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Motivation

Defective matrices cannot be diagonalized because they do not
possess enough eigenvectors to make a basis. How can we
correct this defect?

Example

The matrix A =

[
1 1
0 1

]
is defective.

1. Only eigenvalue is λ = 1.

2. A− I =

[
0 1
0 0

]
3. Single eigenvector v = (1, 0).

4. We could use u = (0, 1) to complete a basis.

5. Notice that (A− I)u = v and (A− I)2u = 0.

Maybe we just didn’t multiply by A− λI enough times.
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Definition

Definition
If A is an n× n matrix, a generalized eigenvector of A
corresponding to the eigenvalue λ is a nonzero vector x
satisfying

(A− λI)p x = 0

for some positive integer p. Equivalently, it is a nonzero
element of the nullspace of (A− λI)p.

Example

I Eigenvectors are generalized eigenvectors with p = 1.

I In the previous example we saw that v = (1, 0) and
u = (0, 1) are generalized eigenvectors for

A =

[
1 1
0 1

]
and λ = 1.
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Computing generalized eigenvectors

Example

Determine generalized eigenvectors for the matrix

A =

1 1 0
0 1 2
0 0 3

 .
1. Characteristic polynomial is (3− λ)(1− λ)2.

2. Eigenvalues are λ = 1, 3.

3. Eigenvectors are

λ1 = 3 : v1 = (1, 2, 2),

λ2 = 1 : v2 = (1, 0, 0).

4. Final generalized eigenvector will a vector v3 6= 0 such
that

(A− λ2I)2 v3 = 0 but (A− λ2I)v3 6= 0.

Pick v3 = (0, 1, 0). Note that (A− λ2I)v3 = v2.
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Facts about generalized eigenvectors

How many powers of (A− λI) do we need to compute in order
to find all of the generalized eigenvectors for λ?

Fact
If A is an n× n matrix and λ is an eigenvalue with algebraic
multiplicity k, then the set of generalized eigenvectors for λ
consists of the nonzero elements of nullspace

(
(A− λI)k

)
.

In other words, we need to take at most k powers of A− λI to
find all of the generalized eigenvectors for λ.
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Computing generalized eigenvectors

Example

Determine generalized eigenvectors for the matrix

A =

1 2 0
1 1 2
0 −1 1

 .
1. Single eigenvalue of λ = 1.

2. Single eigenvector v1 = (−2, 0, 1).
3. Look at

(A− I)2 =

 2 0 4
0 0 0
−1 0 −2


to find generalized eigenvector v2 = (0, 1, 0).

4. Finally, (A− I)3 = 0, so we get v3 = (1, 0, 0).
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Facts about generalized eigenvectors

The aim of generalized eigenvectors was to enlarge a set of
linearly independent eigenvectors to make a basis. Are there
always enough generalized eigenvectors to do so?

Fact
If λ is an eigenvalue of A with algebraic multiplicity k, then

nullity
(
(A− λI)k

)
= k.

In other words, there are k linearly independent generalized
eigenvectors for λ.

Corollary

If A is an n× n matrix, then there is a basis for Rn consisting
of generalized eigenvectors of A.
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Computing generalized eigenvectors

Example

Determine generalized eigenvectors for the matrix

A =

1 2 0
1 1 2
0 −1 1

 .
1. From last time, we have eigenvalue λ = 1 and eigenvector

v1 = (−2, 0, 1).
2. Solve (A− I)v2 = v1 to get v2 = (0,−1, 0).
3. Solve (A− I)v3 = v2 to get v3 = (−1, 0, 0).
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Chains of generalized eigenvectors

Let A be an n× n matrix and v a generalized eigenvector of A
corresponding to the eigenvalue λ. This means that

(A− λI)p v = 0

for a positive integer p.

If 0 ≤ q < p, then

(A− λI)p−q (A− λI)q v = 0.

That is, (A− λI)qv is also a generalized eigenvector
corresponding to λ for q = 0, 1, . . . , p− 1.

Definition
If p is the smallest positive integer such that (A− λI)p v = 0,
then the sequence

(A− λI)p−1 v, (A− λI)p−2 v, . . . , (A− λI)v, v
is called a chain or cycle of generalized eigenvectors. The
integer p is called the length of the cycle.
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Chains of generalized eigenvectors

Example

In the previous example,

A− λI =

0 2 0
1 0 2
0 −1 0


and we found the chain

v =

−10
0

 , (A− λI)v =

 0
−1
0

 , (A− λI)2v =

−20
1

 .
Remark
The terminal vector in a chain is always an eigenvector.

Fact
The generalized eigenvectors in a chain are linearly
independent.
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Introduction to Jordan form

What’s the analogue of diagonalization for defective matrices?
That is, if {v1,v2, . . . ,vn} are the linearly independent
generalized eigenvectors of A occurring in chains, what does
the matrix S−1AS look like, where S =

[
v1 v2 · · · vn

]
?

Suppose that v1,v1, . . . ,vk is a chain of generalized
eigenvectors, so that (A− λI)vi = vi−1 for i > 1 and
(A− λI)v1 = 0. Then we have

Avi = λvi + vi−1 for i > 1

and Av1 = λv1.
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Jordan blocks

The matrix for T (x) = Ax with respect to a basis consisting of
a chain of generalized eigenvectors will be a Jordan block:

Definition
If λ is a real number, then the square matrix of the form

Jλ =



λ 1 0 0 · · · 0
0 λ 1 0 · · · 0
0 0 λ 1 · · · 0
...

...
...

. . .
. . .

...
0 0 · · · · · · λ 1
0 0 · · · · · · 0 λ


is called a Jordan block corresponding to λ.
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Jordan canonical form

In general, we will need to find more than one chain of
generalized eigenvectors in order to have enough for a basis.
Each chain will be represented by a Jordan block.

Definition
A square matrix consisting of Jordan blocks centered along the
main diagonal and zeros elsewhere is said to be in Jordan
canonical form (JCF).

Theorem
If S is the matrix whose columns are a basis of generalized
eigenvectors of A arranged in chains, then S−1AS is a matrix
in JCF. It is unique up to a rearrangement of the Jordan blocks.

We may therefore refer to this matrix as the Jordan canonical
form of A, and we see that every matrix is similar to a matrix
in JCF.



Generalized
Eigenvectors

Math 240

Definition

Computation
and Properties

Chains

Jordan
canonical form

Examples

I The matrix 

2 1 0
0 2 1
0 0 2

5 1
0 5

7 1
0 7

7
9


is in JCF. It contains five Jordan blocks.

I Any diagonal matrix is in JCF. All of its Jordan blocks are
1× 1.

I The matrix [
0 1 0
0 0 0
0 0 0

]
is in JCF. It has two blocks of sizes 2 and 1.
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Uses of JCF

Theorem
Two n× n matrices are similar if and only if they have the
same Jordan canonical form (up to a rearrangement of the
Jordan blocks).

Our main use for JCF will be solving x′ = Ax when the matrix
A is defective.
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