvectors are

$$
\begin{array}{ll}
\lambda_{1}=3: & \mathbf{v}_{1}=(1,2,2), \\
\lambda_{2}=1: & \mathbf{v}_{2}=(1,0,0) .
\end{array}
$$

4. Final generalized eigenvector will a vector $\mathbf{v}_{3} \neq \mathbf{0}$ such that

$$
\left(A-\lambda_{2} I\right)^{2} \mathbf{v}_{3}=\mathbf{0} \text { but }\left(A-\lambda_{2} I\right) \mathbf{v}_{3} \neq \mathbf{0}
$$

Pick $\mathbf{v}_{3}=(0,1,0)$. Note that $\left(A-\lambda_{2} I\right) \mathbf{v}_{3}=\mathbf{v}_{2}$.

Facts about generalized eigenvectors

How many powers of $(A-\lambda I)$ do we need to compute in order to find all of the generalized eigenvectors for λ ?

Fact

If A is an $n \times n$ matrix and λ is an eigenvalue with algebraic multiplicity k, then the set of generalized eigenvectors for λ consists of the nonzero elements of nullspace $\left((A-\lambda I)^{k}\right)$. In other words, we need to take at most k powers of $A-\lambda I$ to find all of the generalized eigenvectors for λ.

Definition

Computation and Properties

Chains

Example

Determine generalized eigenvectors for the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & -1 & 1
\end{array}\right]
$$

1. Single eigenvalue of $\lambda=1$.
2. Single eigenvector $\mathbf{v}_{1}=(-2,0,1)$.
3. Look at

$$
(A-I)^{2}=\left[\begin{array}{rrr}
2 & 0 & 4 \\
0 & 0 & 0 \\
-1 & 0 & -2
\end{array}\right]
$$

to find generalized eigenvector $\mathbf{v}_{2}=(0,1,0)$.
4. Finally, $(A-I)^{3}=\mathbf{0}$, so we get $\mathbf{v}_{3}=(1,0,0)$.

Facts about generalized eigenvectors

Definition

Fact

If λ is an eigenvalue of A with algebraic multiplicity k, then

$$
\text { nullity }\left((A-\lambda I)^{k}\right)=k
$$

In other words, there are k linearly independent generalized eigenvectors for λ.

If A is an $n \times n$ matrix, then there is a basis for \mathbb{R}^{n} consisting of generalized eigenvectors of A. linearly independent eigenvectors to make a basis. Are there always enough generalized eigenvectors to do so?

Corollary

Computing generalized eigenvectors

Definition

Computation and Properties

Chains

Jordan canonical form

Example

Determine generalized eigenvectors for the matrix

$$
A=\left[\begin{array}{rrr}
1 & 2 & 0 \\
1 & 1 & 2 \\
0 & -1 & 1
\end{array}\right]
$$

1. From last time, we have eigenvalue $\lambda=1$ and eigenvector $\mathbf{v}_{1}=(-2,0,1)$.
2. Solve $(A-I) \mathbf{v}_{2}=\mathbf{v}_{1}$ to get $\mathbf{v}_{2}=(0,-1,0)$.
3. Solve $(A-I) \mathbf{v}_{3}=\mathbf{v}_{2}$ to get $\mathbf{v}_{3}=(-1,0,0)$.

Let A be an $n \times n$ matrix and \mathbf{v} a generalized eigenvector of A corresponding to the eigenvalue λ. This means that

$$
(A-\lambda I)^{p} \mathbf{v}=\mathbf{0}
$$

for a positive integer p.
If $0 \leq q<p$, then

$$
(A-\lambda I)^{p-q}(A-\lambda I)^{q} \mathbf{v}=\mathbf{0}
$$

That is, $(A-\lambda I)^{q} \mathbf{v}$ is also a generalized eigenvector corresponding to λ for $q=0,1, \ldots, p-1$.

Definition

If p is the smallest positive integer such that $(A-\lambda I)^{p} \mathbf{v}=\mathbf{0}$, then the sequence

$$
(A-\lambda I)^{p-1} \mathbf{v}, \quad(A-\lambda I)^{p-2} \mathbf{v}, \ldots, \quad(A-\lambda I) \mathbf{v}, \mathbf{v}
$$

is called a chain or cycle of generalized eigenvectors. The integer p is called the length of the cycle.

Example

In the previous example,

$$
A-\lambda I=\left[\begin{array}{ccc}
0 & 2 & 0 \\
1 & 0 & 2 \\
0 & -1 & 0
\end{array}\right]
$$

and we found the chain

$$
\mathbf{v}=\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right],(A-\lambda I) \mathbf{v}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right],(A-\lambda I)^{2} \mathbf{v}=\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]
$$

Remark

The terminal vector in a chain is always an eigenvector.

Fact

The generalized eigenvectors in a chain are linearly
independent.
a

Introduction to Jordan form

What's the analogue of diagonalization for defective matrices? That is, if $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ are the linearly independent generalized eigenvectors of A occurring in chains, what does the matrix $S^{-1} A S$ look like, where $S=\left[\begin{array}{llll}\mathbf{v}_{1} & \mathbf{v}_{2} & \cdots & \mathbf{v}_{n}\end{array}\right]$?

Suppose that $\mathbf{v}_{1}, \mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$ is a chain of generalized eigenvectors, so that $(A-\lambda I) \mathbf{v}_{i}=\mathbf{v}_{i-1}$ for $i>1$ and $(A-\lambda I) \mathbf{v}_{1}=\mathbf{0}$. Then we have

$$
\begin{gathered}
A \mathbf{v}_{i}=\lambda \mathbf{v}_{i}+\mathbf{v}_{i-1} \text { for } i>1 \\
\text { and } A \mathbf{v}_{1}=\lambda \mathbf{v}_{1} .
\end{gathered}
$$

Jordan blocks

Definition

The matrix for $T(\mathbf{x})=A \mathbf{x}$ with respect to a basis consisting of a chain of generalized eigenvectors will be a Jordan block:

Definition

If λ is a real number, then the square matrix of the form

$$
J_{\lambda}=\left[\begin{array}{cccccc}
\lambda & 1 & 0 & 0 & \cdots & 0 \\
0 & \lambda & 1 & 0 & \cdots & 0 \\
0 & 0 & \lambda & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & \cdots & \lambda & 1 \\
0 & 0 & \cdots & \cdots & 0 & \lambda
\end{array}\right]
$$

is called a Jordan block corresponding to λ.

In general, we will need to find more than one chain of generalized eigenvectors in order to have enough for a basis. Each chain will be represented by a Jordan block.

Definition

A square matrix consisting of Jordan blocks centered along the main diagonal and zeros elsewhere is said to be in Jordan canonical form (JCF).

Theorem

If S is the matrix whose columns are a basis of generalized eigenvectors of A arranged in chains, then $S^{-1} A S$ is a matrix in JCF. It is unique up to a rearrangement of the Jordan blocks. We may therefore refer to this matrix as the Jordan canonical form of A, and we see that every matrix is similar to a matrix in JCF.

Generalized Eigenvectors

Math 240

Definition

Computation
and Properties
Chains
Jordan canonical form

Examples

- The matrix
$\left[\begin{array}{lllllllll}2 & 1 & 0 & & & & & & \\ 0 & 2 & 1 & & & & & & \\ 0 & 0 & 2 & & & & & & \\ & & & 5 & 1 & & & & \\ & & & 0 & 5 & & & & \\ & & & & & 7 & 1 & & \\ & & & & & 0 & 7 & & \\ & & & & & & & 7 & \\ & & & & & & & & 9\end{array}\right]$
is in JCF. It contains five Jordan blocks.
- Any diagonal matrix is in JCF. All of its Jordan blocks are 1×1.
- The matrix

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

is in JCF. It has two blocks of sizes 2 and 1.

Definition

Computation

Theorem
Two $n \times n$ matrices are similar if and only if they have the same Jordan canonical form (up to a rearrangement of the Jordan blocks).

Our main use for JCF will be solving $\mathrm{x}^{\prime}=A \mathrm{x}$ when the matrix A is defective.

